Foot Traffic Driven Anthropogenic Activity Alters Phyllosphere Microbial Community Characteristics and Putative Pathogens in Subtropical Urban Green Spaces
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Experimental Design
2.2. Determination of Soil Physicochemical Properties
2.3. DNA Extraction, PCR Amplification, Sequencing, and Data Processing
2.4. Bioinformatics and Statistical Analysis
3. Results
3.1. Description of the Microbial Community
3.2. The Composition and Structure of Microbial Communities in Various Urban Green Spaces
3.3. Microbial Diversity
3.3.1. Alpha Diversity
3.3.2. Beta Diversity
3.4. Relative Influence and Contribution of Environmental Factors to Microbial Community Distribution
3.5. Characterization of Putative Pathogens in Urban Green Spaces and Co-Occurrence Network Dynamics of Microorganisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, G.; Sun, X.; Sun, R.; Liu, Q.; Tao, Y.; Yang, P.; Tang, H. Advancing the Optimization of Urban–Rural Ecosystem Service Supply-Demand Mismatches and Trade-Offs. Landsc. Ecol. 2024, 39, 1713–1721. [Google Scholar] [CrossRef]
- Guo, J.; Niu, H.; Xiao, D.; Sun, X.; Fan, L. Urban Green-Space Water-Consumption Characteristics and Its Driving Factors in China. Ecol. Indic. 2021, 130, 108076. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Abdullah Al, M.; Ndayishimiye, J.C.; Yang, J.R.; Isabwe, A.; Luo, A.; Yang, J. Urbanization Reduces Resource Use Efficiency of Phytoplankton Community by Altering the Environment and Decreasing Biodiversity. J. Environ. Sci. 2022, 112, 140–151. [Google Scholar] [CrossRef]
- Pukowiec-Kurda, K. The Urban Ecosystem Services Index as a New Indicator for Sustainable Urban Planning and Human Well-Being in Cities. Ecol. Indic. 2022, 144, 109532. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Qin, B. The Relationship between Urban Greenness and Mental Health: A National-Level Study of China. Landsc. Urban Plan. 2023, 238, 104830. [Google Scholar] [CrossRef]
- Ningtyas, R.; Paddiyatu, N.; Zani, B.N.; Herawati; Sakati, S.N. The Impact of Nature Exposure on Mental Health and Well-Being. West Sci. Interdiscip. Stud. 2023, 1, 543–550. [Google Scholar] [CrossRef]
- Nisar, Z.; Ashraf, K.; Verma, S. Exploring Urban Parks: Performance Analysis and Improvement Strategies for Ambedkar Memorial Park, Lucknow. ShodhKosh J. Vis. Per. Arts 2024, 5, 358–371. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Y.; Zhang, Q.; Zou, M.; Li, T.; Ai, L.; Wang, H. Urban Greenspace Types and Climate Factors Jointly Drive the Microbial Community Structure and Co-Occurrence Network. Sci. Rep. 2024, 14, 16042. [Google Scholar] [CrossRef]
- Laforest-Lapointe, I.; Messier, C.; Kembel, S.W. Host Species Identity, Site and Time Drive Temperate Tree Phyllosphere Bacterial Community Structure. Microbiome 2016, 4, 27. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Lu, L.; Huang, F.; Liu, H.; Zhang, Y.; Yang, L.; Usman, M.; Li, S. Urbanization Reduces Phyllosphere Microbial Network Complexity and Species Richness of Camphor Trees. Microorganisms 2023, 11, 233. [Google Scholar] [CrossRef]
- Przewoźna, P.; Inglot, A.; Mielewczyk, M.; Maczka, K.; Matczak, P. Accessibility to Urban Green Spaces: A Critical Review of WHO Recommendations in the Light of Tree-Covered Areas Assessment. Ecol. Indic. 2024, 166, 112548. [Google Scholar] [CrossRef]
- Wu, N.; Li, Z.; Meng, S.; Wu, F. Soil Properties and Microbial Community in the Rhizosphere of Populus Alba Var. Pyramidalis along a Chronosequence. Microbiol. Res. 2021, 250, 126812. [Google Scholar] [CrossRef]
