Nitrogen Fertilization Effects on Soil Bacterial Communities, Nitrogen-Cycling Genes, and Wheat Yield Across Different Soil Types in the North China Plain
Abstract
1. Introduction
2. Materials and Methods
2.1. Sites Description and Experimental Design
2.2. Sampling Methods and Analysis
2.3. DNA Extraction from Soil, PCR Amplification, and Sequencing
2.4. Bioinformatics Analysis
2.5. Statistical Analysis
3. Results
3.1. Wheat Yield and Soil Properties
3.2. Bacterial Alpha-Diversity and Community Structures
3.3. Taxonomy of Soil Bacteria
3.4. Bacterial Communities with Significant Differences
3.5. The Abundance of N-Cycling-Related Genes
3.6. Relationships Among Environmental Variables, Bacterial Communities, and N-Cycle-Related Genes
3.7. The Effects of N Fertilization-Driven Soil and Bacteria Properties on Wheat Yield
4. Discussion
4.1. The Responses to N Fertilization of Wheat Yield Soil Physicochemical Properties
4.2. The Responses of Soil Bacterial Diversity to N Fertilization
4.3. The Responses of Soil Bacteria Taxa to N Fertilization
4.4. Bacterial N-Cycling Genes and the Relationships with Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Q.; Qian, Y.S.; Yu, Q.Q.; Cao, Y.F.; Tao, R.R.; Zhu, M.; Ding, J.F.; Li, C.Y.; Guo, W.S.; Zhu, X.K. Controlled-release nitrogen fertilizer application mitigated N losses and modified microbial community while improving wheat yield and N use efficiency. Agric. Ecosyst. Environ. 2023, 349, 108445. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.X.; Chen, Y.F.; Searchinger, T.D.; Zhou, M.; Pan, D.; Yang, J.N.; Wu, L.; Cui, Z.L.; Zhang, W.F.; Zhang, F.S.; et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 2020, 1, 648–658. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Ghafoor, I.; Habib-ur-Rahman, M.; Ali, M.; Afzal, M.; Ahmed, W.; Gaiser, T.; Ghaffar, A. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environ. Sci. Pollut. Res. 2021, 28, 43528–43543. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.X.; Khan, K.S.; Wei, X.X.; Chen, Y.F.; Zhou, Y.X.; Sun, C.R.; Effah, Z.; Li, L.L. Fertilizer nitrogen use efficiency and its fate in the spring wheat-soil system under varying N-fertilizer rates: A two-year field study using 15N tracer. Soil Till. Res. 2025, 252, 106612. [Google Scholar] [CrossRef]
- Jiang, S.Q.; Yu, Y.N.; Gao, R.W.; Wang, H.; Zhang, J.; Li, R.; Long, X.H.; Shen, Q.R.; Chen, W.; Cai, F. High-throughput absolute quantification sequencing reveals the effect of different fertilizer applications on bacterial community in a tomato cultivated coastal saline soil. Sci. Total Environ. 2019, 687, 601–609. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef]
- Yin, R.X.; Li, L.L.; Li, X.; Liu, H.F.; Yao, J.M.; Ma, C.Y.; Pu, L.L.; Peng, Y.T.; Lei, Z.W. Positive effects of nitrogen fertilization on the flavor ingredients of tea (Wuniuzao), soil physicochemical properties, and microbial communities. Environ. Technol. Innov. 2025, 37, 103911. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Z.Q.; Ou, J.M.; Liu, F.D.; Cai, G.Y.; Tan, K.M.; Wang, X.L. Nitrogen substitution practice improves soil quality of red soil (Ultisols) in South China by affecting soil properties and microbial community composition. Soil Till. Res. 2024, 240, 106089. [Google Scholar] [CrossRef]
- Obayomi, O.; Seyoum, M.M.; Ghazaryan, L.; Tebbe, C.C.; Murase, J.; Bernstein, N.; Gillor, O. Soil texture and properties rather than irrigation water type shape the diversity and composition of soil microbial communities. Appl. Soil Ecol. 2021, 161, 103834. [Google Scholar] [CrossRef]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Strauss, S.L.; González-López, J.; Bedmar, E.J. Changes in the diversity and predicted functional composition of the bulk and rhizosphere soil bacterial microbiomes of tomato and common bean after inorganic N-fertilization. Rhizosphere 2021, 18, 100362. [Google Scholar] [CrossRef]
- Liang, R.; Hou, R.; Li, J.; Lyu, Y.; Hang, S.; Gong, H.; Ouyang, Z. Effects of different fertilizers on rhizosphere bacterial communities of winter wheat in the North China Plain. Agronomy 2020, 10, 93. [Google Scholar] [CrossRef]
