Phenomenal Diversity of the Photosynthetic Apparatus Evolved in Aerobic Anoxygenic Phototrophs
Abstract
1. Introduction
2. The Aerobic Anoxygenic Photosynthesis Pathway
3. The Photosynthetic Apparatus: Typical and Atypical
3.1. Reaction Center (RC)
3.2. Light-Harvesting Complex 1 (LH1)
3.3. Light-Harvesting Complex 2 (LH2)
3.4. Unusual Peripheral Light-Harvesting Complexes: LH3 and LH4
3.4.1. LH3
3.4.2. LH4
3.5. Photosynthetic and Accessory Pigments
3.5.1. Bacteriochlorophyll
3.5.2. Carotenoids
3.6. Electron Transporters: Quinones and Cytochromes
4. The Photosynthesis Gene Cluster
4.1. Composition and Arrangement
4.2. Hidden AAP
4.3. Insights into Evolution
5. Environmental Influences on Photosynthesis Activity
5.1. Light
5.2. Oxygen
5.3. Nutrients
6. Future Directions, Perspectives and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| e− | Electron |
| BChl | Bacteriochlorophyll |
| AAP | Aerobic Anoxygenic Phototrophs |
| PGC | Photosynthetic Gene Cluster |
| PNSB | Purple Non-sulfur Bacteria |
| LH | Light-harvesting |
| RC | Reaction Center |
| BPhe | Bacteriopheophytin |
| Cyt | Cytochrome |
| HGT | Horizontal Gene Transfer |
| Chl | Chlorophyll |
| MAG | Metagenome-assembled Genome |
References
- Blankenship, R.E. Early Evolution of Photosynthesis. Plant Physiol. 2010, 154, 434–438. [Google Scholar] [CrossRef]
- Yurkov, V.; Beatty, J.T. Aerobic Anoxygenic Phototrophic Bacteria. Microbiol. Mol. Biol. Rev. 1998, 62, 695–724. [Google Scholar] [CrossRef]
- Harashima, K.; Totsuka, T.; Shiba, T.; Simidu, U.; Taga, N. Occurrence of Bacteriochlorophyll Alpha in a Strain of an Aerobic Heterotrophic Bacterium. Agric. Biol. Chem. 1978, 42, 1672–1678. [Google Scholar]
- Shiba, T.; Simidu, U.; Taga, N. Another Aerobic Bacterium Which Contains Bacteriochlorophyll a. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 801. [Google Scholar] [CrossRef]
- Shiba, T.; Simidu, U. Erythrobacter longus gen. nov., sp. nov., an Aerobic Bacterium Which Contains Bacteriochlorophyll a. Int. J. Syst. Bacteriol. 1982, 32, 211–217. [Google Scholar] [CrossRef]
- Shiba, T. Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., Aerobic Pink-Pigmented Bacteria Which Contain Bacteriochlorophyll a. Syst. Appl. Microbiol. 1991, 14, 140–145. [Google Scholar] [CrossRef]
- Pfennig, N. International Committee on Systematic Bacteriology Subcommittee on Phototrophic Bacteria: Minutes of the Meeting, 4 September 1978 Munich, F.R.G. Int. J. Syst. Evol. Microbiol. 1982, 32, 255. [Google Scholar] [CrossRef]
- Trüper, H.G. International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Phototrophic Bacteria: Minutes of the Meeting, 10 August 1982, Boston, Massachusetts. Int. J. Syst. Evol. Microbiol. 1984, 34, 256–257. [Google Scholar] [CrossRef]
- Takamiya, K.; Okamura, K. Photochemical Activities and Photosynthetic ATP Formation in Membrane Preparation from a Facultative Methylotroph, Protaminobacter ruber Strain NR-1. Arch. Microbiol. 1984, 140, 21–26. [Google Scholar] [CrossRef]
- Nishimura, Y.; Mukasa, S.; Iizuka, H.; Shimada, K. Isolation and Characterization of Bacteriochlorophyll-Protein Complexes from an Aerobic Bacterium, Pseudomonas radiora. Arch. Microbiol. 1989, 152, 1–5. [Google Scholar] [CrossRef]
- Harashima, K.; Nakagawa, M.; Murata, N. Photochemical Activities of Bacteriochlorophyll in Aerobically Grown Cells of Aerobic Heterotrophs, Erythrobacter Species (OCh 114) and Erythrobacter longus (OCh 101). Plant Cell Physiol. 1982, 23, 185–193. [Google Scholar] [CrossRef]
- Hayashi, H.; Shimada, K.; Tasumi, M. Circular Dichroism and Resonance Raman Spectra of Bacteriochlorophyll-Protein Complexes from Aerobic Bacteria, Erythrobacter longus and Erythrobacter Species OCh 114. Photobiochem. Photobiophys. 1986, 10, 223–231. [Google Scholar]
- Trüper, H.G. International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Phototrophic Bacteria: Minutes of the Meeting, 24 July 1991, Amherst, Mass. Int. J. Syst. Bacteriol. 1992, 42, 510. [Google Scholar]
- Kuzyk, S.B.; Messner, K.; Plouffe, J.; Ma, X.; Wiens, K.; Yurkov, V. Diverse Aerobic Anoxygenic Phototrophs Synthesize Bacteriochlorophyll in Oligotrophic Rather than Copiotrophic Conditions, Suggesting Ecological Niche. Environ. Microbiol. 2023, 25, 2653–2665. [Google Scholar] [CrossRef] [PubMed]
- Yurkov, V.V.; Gorlenko, V.M. Roseococcus gen. nov., a New Genus of Freshwater Aerobic, Bacteriochlorophyll a-Containing Bacteria. Mikrobiologiya 1991, 60, 902–907. [Google Scholar]
- Yurkov, V.V.; Gorlenko, V.M. Erythrobacter sibiricus sp. nov., a new freshwater aerobic species containing bacteriochlorophyll a. Mikrobiologiya 1990, 59, 120–126. [Google Scholar]
- Yurkov, V.; Beatty, J.T. Isolation of Aerobic Anoxygenic Photosynthetic Bacteria from Black Smoker Plume Waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl. Environ. Microbiol. 1998, 64, 337–341. [Google Scholar] [CrossRef]
- Csotonyi, J.T.; Swiderski, J.; Stackebrandt, E.; Yurkov, V.V. Novel Halophilic Aerobic Anoxygenic Phototrophs from a Canadian Hypersaline Spring System. Extremophiles 2008, 12, 529–539. [Google Scholar] [CrossRef]
- Hughes, E.; Head, B.; Maltman, C.; Piercey-Normore, M.; Yurkov, V. Aerobic Anoxygenic Phototrophs in Gold Mine Tailings in Nopiming Provincial Park, Manitoba, Canada. Can. J. Microbiol. 2017, 63, 212–218. [Google Scholar] [CrossRef]
- Csotonyi, J.T.; Swiderski, J.; Stackebrandt, E.; Yurkov, V. A New Environment for Aerobic Anoxygenic Phototrophic Bacteria: Biological Soil Crusts. Environ. Microbiol. Rep. 2010, 2, 651–656. [Google Scholar] [CrossRef]