- Feltynowski, M.; Kronenberg, J. Urban Green Spaces—An Underestimated Resource in Third-Tier Towns in Poland. Land 2020, 9, 453. [Google Scholar] [CrossRef]
- Kowarik, I.; Fischer, L.K.; Kendal, D. Biodiversity Conservation and Sustainable Urban Development. Sustainability 2020, 12, 4964. [Google Scholar] [CrossRef]
- Bashir, I.; War, A.F.; Rafiq, I.; Reshi, Z.A.; Rashid, I.; Shouche, Y.S. Phyllosphere Microbiome: Diversity and Functions. Microbiol. Res. 2022, 254, 126888. [Google Scholar] [CrossRef]
- Simkovic, V.; Nelson, D.H. Observing Linkages between Biodiversity and Planetary Health. CAND J. 2019, 26, 27–30. [Google Scholar] [CrossRef]
- Flies, E.J.; Mavoa, S.; Zosky, G.R.; Mantzioris, E.; Williams, C.; Eri, R.; Brook, B.W.; Buettel, J.C. Urban-Associated Diseases: Candidate Diseases, Environmental Risk Factors, and a Path Forward. Environ. Int. 2019, 133, 105187. [Google Scholar] [CrossRef]
- Ruiz-Calderon, J.F.; Cavallin, H.; Song, S.J.; Novoselac, A.; Pericchi, L.R.; Hernandez, J.N.; Rios, R.; Branch, O.H.; Pereira, H.; Paulino, L.C.; et al. Walls Talk: Microbial Biogeography of Homes Spanning Urbanization. Sci. Adv. 2016, 2, e1501061. [Google Scholar] [CrossRef]
- Prudencio, L.; Null, S.E. Stormwater Management and Ecosystem Services: A Review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban Forests and Pollution Mitigation: Analyzing Ecosystem Services and Disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef]
- Ren, Q.; Zhang, L.; Yang, Z.; Zhang, M.; Wei, M.; Zhang, H.; Li, A.; Shi, R.; Song, P.; Ge, S. Multi-Criteria Plant Clustering for Carbon-Centric Urban Forestry: Enhancing Sequestration Potential through Adaptive Species Selection in the Zhengzhou Metropolitan Area, China. Forests 2025, 16, 536. [Google Scholar] [CrossRef]
- Guo, E.; Liang, J.; Yuan, Y.; Xie, P.; Hou, H.; Yang, X.; Dong, X. Spatiotemporal Evolution and Driving Mechanisms of Forest Tourism in Henan, Central China. Forests 2025, 16, 483. [Google Scholar] [CrossRef]
- Islam, M.N.; Rahman, K.-S.; Bahar, M.M.; Habib, M.A.; Ando, K.; Hattori, N. Pollution Attenuation by Roadside Greenbelt in and around Urban Areas. Urban For. Urban Green. 2012, 11, 460–464. [Google Scholar] [CrossRef]
- Wirojsakunchai, E.; Plengsa-Ard, C.; Songkitti, W. Effects of Payload on Non-Exhaust PM Emissions from Hybrid Electric Vehicle during Braking Sequences. IOP Conf. Ser. Earth Environ. Sci. 2022, 1013, 012002. [Google Scholar] [CrossRef]
- Chen, K.; Lin, H.; You, S.; Han, Y. Review of the Impact of Urban Parks and Green Spaces on Residence Prices in the Environmental Health Context. Front. Public Health 2022, 10, 993801. [Google Scholar] [CrossRef]
- Alikhani, S.; Nummi, P.; Ojala, A. Urban Wetlands: A Review on Ecological and Cultural Values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Zhang, L.; Kondolf, G.M. Ponds and Wetlands Landscapes of Flood Management in the Cities of the Lower Yellow River Floodplain—The Case of Huaiyang, China. Water 2024, 16, 703. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, M.; Dsouza, M.; Weisenhorn, P.; Zheng, T.; Gilbert, J.A. Soil Bacterial Diversity Is Associated with Human Population Density in Urban Greenspaces. Environ. Sci. Technol. 2018, 52, 5115–5124. [Google Scholar] [CrossRef]
- Keyhani, A.B.; He, W.; Teng, M.; Yan, Z.; Fayaz, M.; Hui, P.Z.; Wang, X.; Han, Z.; Gobena, A.A.; Rasool, A.A.; et al. Effect of Mineral Fertilizer Addition on Pinus Massoniana Lamb Leaf Litter Decomposition and on Amino Acid Concentration in a Subtropical Forest. Plant Soil 2024, 512, 991–1004. [Google Scholar] [CrossRef]