- Semenov, M.V.; Krasnov, G.S.; Semenov, V.M.; van Bruggen, A.H.C. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Appl. Soil Ecol. 2020, 154, 103641. [Google Scholar] [CrossRef]
- Yao, R.J.; Yang, J.S.; Wang, X.P.; Xie, W.P.; Zheng, F.; Li, H.Q.; Tang, H.; Zhu, C. Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt-affected agroecosystem. Land Degrad. Dev. 2021, 32, 338–353. [Google Scholar] [CrossRef]
- Yang, G.; Ma, Y.; Xu, W.; Ma, X.; Lu, C. Spent mushroom substrate as a substitute for chemical fertilizer changes N-cycling genes and reduces N2O emission in different textured soils. Biol. Fertil. Soils 2024, 60, 87–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, T.; Wang, H.; Jin, H.; Liu, Q.; Lin, Z.; Liu, B.; Liu, H.; Chen, Z.; Lin, X.; et al. How do different nitrogen application levels and irrigation practices impact biological nitrogen fixation and its distribution in paddy system? Plant Soil 2021, 467, 329–344. [Google Scholar] [CrossRef]
- Ying, D.; Chen, X.L.; Hou, J.F.; Zhao, F.C.; Li, P. Soil properties and microbial functional attributes drive the response of soil multifunctionality to long-term fertilization management. Appl. Soil Ecol. 2023, 192, 105095. [Google Scholar] [CrossRef]
- Tiong, J.; Sharma, N.; Sampath, R.; MacKenzie, N.; Watanabe, S.; Metot, C.; Lu, Z.; Skinner, W.; Lu, Y.; Kridl, J.; et al. Improving nitrogen use efficiency through overexpression of alanine aminotransferase in rice, wheat, and barley. Front. Plant Sci. 2021, 12, 628521. [Google Scholar] [CrossRef]
- Li, R.C.; Gao, Y.X.; Chen, Q.; Li, Z.L.; Gao, F.; Meng, Q.M.; Li, T.G.; Liu, A.R.; Wang, Q.; Wu, L.; et al. Blended controlled-release nitrogen fertilizer with straw returning improved soil nitrogen availability, soil microbial community, and root morphology of wheat. Soil Till. Res. 2021, 212, 105045. [Google Scholar] [CrossRef]
- Wang, L.F.; Wu, K.K.; Xiao, F.R.; Gong, P.; Xue, Y.; Song, Y.C.; Wang, R.Z.; Wu, Z.J.; Zhang, L.L. Effect of biological denitrification inhibitor on N2O emissions from paddy soil and microbial mechanisms. Microorganisms 2025, 13, 1232. [Google Scholar] [CrossRef]
- Wakelin, S.A.; Colloff, M.J.; Harvey, P.R.; Marschner, P.; Gregg, A.L.; Rogers, S.L. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiol. Ecol. 2007, 59, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hou, H.J.; Zheng, Y.; Qin, H.L.; Zhu, Y.J.; Wu, J.S.; Wei, W.X. Influence of fertilisation regimes on a nosZ-containing denitrifying community in a rice paddy soil. J. Sci. Food Agric. 2012, 92, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.S.; Song, M.H.; Wang, C.M.; Dou, X.M.; Wang, J.X.; Liu, F.F.; Zhu, C.Y.; Wang, S.Q. Decrease of nitrogen cycle gene abundance and promotion of soil microbial-N saturation restrain increases in N2O emissions in a temperate forest with long-term nitrogen addition. Chemosphere 2023, 338, 139378. [Google Scholar] [CrossRef]
- Carey, C.J.; Dove, N.C.; Beman, J.M.; Hart, S.C.; Aronson, E.L. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biol. Biochem. 2016, 99, 158–166. [Google Scholar] [CrossRef]
- Müller, C.; Zhang, L.; Zipfel, S.; Topitsch, A.; Lutz, M.; Eckert, J.; Prasser, B.; Chami, M.; Lü, W.; Du, J.; et al. Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature 2022, 608, 626–631. [Google Scholar] [CrossRef]
- You, L.C.; Ros, G.H.; Chen, Y.L.; Yang, X.; Cui, Z.L.; Liu, X.J.; Jiang, R.F.; Zhang, F.S.; De Vries, W. Global meta-analysis of terrestrial nitrous oxide emissions and associated functional genes under nitrogen addition. Soil Biol. Biochem. 2022, 165, 108523. [Google Scholar] [CrossRef]
- Pan, H.; Qin, Y.; Wang, Y.; Liu, S.; Yu, B.; Song, Y.; Wang, X.; Zhu, G. Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil. Environ Res 2020, 186, 109612. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Hu, J.; Dai, Q. Response of bacterial communities and nitrogen-cycling genes in newly reclaimed mudflat paddy soils to nitrogen fertilizer gradients. Environ. Sci. Pollut. Res. 2022, 29, 71113–71123. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.; Zhu, C.; Wang, E.; Brunel, B.; Li, S.; Zheng, Q.; Feng, Z.; Zhang, H. Diverse peanut bradyrhizobial communities in Chinese soils: Insights from Eastern, Central, and Northern Henan Province. Microb. Ecol. 2025, 88, 65. [Google Scholar] [CrossRef]