- Kolber, Z.S.; Plumley, F.G.; Lang, A.S.; Beatty, J.T.; Blankenship, R.E.; VanDover, C.L.; Vetriani, C.; Koblizek, M.; Rathgeber, C.; Falkowski, P.G. Contribution of Aerobic Photoheterotrophic Bacteria to the Carbon Cycle in the Ocean. Science (1979) 2001, 292, 2492–2495. [Google Scholar] [CrossRef]
- Yurkov, V.; Csotonyi, J.T. New Light on Aerobic Anoxygenic Phototrophs. In The Purple Phototrophic Bacteria; Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 31–55. [Google Scholar]
- Takamiya, K.; Iba, K.; Okamura, K. Reaction Center Complex from an Aerobic Photosynthetic Bacterium, Erythrobacter Species OCh 114. Biochim. Biophys. Acta (BBA)—Bioenerg. 1987, 890, 127–133. [Google Scholar] [CrossRef]
- Yurkov, V.V.; van Gemerden, H. Impact of Light/Dark Regimen on Growth Rate, Biomass Formation and Bacteriochlorophyll Synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 1993, 159, 84–89. [Google Scholar] [CrossRef]
- Spring, S.; Lünsdorf, H.; Fuchs, B.M.; Tindall, B.J. The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS ONE 2009, 4, e4866. [Google Scholar] [CrossRef]
- Biebl, H.; Wagner-Döbler, I. Growth and Bacteriochlorophyll a Formation in Taxonomically Diverse Aerobic Anoxygenic Phototrophic Bacteria in Chemostat Culture: Influence of Light Regimen and Starvation. Process Biochem. 2006, 41, 2153–2159. [Google Scholar] [CrossRef]
- Suyama, T.; Shigematsu, T.; Takaichi, S.; Nodasaka, Y.; Fujikawa, S.; Hosoya, H.; Tokiwa, Y.; Kanagawa, T.; Hanada, S. Roseateles depolymerans gen. nov., sp. nov., a New Bacteriochlorophyll a-Containing Obligate Aerobe Belonging to the β-Subclass of the Proteobacteria. Int. J. Syst. Bacteriol. 1999, 49, 449–457. [Google Scholar] [CrossRef]
- Zeng, Y.; Selyanin, V.; Lukeŝ, M.; Dean, J.; Kaftan, D.; Feng, F.; Koblížek, M. Characterization of the Microaerophilic, Bacteriochlorophyll a-Containing Bacterium Gemmatimonas phototrophica sp. nov., and Emended Descriptions of the Genus Gemmatimonas and Gemmatimonas aurantiaca. Int. J. Syst. Evol. Microbiol. 2015, 65, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.; Gardiner, A.T.; Šímová, I.; Naydenova, K.; Croll, T.I.; Jackson, P.J.; Nupur; Kloz, M.; Čubáková, P.; Kuzma, M.; et al. 2.4-Å Structure of the Double-Ring Gemmatimonas phototrophica Photosystem. Sci. Adv. 2022, 8, eabk3139. [Google Scholar] [CrossRef]
- Yabe, S.; Muto, K.; Abe, K.; Yokota, A.; Staudigel, H.; Tebo, B.M. Vulcanimicrobium alpinus gen. nov. sp. nov., the First Cultivated Representative of the Candidate Phylum “Eremiobacterota”, Is a Metabolically Versatile Aerobic Anoxygenic Phototroph. ISME Commun. 2022, 2, 120. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Y.; Gu, J.; An, S.; Ma, C.; Gao, H.; Jiao, N.; Shen, J.R.; Beatty, J.T.; Koblížek, M.; et al. Cryo-EM Analysis of a Tri-Heme Cytochrome-Associated RC-LH1 Complex from the Marine Photoheterotrophic Bacterium Dinoroseobacter shibae. Adv. Sci. 2025, 12, 2413456. [Google Scholar] [CrossRef]
- Yurkov, V.; Hughes, E. Genes Associated with the Peculiar Phenotypes of the Aerobic Anoxygenic Phototrophs. In Advances in Botanical Research; Beatty, J.T., Ed.; Academic Press Inc.: Cambridge, MA, USA, 2013; Volume 66, pp. 327–358. [Google Scholar]
- Fleischman, D.; Kramer, D. Photosynthetic Rhizobia. Biochim. Biophys. Acta 1998, 1364, 17–36. [Google Scholar] [CrossRef]
- Yurimoto, H.; Shiraishi, K.; Sakai, Y.; Muller, E.; Vuilleumier, S. Physiology of Methylotrophs Living in the Phyllosphere. Microorganisms 2021, 9, 809. [Google Scholar] [CrossRef] [PubMed]
- Sato, K. Bacteriochlorophyll Formation by Facultative Methylotrophs, Protaminobacter ruber and Pseudomonas AM 1. FEBS Lett. 1978, 85, 207–210. [Google Scholar] [CrossRef]
- Bryant, D.A.; Garcia Costas, A.M.; Maresca, J.A.; Chew, A.G.M.; Klatt, C.G.; Bateson, M.M.; Tallon, L.J.; Hostetler, J.; Nelson, W.C.; Heidelberg, J.F.; et al. Candidatus Chloracidobacterium Thermophilum: An Aerobic Phototrophic Acidobacterium. Science (1979) 2007, 317, 523–526. [Google Scholar] [CrossRef]
- Li, L.; Huang, D.; Hu, Y.; Rudling, N.M.; Canniffe, D.P.; Wang, F.; Wang, Y. Globally Distributed Myxococcota with Photosynthesis Gene Clusters Illuminate the Origin and Evolution of a Potentially Chimeric Lifestyle. Nat. Commun. 2023, 14, 6450. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. Valid Publication of the Names of Forty-Two Phyla of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056. [Google Scholar] [CrossRef] [PubMed]
- Kirchman, D.L.; Hanson, T.E. Bioenergetics of Photoheterotrophic Bacteria in the Oceans. Environ. Microbiol. Rep. 2013, 5, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Gest, H. Photosynthetic and Quasi-Photosynthetic Bacteria. FEMS Microbiol. Lett. 1993, 112, 1–5. [Google Scholar] [CrossRef]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the All-Bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78. [Google Scholar] [CrossRef]
- Schwarze, C.; Carluccio, A.V.; Venturoli, G.; Labahn, A. Photo-Induced Cyclic Electron Transfer Involving Cytochrome bc1 Complex and Reaction Center in the Obligate Aerobic Phototroph Roseobacter denitrificans. Eur. J. Biochem. 2000, 267, 422–423. [Google Scholar] [CrossRef]
- Beatty, J.T. On the Natural Selection and Evolution of the Aerobic Phototrophic Bacteria. Photosynth. Res. 2002, 73, 109–114. [Google Scholar] [CrossRef]
- Yurkov, V.; Menin, L.; Schoepp, B.; Verméglio, A. Purification and Characterization of Reaction Centers from the Obligate Aerobic Phototrophic Bacteria Erythrobacter litoralis, Erythromonas ursincola and Sandaracinobacter sibiricus. Photosynth. Res. 1998, 57, 129–138. [Google Scholar] [CrossRef]
- Tomasch, J.; Kopejtka, K.; Bílý, T.; Gardiner, A.T.; Gardian, Z.; Shivaramu, S.; Koblížek, M.; Kaftan, D. A Photoheterotrophic Bacterium from Iceland Has Adapted Its Photosynthetic Machinery to the Long Days of Polar Summer. mSystems 2024, 9, e0131123. [Google Scholar] [CrossRef] [PubMed]