- De Vos, B.; Van Meirvenne, M.; Quataert, P.; Deckers, J.; Muys, B. Predictive Quality of Pedotransfer Functions for Estimating Bulk Density of Forest Soils. Soil Sci. Soc. Am. J. 2005, 69, 500–510. [Google Scholar] [CrossRef]
- Spasić, M.; Vacek, O.; Vejvodová, K.; Tejnecký, V.; Polák, F.; Borůvka, L.; Drábek, O. Determination of Physical Properties of Undisturbed Soil Samples According to V. Novák. MethodsX 2023, 10, 102133. [Google Scholar] [CrossRef]
- Drescher, G.L.; da Silva, L.S.; Sarfaraz, Q.; Molin, G.D.; Marzari, L.B.; Lopes, A.F.; Cella, C.; Facco, D.B.; Hammerschmitt, R.K. Alkaline Hydrolyzable Nitrogen and Properties That Dictate Its Distribution in Paddy Soil Profiles. Pedosphere 2020, 30, 326–335. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in Soil Enzymes, Soil Properties, and Maize Crop Productivity under Wheat Straw Mulching in Guanzhong, China. Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Claesson, M.J.; O’Sullivan, O.; Wang, Q.; Nikkilä, J.; Marchesi, J.R.; Smidt, H.; de Vos, W.M.; Ross, R.P.; O’Toole, P.W. Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine. PLoS ONE 2009, 4, e6669. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Lumini, E.; Nilsson, R.H.; Girlanda, M.; Vizzini, A.; Bonfante, P.; Bianciotto, V. Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds. PLoS ONE 2012, 7, e34847. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.-I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef]
- Huson, D.H.; Mitra, S.; Ruscheweyh, H.-J.; Weber, N.; Schuster, S.C. Integrative Analysis of Environmental Sequences Using MEGAN4. Genome Res. 2011, 21, 1552–1560. [Google Scholar] [CrossRef]
- Asnicar, F.; Weingart, G.; Tickle, T.L.; Huttenhower, C.; Segata, N. Compact Graphical Representation of Phylogenetic Data and Metadata with GraPhlAn. PeerJ 2015, 3, e1029. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic Biomarker Discovery and Explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Lax, S.; Sangwan, N.; Smith, D.; Larsen, P.; Handley, K.M.; Richardson, M.; Guyton, K.; Krezalek, M.; Shogan, B.D.; Defazio, J.; et al. Bacterial Colonization and Succession in a Newly Opened Hospital. Sci. Transl. Med. 2017, 9, eaah6500. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, X.; Jing, G.; Chen, Y.; Jiang, S.; Zhang, M.; Liu, J.; Xu, J.; Su, X. Comprehensive Understanding to the Public Health Risk of Environmental Microbes via a Microbiome-Based Index. J. Genet. Genom. 2022, 49, 685–688. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, G.; Zhang, Y.; Wang, N.; Zhang, Y.; Wang, X.; Zhao, F.-J.; Xu, Y.; Shen, Q.; Wei, Z. MBPD: A Multiple Bacterial Pathogen Detection Pipeline for One Health Practices. Imeta 2023, 2, e82. [Google Scholar] [CrossRef]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A Few Ascomycota Taxa Dominate Soil Fungal Communities Worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef]
- Huang, X.-R.; Neilson, R.; Yang, L.-Y.; Deng, J.-J.; Zhou, S.-Y.-D.; Li, H.; Zhu, Y.-G.; Yang, X.-R. Urban Greenspace Types Influence the Microbial Community Assembly and Antibiotic Resistome More in the Phyllosphere than in the Soil. Chemosphere 2023, 338, 139533. [Google Scholar] [CrossRef]
- Li, M.; Chen, L.; Zhao, F.; Tang, J.; Bu, Q.; Wang, X.; Yang, L. Effects of Urban-Rural Environmental Gradient on Soil Microbial Community in Rapidly Urbanizing Area. Ecosyst. Health Sustain. 2023, 9, 0118. [Google Scholar] [CrossRef]
- Kim, M.; Singh, D.; Lai-Hoe, A.; Go, R.; Abdul Rahim, R.; Ainuddin, A.N.; Chun, J.; Adams, J.M. Distinctive Phyllosphere Bacterial Communities in Tropical Trees. Microb. Ecol. 2012, 63, 674–681. [Google Scholar] [CrossRef]