- Lu, R.K. Methods of Soil and Agro-Chemistry; Chinese Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Mori, H.; Maruyama, F.; Kato, H.; Toyoda, A.; Dozono, A.; Ohtsubo, Y.; Nagata, Y.; Fujiyama, A.; Tsuda, M.; Kurokawa, K. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 2014, 21, 217–227. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.C.; Wang, H.Y.; Gai, X.P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Campbell, B.J.; Polson, S.W.; Hanson, T.E.; Mack, M.C.; Schuur, E.A.G. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol. 2010, 12, 1842–1854. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glockner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Sun, S.; Jones, R.B.; Fodor, A.A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 2020, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Song, X.; Zheng, W.; Wu, L.; Chen, Q.; Yu, X.; Li, Z.; Li, R.; Gao, F.; Tian, H.; et al. The controlled-release nitrogen fertilizer driving the symbiosis of microbial communities to improve wheat productivity and soil fertility. Field Crops Res. 2022, 289, 108712. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Guo, Q.; Zhang, P.; Cai, T.; Jia, Z. Adopting nitrogen deep placement based on different simulated precipitation year types enhances wheat yield and resource utilization by promoting photosynthesis capacity. Field Crops Res. 2023, 294, 108862. [Google Scholar] [CrossRef]
- Xiao, X.C.; Kang, J.; Li, H.W.; Liu, Y.; Yao, C.S.; Zhang, Z.; Liu, Y.; Sun, W.; Kang, G.Z.; Wang, Z.M.; et al. Facilitating winter wheat sustainable intensification: Effects of two limited carbon-emission cultivation patterns in China’s Huang-Huai-Hai Region. Agric. Ecosyst. Environ. 2023, 358, 108706. [Google Scholar] [CrossRef]
- Zeglin, L.H.; Stursova, M.; Sinsabaugh, R.L.; Collins, S.L. Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 2007, 154, 349–359. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Grogan, P.; Caporaso, J.G.; Zhang, H.Y.; Lin, X.G.; Knight, R.; Chu, H.Y. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils. Soil Biol. Biochem. 2014, 74, 193–200. [Google Scholar] [CrossRef]
- Wang, C.Y.; Xiao, H.G.; Liu, J.; Zhou, J.W.; Du, D.L. Insights into the effects of simulated nitrogen deposition on leaf functional traits of rhus typhina. Pol. J. Environ. Stud. 2016, 25, 1279–1284. [Google Scholar] [CrossRef]
- Yu, H.L.; Ling, N.; Wang, T.T.; Zhu, C.; Wang, Y.; Wang, S.J.; Gao, Q. Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Till. Res. 2019, 185, 61–69. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Wang, C.K.; Luo, Y.Q. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Tariq, A.; Zeng, F.J.; Graciano, C.; Sun, F.; Chai, X.T.; Ahmed, Z. Nitrogen and water addition regulate fungal community and microbial co-occurrence network complexity in the rhizosphere of Alhagi sparsifolia seedlings. Appl. Soil Ecol. 2021, 164, 103940. [Google Scholar] [CrossRef]
- Zhou, J.; Guan, D.W.; Zhou, B.K.; Zhao, B.S.; Ma, M.C.; Qin, J.; Jiang, X.; Chen, S.F.; Cao, F.M.; Shen, D.L. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 2015, 90, 42–51. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, W.M.; Shangguan, Z. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies. Soil Biol. Biochem. 2015, 91, 151–159. [Google Scholar] [CrossRef]
- Luo, G.W.; Li, L.; Friman, V.-P.; Guo, J.J.; Guo, S.W.; Shen, Q.R.; Ling, N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Chau, J.F.; Bagtzoglou, A.C.; Willig, M.R. The effect of soil texture on richness and diversity of bacterial communities. Environ. Forensics 2011, 12, 333–341. [Google Scholar] [CrossRef]
- Ma, J.C.; Ibekwe, A.M.; Yang, C.H.; Crowley, D.E. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations. Sci. Total Environ. 2016, 563–564, 199–209. [Google Scholar] [CrossRef]
- Xu, A.X.; Li, L.L.; Xie, J.H.; Zhang, R.Z.; Luo, Z.Z.; Cai, L.Q.; Liu, C.; Wang, L.L.; Anwar, S.; Jiang, Y.J. Bacterial diversity and potential functions in response to long-term nitrogen fertilizer on the Semiarid Loess Plateau. Microorganisms 2022, 10, 1579. [Google Scholar] [CrossRef]