- Yurkov, V.; Schoepp, B.; Verméglio, A. Photoinduced Electron Transfer and Cytochrome Content in Obligate Aerobic Phototrophic Bacteria from Genera Erythromicrobium, Sandaracinobacter, Erythromonas, Roseococcus and Erythrobacter. Photosynth. Res. 1998, 57, 117–128. [Google Scholar] [CrossRef]
- Rathgeber, C.; Alric, J.; Hughes, E.; Verméglio, A.; Yurkov, V. The Photosynthetic Apparatus and Photoinduced Electron Transfer in the Aerobic Phototrophic Bacteria Roseicyclus mahoneyensis and Porphyrobacter meromictius. Photosynth. Res. 2012, 110, 193–203. [Google Scholar] [CrossRef]
- Shimada, K.; Hayashi, H.; Tasumi, M. Bacteriochlorophyll-Protein Complexes of Aerobic Bacteria, Erythrobacter longus and Erythrobacter Species OCh 114. Arch. Microbiol. 1985, 143, 244–247. [Google Scholar] [CrossRef]
- Hughes, E. Investigation of Diversity of Unusual Pigments and Novel Photosynthetic Apparatus in Aerobic Anoxygenic Phototrophic Bacteria. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2017. [Google Scholar]
- Degli Esposti, M.; Guerrero, G.; Rogel, M.A.; Issotta, F.; Rojas-Villalobos, C.; Quatrini, R.; Martinez-Romero, E. The Phylogeny of Acetobacteraceae: Photosynthetic Traits and Deranged Respiratory Enzymes. Microbiol. Spectr. 2023, 11, e00575-23. [Google Scholar] [CrossRef] [PubMed]
- Tani, K.; Kanno, R.; Kurosawa, K.; Takaichi, S.; Nagashima, K.V.P.; Hall, M.; Yu, L.J.; Kimura, Y.; Madigan, M.T.; Mizoguchi, A.; et al. An LH1–RC Photocomplex from an Extremophilic Phototroph Provides Insight into Origins of Two Photosynthesis Proteins. Commun. Biol. 2022, 5, 1197. [Google Scholar] [CrossRef]
- Garcia, D.; Richaud, P.; Breton, J.; Verméglio, A. Structure and Function of the Tetraheme Cytochrome Associated to the Reaction Center of Roseobacter denitrificans. Biochimie 1994, 76, 666–673. [Google Scholar] [CrossRef]
- Candela, M.; Zaccherini, E.; Zannoni, D. Respiratory Electron Transport and Light-Induced Energy Transduction in Membranes from the Aerobic Photosynthetic Bacterium Roseobacter denitrificans. Arch. Microbiol. 2001, 175, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Forquer, I.P. Characterization of Photosynthetic Reaction Centers from Bradyrhizobium Strain BTAi 1. Master’s Thesis, Wright State University, Dayton, OH, USA, 2005. [Google Scholar]
- Maróti, P.; Wraight, C.A. The Redox Midpoint Potential of the Primary Quinone of Reaction Centers in Chromatophores of Rhodobacter sphaeroides Is pH Independent. Eur. Biophys. J. 2008, 37, 1207–1217. [Google Scholar] [CrossRef]
- Gardiner, A.T.; Nguyen-Phan, T.C.; Cogdell, R.J. A Comparative Look at Structural Variation among RC–LH1 ‘Core’ Complexes Present in Anoxygenic Phototrophic Bacteria. Photosynth. Res. 2020, 145, 83–96. [Google Scholar] [CrossRef]
- Selyanin, V.; Hauruseu, D.; Koblížek, M. The Variability of Light-Harvesting Complexes in Aerobic Anoxygenic Phototrophs. Photosynth. Res. 2016, 128, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiedzki, D.M.; Fuciman, M.; Frank, H.A.; Blankenship, R.E. Energy Transfer in an LH4-like Light Harvesting Complex from the Aerobic Purple Photosynthetic Bacterium Roseobacter denitrificans. Biochim. Biophys. Acta Bioenerg. 2011, 1807, 518–528. [Google Scholar] [CrossRef]
- Wakao, N.; Yokoi, N.; Isoyama, N.; Hiraishi, A.; Shimada, K.; Kobayashi, M.; Kise, H.; Iwaki, M.; Itoh, S.; Takaichi, S.; et al. Discovery of Natural Photosynthesis Using Zn-Containing Bacteriochlorophyll in an Aerobic Bacterium Acidiphilium rubrum. Plant Cell Physiol. 1996, 37, 889–893. [Google Scholar] [CrossRef]
- Hiraishi, A.; Matsuzawa, Y.; Kanbe, T.; Wakao, N. Acidisphaera rubrifaciens gen. nov., sp. nov., an Aerobic Bacteriochlorophyll-Containing Bacterium Isolated from Acidic Environments. Int. J. Syst. Evol. Microbiol. 2000, 50, 1539–1546. [Google Scholar] [CrossRef]
- Xiao, N.; Liu, Y.; Liu, X.; Gu, Z.; Jiao, N.; Liu, H.; Zhou, Y.; Shen, L. Blastomonas aquatica sp. nov., a Bacteriochlorophyll-Containing Bacterium Isolated from Lake Water. Int. J. Syst. Evol. Microbiol. 2015, 65, 1653–1658. [Google Scholar] [CrossRef]
- Csotonyi, J.T.; Stackebrandt, E.; Swiderski, J.; Schumann, P.; Yurkov, V. Chromocurvus halotolerans gen. nov., sp. nov., a Gammaproteobacterial Obligately Aerobic Anoxygenic Phototroph, Isolated from a Canadian Hypersaline Spring. Arch. Microbiol. 2011, 193, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, A.T.; Mujakić, I.; Bína, D.; Gardian, Z.; Kopejtka, K.; Nupur; Qian, P.; Koblížek, M. Characterisation of the Photosynthetic Complexes from the Marine Gammaproteobacterium Congregibacter litoralis KT71. Biochim. Biophys. Acta Bioenerg. 2023, 1864, 148946. [Google Scholar] [CrossRef]
- Saitoh, S.; Suzuki, T.; Nishimura, Y. Proposal of Craurococcus roseus gen. nov., sp. nov. and Paracraurococcus ruber gen. nov., sp. nov., Novel Aerobic Bacteriochlorophyll a-Containing Bacteria from Soil. Int. J. Syst. Bacteriol. 1998, 48, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Biebl, H.; Allgaier, M.; Tindall, B.J.; Koblizek, M.; Lünsdorf, H.; Pukall, R.; Wagner-Döbler, I. Dinoroseobacter shibae gen. nov., sp. nov., a New Aerobic Phototrophic Bacterium Isolated from Dinoflagellates. Int. J. Syst. Evol. Microbiol. 2005, 55, 1089–1096. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kang, S.J.; Lee, M.H.; Oh, H.W.; Oh, T.K. Porphyrobacter dokdonensis sp. nov., Isolated from Sea Water. Int. J. Syst. Evol. Microbiol. 2006, 56, 1079–1083. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lee, M.H.; Oh, T.K. Porphyrobacter donghaensis sp. nov., Isolated from Sea Water of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 2004, 54, 2231–2235. [Google Scholar] [CrossRef]