- Keyhani, A.B.; He, W.; Teng, M.; Yan, Z.; Ma, Z.; Xu, J.; Fayaz, M.; Zhou, C.; Wei, P.; Wang, P. Effect of Mineral Fertilizers on Microorganisms Community Characteristic during Leaf Litter Decomposition under Pinus Massoniana in a Subtropical Forest. Appl. Soil Ecol. 2024, 199, 105421. [Google Scholar] [CrossRef]
- Treseder, K.K.; Marusenko, Y.; Romero-Olivares, A.L.; Maltz, M.R. Experimental Warming Alters Potential Function of the Fungal Community in Boreal Forest. Glob. Chang. Biol. 2016, 22, 3395–3404. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiol. Mol. Biol. Rev. 2017, 81, e00063-16. [Google Scholar] [CrossRef]
- Hendershot, J.N.; Read, Q.D.; Henning, J.A.; Sanders, N.J.; Classen, A.T. Consistently Inconsistent Drivers of Microbial Diversity and Abundance at Macroecological Scales. Ecology 2017, 98, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wang, X.; Song, X.; Dai, D.; Ding, L.; Degen, A.A.; Wang, C. Vertical Patterns of Soil Bacterial and Fungal Communities along a Soil Depth Gradient in a Natural Picea Crassifolia Forest in Qinghai Province, China. Forests 2023, 14, 1016. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J. The Composition and Assembly of Soil Microbial Communities Differ across Vegetation Cover Types of Urban Green Spaces. Sustainability 2023, 15, 13105. [Google Scholar] [CrossRef]
- Chen, T. Environmental Microbial Diversity and Ecosystem Health Revealed by Metagenomics. Mol. Microbiol. Res. 2024, 14, 20–30. [Google Scholar] [CrossRef]
- Wagg, C.; Hautier, Y.; Pellkofer, S.; Banerjee, S.; Schmid, B.; van der Heijden, M.G. Diversity and Asynchrony in Soil Microbial Communities Stabilizes Ecosystem Functioning. eLife 2021, 10, e62813. [Google Scholar] [CrossRef]
- Žlender, V. Characterisation of Peri-Urban Landscape Based on the Views and Attitudes of Different Actors. Land Use Policy 2021, 101, 105181. [Google Scholar] [CrossRef]
- Ege, M.J.; Mayer, M.; Normand, A.-C.; Genuneit, J.; Cookson, W.O.C.M.; Braun-Fahrländer, C.; Heederik, D.; Piarroux, R.; von Mutius, E. Exposure to Environmental Microorganisms and Childhood Asthma. N. Engl. J. Med. 2011, 364, 701–709. [Google Scholar] [CrossRef]
- Lori, M.; Piton, G.; Symanczik, S.; Legay, N.; Brussaard, L.; Jaenicke, S.; Nascimento, E.; Reis, F.; Sousa, J.P.; Mäder, P.; et al. Compared to Conventional, Ecological Intensive Management Promotes Beneficial Proteolytic Soil Microbial Communities for Agro-Ecosystem Functioning under Climate Change-Induced Rain Regimes. Sci. Rep. 2020, 10, 7296. [Google Scholar] [CrossRef]
- Cowan, D.A.; Lebre, P.H.; Amon, C.; Becker, R.W.; Boga, H.I.; Boulangé, A.; Chiyaka, T.L.; Coetzee, T.; de Jager, P.C.; Dikinya, O.; et al. Biogeographical Survey of Soil Microbiomes across Sub-Saharan Africa: Structure, Drivers, and Predicted Climate-Driven Changes. Microbiome 2022, 10, 131. [Google Scholar] [CrossRef]
- Wang, P.; Wang, X.; Wang, C.; Miao, L.; Hou, J.; Yuan, Q. Shift in Bacterioplankton Diversity and Structure: Influence of Anthropogenic Disturbances along the Yarlung Tsangpo River on the Tibetan Plateau, China. Sci. Rep. 2017, 7, 12529. [Google Scholar] [CrossRef]
- Fayaz, M.; Keyhani, A.B.; Bakhshyar, D.; Zhaoguo, L.; Islam, M.Z.; Yang, G. Impact of Fertilizers Application on Leaf Litter Decomposition and Nutrient Cycling in White Poplar (Populus Alba L.) Forest Ecosystem. For. Sci. Technol. 2024, 20, 231–243. [Google Scholar] [CrossRef]