- Yurkov, V.; Stackebrandt, E.; Holmes, A.; Fuerst, J.A.; Hugenholtz, P.; Golecki, J.; Gad’On, N.; Gorlenko, V.M.; Kompantseva, E.I.; Drews, G. Phylogenetic Positions of Novel Aerobic, Bacteriochlorophyll a-Containing Bacteria and Description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int. J. Syst. Bacteriol. 1994, 44, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Nupur, Y.; Wu, N.; Madsen, A.M.; Chen, X.; Gardiner, A.T.; Koblížek, M. Gemmatimonas groenlandica sp. nov. Is an Aerobic Anoxygenic Phototroph in the Phylum Gemmatimonadetes. Front. Microbiol. 2021, 11, 606612. [Google Scholar] [CrossRef]
- Kasalický, V.; Zeng, Y.; Piwosz, K.; Šimek, K.; Kratochvilová, H.; Koblížek, M. Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans. Appl. Environ. Microbiol. 2018, 84, e02116-17. [Google Scholar] [CrossRef] [PubMed]
- Spring, S.; Riedel, T.; Spröer, C.; Yan, S.; Harder, J.; Fuchs, B.M. Taxonomy and Evolution of Bacteriochlorophyll a-Containing Members of the OM60/NOR5 Clade of Marine Gammaproteobacteria: Description of Luminiphilus syltensis gen. nov., sp. nov., Reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and Emendation of Chromatocurvus halotolerans. BMC Microbiol. 2013, 13, 118. [Google Scholar]
- Kuzyk, S.B.; Jafri, M.; Humphrey, E.; Maltman, C.; Kyndt, J.A.; Yurkov, V. Prosthecate Aerobic Anoxygenic Phototrophs Photocaulis sulfatitolerans gen. nov. sp. nov. and Photocaulis rubescens sp. nov. Isolated from Alpine Meromictic Lakes in British Columbia, Canada. Arch. Microbiol. 2022, 204, 444. [Google Scholar]
- Messner, K.; Yurkov, V. Abundance, Characterization and Diversity of Culturable Anoxygenic Phototrophic Bacteria in Manitoban Marshlands. Microorganisms 2024, 12, 1007. [Google Scholar] [CrossRef]
- Evans, W.R.; Fleischman, D.E.; Calvert, H.E.; Pyati, P.V.; Alter, G.M.; Rao, N.S.S. Bacteriochlorophyll and Photosynthetic Reaction Centers in Rhizobium Strain BTAi 1. Appl. Environ. Microbiol. 1990, 56, 3445–3449. [Google Scholar] [CrossRef]
- Labrenz, M.; Lawson, P.A.; Tindall, B.J.; Hirsch, P. Roseibaca ekhonensis gen. nov., sp. nov., an Alkalitolerant and Aerobic Bacteriochlorophyll a-Producing Alphaproteobacterium from Hypersaline Ekho Lake. Int. J. Syst. Evol. Microbiol. 2009, 59, 1935–1940. [Google Scholar] [CrossRef]
- Nuyanzina-Boldareva, E.N.; Gorlenko, V.M. Roseibacula alcaliphilum gen. nov. sp. nov., a New Alkaliphilic Aerobic Anoxygenic Phototrophic Bacterium from a Meromictic Soda Lake Doroninskoe (East Siberia, Russia). Microbiology 2014, 83, 381–390. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, S.L.; Li, H.R.; Zhang, X.H. Roseicitreum antarcticum gen. nov., sp. nov., an Aerobic Bacteriochlorophyll a-Containing Alphaproteobacterium Isolated from Antarctic Sandy Intertidal Sediment. Int. J. Syst. Evol. Microbiol. 2011, 61, 2173–2179. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Wei, J.; Zheng, Q.; Xiao, N.; Li, Q.; Fu, Y.; Wang, Y.; Jiao, N. Roseibacterium beibuensis sp. nov., a Novel Member of Roseobacter Clade Isolated from Beibu Gulf in the South China Sea. Curr. Microbiol. 2012, 65, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Rathgeber, C.; Yurkova, N.; Stackebrandt, E.; Schumann, P.; Beatty, J.T.; Yurkov, V. Roseicyclus mahoneyensis gen. nov., sp. nov., an Aerobic Phototrophic Bacterium Isolated from a Meromictic Lake. Int. J. Syst. Evol. Microbiol. 2005, 55, 1597–1603. [Google Scholar] [CrossRef]
- Labrenz, M.; Lawson, P.A.; Tindall, B.J.; Collins, M.D.; Hirsch, P. Roseisalinus antarcticus gen. nov., sp. nov., a Novel Aerobic Bacteriochlorophyll a-Producing α-Proteobacterium Isolated from Hypersaline Ekho Lake, Antarctica. Int. J. Syst. Evol. Microbiol. 2005, 55, 41–47. [Google Scholar] [CrossRef]
- Suzuki, T.; Muroga, Y.; Takahama, M.; Nishimura, Y. Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., Aerobic Bacteriochlorophyll-Containing Bacteria Isolated from a Saline Lake. Int. J. Syst. Bacteriol. 1999, 49, 629–634. [Google Scholar] [CrossRef]
- Labrenz, M.; Collins, M.D.; Lawson, P.A.; Tindall, B.J.; Schumann, P.; Hirsch, P. Roseovarius tolerans gen. nov., sp. nov., a Budding Bacterium with Variable Bacteriochlorophyll a Production from Hypersaline Ekho Lake. Int. J. Syst. Bacteriol. 1999, 49, 137–147. [Google Scholar] [CrossRef]
- Yurkov, V.; Stackebrandt, E.; Buss, O.; Vermeglio, A.; Gorlenko, V.; Beatty, J.T. Reorganization of the Genus Erythromicrobium: Description of “Erythromicrobium sibiricum” as Sandaracinobacter sibiricus gen. nov., sp. nov., and of “Erythromicrobium ursincola” as Erythromonas ursincola gen. nov., sp. nov. Int. J. Syst. Bacteriol. 1997, 47, 1172–1178. [Google Scholar] [CrossRef]
- Gich, F.; Overmann, J. Sandarakinorhabdus limnophila gen. nov., sp. nov., a Novel Bacteriochlorophyll a-Containing, Obligately Aerobic Bacterium Isolated from Freshwater Lakes. Int. J Syst. Evol. Microbiol. 2006, 56, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsen, M.; Gardiner, A.T.; Cogdell, R.J. Peripheral Complexes of Purple Bacteria. In The Purple Phototrophic Bacteria; Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 135–153. [Google Scholar]
- McLuskey, K.; Prince, S.M.; Cogdell, R.J.; Isaacs, N.W. The Crystallographic Structure of the B800-820 LH3 Light-Harvesting Complex from the Purple Bacteria Rhodopseudomonas acidophila Strain 7050. Biochemistry 2001, 40, 8783–8789. [Google Scholar] [CrossRef] [PubMed]
- Cogdell, R.J.; Hawthornthwaite, A.M.; Evans, M.B.; Ferguson, L.A.; Kerfeld, C.; Thornber, J.P.; van Mourik, F.; van Grondelle, R. Isolation and Characterisation of an Unusual Antenna Complex from the Marine Purple Sulphur Photosynthetic Bacterium Chromatium purpuratum BN5500. BBA—Bioenerg. 1990, 1019, 239–244. [Google Scholar] [CrossRef]
- Chernomor, O.; Peters, L.; Schneidewind, J.; Loeschcke, A.; Knieps-Grünhagen, E.; Schmitz, F.; Von Lieres, E.; Kutta, R.J.; Svensson, V.; Jaeger, K.E.; et al. Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: Origin, Phylogeny, and Function. Mol. Biol. Evol. 2021, 38, 819–837. [Google Scholar] [CrossRef]
- Imhoff, J.F.; Rahn, T.; Künzel, S.; Neulinger, S.C. Phylogeny of Anoxygenic Photosynthesis Based on Sequences of Photosynthetic Reaction Center Proteins and a Key Enzyme in Bacteriochlorophyll Biosynthesis, the Chlorophyllide Reductase. Microorganisms 2019, 7, 576. [Google Scholar] [CrossRef]
- Thornber, J.P. Photochemical Reactions of Purple Bacteria as Revealed by Studies of Three Spectrally Different Carotenobacteriochlorophyll–Protein Complexes Isolated from Chromatium, Strain D. Biochemistry 1970, 9, 2688–2698. [Google Scholar] [CrossRef]
- Hartigan, N.; Tharia, H.A.; Sweeney, F.; Lawless, A.M.; Papiz, M.Z. The 7.5-Å Electron Density and Spectroscopic Properties of a Novel Low-Light B800 LH2 from Rhodopseudomonas palustris. Biophys. J. 2002, 82, 963–977. [Google Scholar] [CrossRef]
- Hughes, E.; Alric, J.; Yurkov, V. Photosynthetic Complexes and Light-Dependant Electron Transport Chain in the Aerobic Anoxygenic Phototroph Roseicyclus mahoneyensis and Its Spontaneous Mutants. Photosynth. Res. 2020, 144, 341–347. [Google Scholar] [CrossRef]
- Oren, A. Characterization of Pigments of Prokaryotes and Their Use in Taxonomy and Classification. Methods Microbiol. 2011, 38, 261–282. [Google Scholar]
- Jaschke, P.R.; Hardjasa, A.; Digby, E.L.; Hunter, C.N.; Beatty, J.T. A BchD (Magnesium Chelatase) Mutant of Rhodobacter sphaeroides Synthesizes Zinc Bacteriochlorophyll through Novel Zinc-Containing Intermediates. J. Biol. Chem. 2011, 286, 20313–20322. [Google Scholar] [CrossRef]
- Hiraishi, A.; Shimada, K. Aerobic Anoxygenic Photosynthetic Bacteria with Zinc-Bacteriochlorophyll. J. Gen. Appl. Microbiol. 2001, 47, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Tomi, T.; Shibata, Y.; Ikeda, Y.; Taniguchi, S.; Haik, C.; Mataga, N.; Shimada, K.; Itoh, S. Energy and Electron Transfer in the Photosynthetic Reaction Center Complex of Acidiphilium rubrum Containing Zn-Bacteriochlorophyll a Studied by Femtosecond up-Conversion Spectroscopy. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Charles, P.; Kalendra, V.; He, Z.; Khurshov, V.; van der Est, A.; Golbeck, J.H.; Bryant, D.A.; Lakshmi, K.V. Elucidating the Role of Zinc-Bacteriochlorophyll a’ in the Primary Photochemistry of Chloroacidobacterium thermophilum Reaction Centers. Biophys. J. 2019, 116, 419A. [Google Scholar] [CrossRef]
- Imhoff, J.F. Anoxygenic Phototrophic Bacteria from Extreme Environments. In Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects; Hallenbeck, P.C., Ed.; Springer: Cham, Switzerland, 2017; pp. 427–480. [Google Scholar]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar]
- Hashimoto, H.; Uragami, C.; Cogdell, R.J. Carotenoids and Photosynthesis. Subcell Biochem. 2016, 79, 111–139. [Google Scholar]
- Britton, G. Structure and Properties of Carotenoids in Relation to Function. FASEB J. 1995, 9, 1551–1558. [Google Scholar] [CrossRef]
- Vershinin, A. Biological Functions of Carotenoids—Diversity and Evolution. BioFactors 1999, 10, 99–104. [Google Scholar] [CrossRef]
- Koblížek, M.; Mlčoušková, J.; Kolber, Z.; Kopecký, J. On the Photosynthetic Properties of Marine Bacterium COL2P Belonging to Roseobacter Clade. Arch. Microbiol. 2010, 192, 41–49. [Google Scholar] [CrossRef]
- Yurkov, V.; Gad’on, N.; Drews, G. Light-Harvesting Complexes of Aerobic Bacteriochlorophyll-Containing Bacteria Roseococcus thiosulfatophilus, RB3 and Erythromicrobium ramosum, E5 and the Transfer of Excitation Energy from Carotenoids to Bacteriochlorophyll. Z. Fur Naturforschung—Sect. C J. Biosci. 1994, 49, 579–586. [Google Scholar] [CrossRef]
- Šlouf, V.; Fuciman, M.; Dulebo, A.; Kaftan, D.; Koblížek, M.; Frank, H.A.; Polívka, T. Carotenoid Charge Transfer States and Their Role in Energy Transfer Processes in LH1-RC Complexes from Aerobic Anoxygenic Phototrophs. J. Phys. Chem. B 2013, 117, 10987–10999. [Google Scholar] [CrossRef]
- Noguchi, T.; Hayashi, H.; Shimada, K.; Takaichi, S.; Tasumi, M. In Vivo States and Functions of Carotenoids in an Aerobic Photosynthetic Bacterium, Erythrobacter longus. Photosynth. Res. 1992, 31, 21–30. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, R.; Koblížek, M.; Boldareva, E.N.; Yurkov, V.; Yan, S.; Jiao, N. Diverse Arrangement of Photosynthetic Gene Clusters in Aerobic Anoxygenic Phototrophic Bacteria. PLoS ONE 2011, 6, e25050. [Google Scholar] [CrossRef]
- Yurkov, V.; Gad’on, N.; Drews, G. The Major Part of Polar Carotenoids of the Aerobic Bacteria Roseococcus thiosulfatophilus RB3 and Erythromicrobium ramosum E5 Is Not Bound to the Bacteriochlorophyll a-Complexes of the Photosynthetic Apparatus. Arch. Microbiol. 1993, 160, 372–376. [Google Scholar] [CrossRef]
- Cogdell, R.J.; Isaacs, N.W.; Howard, T.D.; McLuskey, K.; Fraser, N.J.; Prince, S.M. How Photosynthetic Bacteria Harvest Solar Energy. J. Bacteriol. 1999, 181, 3869–3879. [Google Scholar] [CrossRef] [PubMed]
- Zurdo, J.; Fernandez-Cabrera, C.; Ramirez, J.M. A Structural Role of the Carotenoid in the Light-Harvesting II Protein of Rhodobacter capsulatus. Biochem. J. 1993, 290, 531–537. [Google Scholar] [CrossRef]
- Lang, H.P.; Hunter, C.N. The Relationship between Carotenoid Biosynthesis and the Assembly of the Light-Harvesting LH2 Complex in Rhodobacter sphaeroides. Biochem. J. 1994, 298, 197–205. [Google Scholar] [CrossRef]