- Tian, A.; Halik, Ü.; Fu, W.; Sawirdin, S.; Cheng, S.; Lei, J. Research History of Forest Gap as Small-Scale Disturbances in Forest Ecosystems. Forests 2023, 15, 21. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, Q.; Hu, Y. Effects of Forest Types on Soil Particulate Organic Carbon Contents and Distribution along a Subtropical Climate Transect in China. Land Degrad. Dev. 2025, 36, 1860–1870. [Google Scholar] [CrossRef]
- Schwarz, K.; Wohldmann, E.L.; Chen, Y.; Pouyat, R.V.; Gonzalez, A.; Mao, S.; Day, S.D. Community Knowledge and Concerns about Urban Soil Science, Practice, and Process: Perspectives from the Healthy Soils for Healthy Communities Initiative in Los Angeles, CA, United States. Front. Ecol. Evol. 2022, 9, 781587. [Google Scholar] [CrossRef]
- Ibekwe, A.M.; Leddy, M.; Murinda, S.E. Potential Human Pathogenic Bacteria in a Mixed Urban Watershed as Revealed by Pyrosequencing. PLoS ONE 2013, 8, e79490. [Google Scholar] [CrossRef]
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the Environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef]
- Galagoda, R.; Chanto, M.; Takemura, Y.; Tomioka, N.; Syutsubo, K.; Honda, R.; Yamamoto-Ikemoto, R.; Matsuura, N. Quantitative 16S RRNA Gene Amplicon Sequencing for Comprehensive Pathogenic Bacterial Tracking in a Municipal Wastewater Treatment Plant. ACS ES T Water 2023, 3, 923–933. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, Y.; Li, P.; Sun, J.; Jiang, Y.; Pan, Z.; Li, Y.-Z.; Zhang, Z. Anthropogenic Activity and Climate Change Exacerbate the Spread of Pathogenic Bacteria in the Environment. Sci. Adv. 2025, 11, eads4355. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, Z.; Luo, W.; Feng, J.; Chen, Y.; He, D.; Ellwood, M.D.F.; Chu, C.; Li, Y. Fungal Phylogeny and Plant Functional Traits Structure Plant–Rhizosphere Fungi Networks in a Subtropical Forest. Oikos 2022, 2022, e08992. [Google Scholar] [CrossRef]
- Yuan, M.M.; Kakouridis, A.; Starr, E.; Nguyen, N.; Shi, S.; Pett-Ridge, J.; Nuccio, E.; Zhou, J.; Firestone, M. Fungal-Bacterial Cooccurrence Patterns Differ between Arbuscular Mycorrhizal Fungi and Nonmycorrhizal Fungi across Soil Niches. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef] [PubMed]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keyhani, A.B.; He, W.; Teng, M.; Yan, Z.; Fayaz, M.; Peng, Z.; Zhang, Y.; Tamim, S.A.; Wang, X.; Han, Z.; et al. Foot Traffic Driven Anthropogenic Activity Alters Phyllosphere Microbial Community Characteristics and Putative Pathogens in Subtropical Urban Green Spaces. Microorganisms 2025, 13, 2464. https://doi.org/10.3390/microorganisms13112464
Keyhani AB, He W, Teng M, Yan Z, Fayaz M, Peng Z, Zhang Y, Tamim SA, Wang X, Han Z, et al. Foot Traffic Driven Anthropogenic Activity Alters Phyllosphere Microbial Community Characteristics and Putative Pathogens in Subtropical Urban Green Spaces. Microorganisms. 2025; 13(11):2464. https://doi.org/10.3390/microorganisms13112464
Chicago/Turabian StyleKeyhani, Abdul Baess, Wei He, Mingjun Teng, Zhaogui Yan, Monira Fayaz, Zhaohui Peng, Yangyang Zhang, Safir Ahmad Tamim, Xiuyuan Wang, Zemin Han, and et al. 2025. "Foot Traffic Driven Anthropogenic Activity Alters Phyllosphere Microbial Community Characteristics and Putative Pathogens in Subtropical Urban Green Spaces" Microorganisms 13, no. 11: 2464. https://doi.org/10.3390/microorganisms13112464
APA StyleKeyhani, A. B., He, W., Teng, M., Yan, Z., Fayaz, M., Peng, Z., Zhang, Y., Tamim, S. A., Wang, X., Han, Z., Wei, P., Pan, L., & Wang, P. (2025). Foot Traffic Driven Anthropogenic Activity Alters Phyllosphere Microbial Community Characteristics and Putative Pathogens in Subtropical Urban Green Spaces. Microorganisms, 13(11), 2464. https://doi.org/10.3390/microorganisms13112464