- Klassen, J.L. Pathway Evolution by Horizontal Transfer and Positive Selection Is Accommodated by Relaxed Negative Selection upon Upstream Pathway Genes in Purple Bacterial Carotenoid Biosynthesis. J. Bacteriol. 2009, 191, 7500–7508. [Google Scholar] [CrossRef]
- Zheng, Q.; Koblížek, M.; Beatty, J.T.; Jiao, N. Evolutionary Divergence of Marine Aerobic Anoxygenic Phototrophic Bacteria as Seen from Diverse Organisations of Their Photosynthesis Gene Clusters. In Advances in Botanical Research; Beatty, J.T., Ed.; Academic Press Inc.: Cambridge, MA, USA, 2013; Volume 66, pp. 359–383. [Google Scholar]
- Hirose, S.; Tank, M.; Hara, E.; Tamaki, H.; Mori, K.; Takaichi, S.; Haruta, S.; Hanada, S. Aquabacterium pictum sp. nov., the First Aerobic Bacteriochlorophyll a-Containing Fresh Water Bacterium in the Genus Aquabacterium of the Class Betaproteobacteria. Int. J. Syst. Evol. Microbiol. 2020, 70, 596–603. [Google Scholar] [CrossRef]
- Spring, S.; Riedel, T. Mixotrophic Growth of Bacteriochlorophyll a-Containing Members of the OM60/NOR5 Clade of Marine Gammaproteobacteria Is Carbon-Starvation Independent and Correlates with the Type of Carbon Source and Oxygen Availability. BMC Microbiol. 2013, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Wellington, C.L.; Bauer, C.E.; Beatty, J.T. Photosynthesis Gene Superoperons in Purple Nonsulfur Bacteria: The Tip of the Iceberg? Can. J. Microbiol. 1992, 38, 20–27. [Google Scholar] [CrossRef]
- Avontuur, J.R.; Wilken, P.M.; Palmer, M.; Coetzee, M.P.A.; Stępkowski, T.; Venter, S.N.; Steenkamp, E.T. Complex Evolutionary History of Photosynthesis in Bradyrhizobium. Microb. Genom. 2023, 9, 001105. [Google Scholar] [CrossRef]
- Nagashima, S.; Nagashima, K.V.P. Comparison of Photosynthesis Gene Clusters Retrieved from Total Genome Sequences of Purple Bacteria. In Advances in Botanical Research; Beatty, J.T., Ed.; Academic Press Inc.: Cambridge, MA, USA, 2013; Volume 66, pp. 151–178. [Google Scholar]
- Raymond, J.; Blankenship, R.E. The Evolutionary Development of the Protein Complement of Photosystem 2. Biochim. Biophys. Acta Bioenerg. 2004, 1655, 133–139. [Google Scholar] [CrossRef]
- Boldareva-Nuianzina, E.N.; Bláhová, Z.; Sobotka, R.; Koblížek, M. Distribution and Origin of Oxygen-Dependent and Oxygen-Independent Forms of Mg-Protoporphyrin Monomethylester Cyclase among Phototrophic Proteobacteria. Appl. Environ. Microbiol. 2013, 79, 2596–2604. [Google Scholar] [CrossRef]
- Tsukatani, Y.; Harada, J.; Nomata, J.; Yamamoto, H.; Fujita, Y.; Mizoguchi, T.; Tamiaki, H. Rhodobacter sphaeroides Mutants Overexpressing Chlorophyllide a Oxidoreductase of Blastochloris viridis Elucidate Functions of Enzymes in Late Bacteriochlorophyll Biosynthetic Pathways. Sci. Rep. 2015, 5, 9741. [Google Scholar] [CrossRef]
- Holden-Dye, K.; Crouch, L.I.; Jones, M.R. Structure, Function and Interactions of the PufX Protein. Biochim. Biophys. Acta Bioenerg. 2008, 1777, 613–630. [Google Scholar] [CrossRef]
- Brinkmann, H.; Göker, M.; Koblížek, M.; Wagner-Döbler, I.; Petersen, J. Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae. ISME J. 2018, 12, 1994–2010. [Google Scholar] [CrossRef]
- Jaubert, M.; Zappa, S.; Fardoux, J.; Adriano, J.M.; Hannibal, L.; Elsen, S.; Lavergne, J.; Verméglio, A.; Giraud, E.; Pignol, D. Light and Redox Control of Photosynthesis Gene Expression in Bradyrhizobium: Dual Roles of Two PpsR. J. Biol. Chem. 2004, 279, 44407–44416. [Google Scholar] [CrossRef]
- Masuda, S.; Berleman, J.; Hasselbring, B.M.; Bauer, C.E. Regulation of Aerobic Photosystem Synthesis in the Purple Bacterium Rhodospirillum centenum by CrtJ and AerR. Photochem. Photobiol. Sci. 2008, 7, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Chidgey, J.W.; Jackson, P.J.; Dickman, M.J.; Hunter, C.N. PufQ Regulates Porphyrin Flux at the Haem/Bacteriochlorophyll Branchpoint of Tetrapyrrole Biosynthesis via Interactions with Ferrochelatase. Mol. Microbiol. 2017, 106, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.; Brinkmann, H.; Bunk, B.; Michael, V.; Päuker, O.; Pradella, S. Think Pink: Photosynthesis, Plasmids and the Roseobacter Clade. Environ. Microbiol. 2012, 14, 2661–2672. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; He, B.; Lin, T.H.; Jiao, N.; Zheng, Q. Shimia ponticola sp. nov., an Aerobic Anoxygenic Photoheterotrophic Bacterium, Isolated from Surface Seawater in the South China Sea. Int. J. Syst. Evol. Microbiol. 2023, 73, 005859. [Google Scholar] [CrossRef]
- Nedashkovskaya, O.; Baldaev, S.; Ivaschenko, A.; Bystritskaya, E.; Zhukova, N.; Eremeev, V.; Kukhlevskiy, A.; Kurilenko, V.; Isaeva, M. Description and Comparative Genomics of Algirhabdus cladophorae gen. nov., sp. nov., a Novel Aerobic Anoxygenic Phototrophic Bacterial Epibiont Associated with the Green Alga Cladophora stimpsonii. Life 2025, 15, 331. [Google Scholar] [CrossRef]
- Zong, R.; Jiao, N. Proteomic Responses of Roseobacter litoralis OCh149 to Starvation and Light Regimen. Microbes Environ. 2012, 27, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Yurkov, V.; Hughes, E. Aerobic Anoxygenic Phototrophs: Four Decades of Mystery. In Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects; Hallenbeck, P.C., Ed.; Springer: Cham, Switzerland, 2017; pp. 193–214. [Google Scholar]
- Kopejtka, K.; Tomasch, J.; Shivaramu, S.; Saini, M.K.; Kaftan, D.; Koblížek, M. Minimal Transcriptional Regulation of Horizontally Transferred Photosynthesis Genes in Phototrophic Bacterium Gemmatimonas phototrophica. mSystems 2024, 9, e0070624. [Google Scholar] [CrossRef] [PubMed]
- Rohwerder, T.; Müller, R.H.; Weichler, M.T.; Schuster, J.; Hübschmann, T.; Müller, S.; Harms, H. Cultivation of Aquincola tertiaricarbonis L108 on the Fuel Oxygenate Intermediate Tert-Butyl Alcohol Induces Aerobic Anoxygenic Photosynthesis at Extremely Low Feeding Rates. Microbiology 2013, 159, 2180–2190. [Google Scholar] [CrossRef]
- Woese, C.R. Bacterial Evolution. Microbiol. Rev. 1987, 51, 221–271. [Google Scholar] [CrossRef]
- Tomasch, J.; Wang, H.; Hall, A.T.K.; Patzelt, D.; Preusse, M.; Petersen, J.; Brinkmann, H.; Bunk, B.; Bhuju, S.; Jarek, M.; et al. Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random. Genome Biol. Evol. 2018, 10, 359–369. [Google Scholar] [CrossRef]
- Imhoff, J.F.; Rahn, T.; Künzel, S.; Neulinger, S.C. Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of pufLM Reaction Center Proteins. Front. Microbiol. 2018, 8, 2679. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Lin, W.; Liu, Y.; Chen, C.; Jiao, N. A Comparison of 14 Erythrobacter Genomes Provides Insights into the Genomic Divergence and Scattered Distribution of Phototrophs. Front. Microbiol. 2016, 7, 984. [Google Scholar] [CrossRef]
- Hauruseu, D.; Koblízek, M. Influence of Light on Carbon Utilization in Aerobic Anoxygenic Phototrophs. Appl. Environ. Microbiol. 2012, 78, 7414–7419. [Google Scholar] [CrossRef]
- Piwosz, K.; Kaftan, D.; Dean, J.; Šetlík, J.; Koblížek, M. Nonlinear Effect of Irradiance on Photoheterotrophic Activity and Growth of the Aerobic Anoxygenic Phototrophic Bacterium Dinoroseobacter shibae. Environ. Microbiol. 2018, 20, 724–733. [Google Scholar] [CrossRef]
- Soora, M.; Cypionka, H. Light Enhances Survival of Dinoroseobacter shibae during Long-Term Starvation. PLoS ONE 2013, 8, e83960. [Google Scholar] [CrossRef]
- Tomasch, J.; Gohl, R.; Bunk, B.; Diez, M.S.; Wagner-Döbler, I. Transcriptional Response of the Photoheterotrophic Marine Bacterium Dinoroseobacter shibae to Changing Light Regimes. ISME J. 2011, 5, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Hagiwara, K.; Shimizu, S. Effect of Cultural Conditions on Tetrapyrrole Formation, Especially Bacteriochlorophyll Formation in a Facultative Methylotroph, Protaminobacter ruber. Agric. Biol. Chem. 1985, 49, 1–5. [Google Scholar]
- Tang, K.; Zong, R.; Zhang, F.; Xiao, N.; Jiao, N. Characterization of the Photosynthetic Apparatus and Proteome of Roseobacter denitrificans. Curr. Microbiol. 2010, 60, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Kaftan, D.; Medová, H.; Selyanin, V.; Kopejtka, K.; Koblížek, M. Extended Temperature Optimum of Photosynthetic Reaction Centers in Rhodobacterales. Photosynthetica 2019, 57, 361–366. [Google Scholar] [CrossRef]
- Pucelik, S.; Becker, M.; Heyber, S.; Wöhlbrand, L.; Rabus, R.; Jahn, D.; Härtig, E. The Blue Light-Dependent LOV-Protein LdaP of Dinoroseobacter shibae Acts as Antirepressor of the PpsR Repressor, Regulating Photosynthetic Gene Cluster Expression. Front. Microbiol. 2024, 15, 1351297. [Google Scholar] [CrossRef]
- Iba, K.; Takamiya, K.I. Action Spectra for Inhibition by Light of Accumulation of Bacteriochlorophyll and Carotenoid during Aerobic Growth of Photosynthetic Bacteria. Plant Cell Physiol. 1989, 30, 471–477. [Google Scholar] [CrossRef]
- Consiglieri, E.; Xu, Q.Z.; Zhao, K.H.; Gärtner, W.; Losi, A. The First Molecular Characterisation of Blue- and Red-Light Photoreceptors from Methylobacterium radiotolerans. Phys. Chem. Chem. Phys. 2020, 22, 12434–12446. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, C.; Ebert, M.; Jahn, D.; Cypionka, H. Chemiosmotic Energy Conservation in Dinoroseobacter shibae: Proton Translocation Driven by Aerobic Respiration, Denitrification, and Photosynthetic Light Reaction. Front. Microbiol. 2018, 9, 903. [Google Scholar] [CrossRef]
- Kramer, D.M.; Kanazawa, A.; Fleischman, D. Oxygen Dependence of Photosynthetic Electron Transport in a Bacteriochlorophyll-Containing Rhizobium. FEBS Lett. 1997, 417, 275–278. [Google Scholar] [CrossRef]
- Laass, S.; Kleist, S.; Bill, N.; Drüppel, K.; Kossmehl, S.; Wöhlbrand, L.; Rabus, R.; Klein, J.; Rohde, M.; Bartsch, A.; et al. Gene Regulatory and Metabolic Adaptation Processes of Dinoroseobacter shibae DFL12T during Oxygen Depletion. J. Biol. Chem. 2014, 289, 13219. [Google Scholar] [CrossRef] [PubMed]
- Suyama, T.; Shigematsu, T.; Suzuki, T.; Tokiwa, Y.; Kanagawa, T.; Nagashima, K.V.P.; Hanada, S. Photosynthetic Apparatus in Roseateles depolymerans 61A Is Transcriptionally Induced by Carbon Limitation. Appl. Environ. Microbiol. 2002, 68, 1665–1673. [Google Scholar] [CrossRef]
- Suyama, T.; Kanno, N.; Matsukura, S.; Chihara, K.; Noda, N.; Hanada, S. Transcriptome and Deletion Mutant Analyses Revealed That an RpoH Family Sigma Factor Is Essential for Photosystem Production in Roseateles depolymerans under Carbon Starvation. Microbes Environ. 2023, 38, ME22072. [Google Scholar] [CrossRef] [PubMed]
- Eisenhardt, K.M.H.; Reuscher, C.M.; Klug, G. PcrX, an sRNA Derived from the 3′- UTR of the Rhodobacter sphaeroides puf Operon Modulates Expression of puf Genes Encoding Proteins of the Bacterial Photosynthetic Apparatus. Mol. Microbiol. 2018, 110, 325–334. [Google Scholar] [CrossRef]
- Reuscher, C.M.; Klug, G. Antisense RNA asPcrL Regulates Expression of Photosynthesis Genes in Rhodobacter sphaeroides by Promoting RNase III-Dependent Turn-over of puf mRNA. RNA Biol. 2021, 18, 1445–1457. [Google Scholar] [CrossRef]
- Masuda, S.; Bauer, C.E. AppA Is a Blue Light Photoreceptor That Antirepresses Photosynthesis Gene Expression in Rhodobacter sphaeroides. Cell 2002, 110, 613–623. [Google Scholar] [CrossRef]
- Klug, G. Beyond Catalysis: Vitamin B12 as a Cofactor in Gene Regulation. Mol. Microbiol. 2014, 91, 635–640. [Google Scholar] [CrossRef]
- Börner, J.; Friedrich, T.; Klug, G. RNase III Participates in Control of Quorum Sensing, Pigmentation and Oxidative Stress Resistance in Rhodobacter sphaeroides. Mol. Microbiol. 2023, 120, 874–892. [Google Scholar] [CrossRef] [PubMed]
- Grützner, J.; Börner, J.; Jäger, A.; Klug, G. The Small RNA-Binding Protein CcaF1 Promotes Formation of Photosynthetic Complexes in Rhodobacter sphaeroides. Int. J. Mol. Sci. 2023, 24, 9515. [Google Scholar] [CrossRef]
- Mank, N.N.; Berghoff, B.A.; Hermanns, Y.N.; Klug, G. Regulation of Bacterial Photosynthesis Genes by the Small Noncoding RNA PcrZ. Proc. Natl. Acad. Sci. USA 2012, 109, 16306–16311. [Google Scholar] [CrossRef]
- Hess, W.R.; Berghoff, B.A.; Wilde, A.; Steglich, C.; Klug, G. Riboregulators and the Role of Hfq in Photosynthetic Bacteria. RNA Biol. 2014, 11, 413–426. [Google Scholar] [CrossRef]
- Berghoff, B.A.; Glaeser, J.; Sharma, C.M.; Zobawa, M.; Lottspeich, F.; Vogel, J.; Klug, G. Contribution of Hfq to Photooxidative Stress Resistance and Global Regulation in Rhodobacter sphaeroides. Mol. Microbiol. 2011, 80, 1479–1495. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Oh, H.M.; Lim, S.I.; Ferriera, S.; Giovannoni, S.J.; Cho, J.C. Genome Sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-Oxidizing Alphaproteobacterium Possessing an Aerobic Anoxygenic Photosynthetic Gene Cluster and Xanthorhodopsin. J. Bacteriol. 2010, 192, 4798–4799. [Google Scholar] [CrossRef] [PubMed]
- Kopejtka, K.; Tomasch, J.; Kaftan, D.; Gardiner, A.T.; Bína, D.; Gardian, Z.; Bellas, C.; Dröge, A.; Geffers, R.; Sommaruga, R.; et al. A Bacterium from a Mountain Lake Harvests Light Using Both Proton-Pumping Xanthorhodopsins and Bacteriochlorophyll-Based Photosystems. Proc. Natl. Acad. Sci. USA 2022, 119, e2211018119. [Google Scholar] [CrossRef] [PubMed]
- Kopejtka, K.; Tomasch, J.; Zeng, Y.; Selyanin, V.; Dachev, M.; Piwosz, K.; Tichý, M.; Bína, D.; Gardian, Z.; Bunk, B.; et al. Simultaneous Presence of Bacteriochlorophyll and Xanthorhodopsin Genes in a Freshwater Bacterium. mSystems 2020, 5, e01044-20. [Google Scholar] [CrossRef] [PubMed]
- Ihalainen, J.A.; Dogan, B.; Kurttila, M.; Zeng, Y.; van Elsas, J.D.; Nissinen, R. Multifaceted Photoreceptor Compositions in Dual Phototrophic Systems—A Genomic Analysis. J. Mol. Biol. 2024, 436, 168412. [Google Scholar] [CrossRef]
- He, Z.; Ferlez, B.; Kurashov, V.; Tank, M.; Golbeck, J.H.; Bryant, D.A. Reaction Centers of the Thermophilic Microaerophile, Chloracidobacterium thermophilum (Acidobacteria) I: Biochemical and Biophysical Characterization. Photosynth. Res. 2019, 142, 87–103. [Google Scholar] [CrossRef]






| Species | QA (mV) | Reference |
|---|---|---|
| Erythrobacter litoralis | +150 | [2] |
| Erythromicrobium ramosum | +80 | [2] |
| Sandaracinobacter sibiricus | +5 | [2] |
| Blastomonas ursincola | +25 | [2] |
| Porphyrobacter meromicticus | −25 | [48] |
| Roseobacter denitirificans | −44 | [23] |
| Roseobacter denitirificans | −50 | [43] |
| Roseicyclus mahoneyensis | +94 | [48] |
| Chromatocurvus halotolerans | +85 | [50] |
| Rhizobium strain BTAi1 | −44 | [55] |
| Cereibacter sphaeroides | −70 | [56] |
| Species | LH1 (nm) | Peripheral LH (nm) | Publication |
|---|---|---|---|
| Acidiphilum rubrum | 864 | - | [60] |
| Acidisphaera rubrifaciens | 874 | - | [61] |
| Blastomonas aquatica | 866 | - | [62] |
| Chromatocurvus halotolerans | 877 | - | [63] |
| Congregibacter litoralis | 874 | 801, 850 (shoulder) | [64] |
| Craurococcus roseus | 872 | - | [65] |
| Dinoroseobacter shibae | 868 | 804 | [66] |
| Erythroabcter dokdonensis | 862 | 835, 800 | [67] |
| Erythrobacter donghaensis | 867 | [68] | |
| Erythromicrobium ramosum | 868 | 832, 798 | [69] |
| Gemmatimonas groenlandica | 863 | - | [70] |
| Gemmatimonas phototrophica | 866 | 819 | [28] |
| Hoeflea phototrophica | 865 | 805 | [58] |
| Limnohabitans planktonicus | 865 | 813, 799 | [71] |
| Luminiphilus syltensis | 871 | - | [72] |
| Paracraurococcus ruber | 856 | - | [65] |
| Photocaulis rubescens | 861 | - | [73] |
| Photocaulis sulfatitolerans | 860 | - | [73] |
| Polymorphobacter sp. FW250 | 868 | 855 (shoulder), 800 | [74] |
| Pseudohaliea rubra | 871 | 804, 821 | [72] |
| Rhizobium sp. BTAi 1 | 870 | 800 | [75] |
| Roseateles depolymerans | 873 | - | [58] |
| Roseibaca ekhonensis | 865 | - | [76] |
| Roseibacula alcaliphilum | 874 | - | [77] |
| Roseicitreum antarcticum | 872–874 | - | [78] |
| Roseicyclus elongatum | 879 | 802, 850 (shoulder) | [79] |
| Roseicyclus mahoneyensis | 870 | 806 | [80] |
| Roseisalinus antarcticus | 870 | - | [81] |
| Roseivivax halodurans | 873 | - | [82] |
| Roseobacter litoralis | 868 | 806 | [58] |
| Roseococcus thiosulfatophilus | 856 | - | [15] |
| Roseomonas sp. CK155 | 854 | - | [14] |
| Roseovarius tolerans | 878 | - | [83] |
| Sandaracinobacter sibiricus | 867 | - | [84] |
| Sandarakinorhabdus limnophila | 865 | 837, 800 | [85] |
| Vulcanimicrobium alpinum | 868 | 798 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurkov, V.; Messner, K. Phenomenal Diversity of the Photosynthetic Apparatus Evolved in Aerobic Anoxygenic Phototrophs. Microorganisms 2025, 13, 2446. https://doi.org/10.3390/microorganisms13112446
Yurkov V, Messner K. Phenomenal Diversity of the Photosynthetic Apparatus Evolved in Aerobic Anoxygenic Phototrophs. Microorganisms. 2025; 13(11):2446. https://doi.org/10.3390/microorganisms13112446
Chicago/Turabian StyleYurkov, Vladimir, and Katia Messner. 2025. "Phenomenal Diversity of the Photosynthetic Apparatus Evolved in Aerobic Anoxygenic Phototrophs" Microorganisms 13, no. 11: 2446. https://doi.org/10.3390/microorganisms13112446
APA StyleYurkov, V., & Messner, K. (2025). Phenomenal Diversity of the Photosynthetic Apparatus Evolved in Aerobic Anoxygenic Phototrophs. Microorganisms, 13(11), 2446. https://doi.org/10.3390/microorganisms13112446