- Farmer, J.; Zhang, B.; Jin, X.X.; Zhang, P.; Wang, J.K. Long-term effect of plastic film mulching and fertilization on bacterial communities in a brown soil revealed by high through-put sequencing. Arch. Agron. Soil Sci. 2017, 63, 230–241. [Google Scholar] [CrossRef]
- Zhang, T.A.; Chen, H.Y.; Ruan, H.H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 2018, 12, 1817–1825. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.R.; Zhang, X.; Mao, Q.G.; Li, X.Z.; You, Y.M.; Wang, J.X.; Zheng, M.H.; Zhang, W.; Lu, X.K. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol. Biochem. 2018, 127, 22–30. [Google Scholar] [CrossRef]
- Bakker, M.G.; Schlatter, D.C.; Ottohanson, L.; Kinkel, L.L. Diffuse symbioses: Roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Mol. Ecol. 2014, 23, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, M.; Yang, Z.L.; Cong, M.F.; Zhu, X.P.; Jia, H.T. Soil microbial community response to nitrogen application on a swamp meadow in the arid region of Central Asia. Front. Microbiol. 2022, 12, 797306. [Google Scholar] [CrossRef] [PubMed]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Treseder, K.K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol. Lett. 2008, 11, 1111–1120. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Ling, S.; Lin, X.; Chu, H. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 2016, 92, 41–49. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Z.C.; Cheng, X.X.; Qiu, R.J.; Hamoud, Y.A.; Hong, C.; Zong, X.Y.; Wang, Y.s.; Agathokleous, E.; Guo, X.P. Dissecting the combined effects of cultivar, fertilization, and irrigation on rhizosphere bacterial communities and nitrogen productivity in rice. Sci. Total Environ. 2022, 835, 155534. [Google Scholar] [CrossRef]
- Dai, Z.M.; Su, W.Q.; Chen, H.H.; Barberán, A.; Zhao, H.C.; Yu, M.J.; Yu, L.; Brookes, P.C.; Schadt, C.W.; Chang, S.X.; et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Chang Biol. 2018, 24, 3452–3461. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Tang, G.L.; Chai, X.T.; Liu, B.; Gao, X.P.; Zeng, F.J.; Wang, Y.; Zhang, B. Different responses of soil bacterial and fungal communities in three typical vegetations following nitrogen deposition in an Arid Desert. Microorganisms 2023, 11, 2471. [Google Scholar] [CrossRef]
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; Sinderen, D.V. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. R. 2007, 71, 495–548. [Google Scholar] [CrossRef]
- Ai, C.; Liang, G.Q.; Sun, J.W.; Wang, X.B.; He, P.; Zhou, W.; He, X.H. Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol. Biochem. 2015, 80, 70–78. [Google Scholar] [CrossRef]
- Wei, W.; Yang, M.; Liu, Y.X.; Huang, H.C.; Ye, C.; Zheng, J.F.; Guo, C.W.; Hao, M.W.; He, X.H.; Zhu, S.S. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. Sci. Total Environ. 2018, 633, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.X.; Yan, L.J.; Korpelainen, H.; Niinemets, Ü.; Li, C.Y. Plant-plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biol. Biochem. 2019, 128, 127–138. [Google Scholar] [CrossRef]
- Constancias, F.; Saby, N.P.A.; Terrat, S.; Dequiedt, S.; Horrigue, W.; Nowak, V.; Guillemin, J.P.; Biju-Duval, L.; Chemidlin Prévost-Bouré, N.; Ranjard, L. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape. MicrobiologyOpen 2015, 4, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Kang, J.; Wang, J.R.; Chen, Y.L.; Lu, H.F.; Wang, L.F.; Wang, C.Y.; Xie, Y.X.; Ma, D.Y.; Kang, G.Z. Bacterial community structure and predicted function in wheat soil from the North China Plain are closely linked with soil and plant characteristics after seven years of irrigation and nitrogen application. Front. Microbiol. 2020, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, Z.W.; Yang, S.; Li, X.B.; Top, E.M.; Wang, R.Z.; Zhang, Y.G.; Cai, J.P.; Yao, F.; Han, X.G. Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation. Microb. Ecol. 2016, 71, 974–989. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Yu, W.W.; Ali, T.; Chen, D.W.; Huang, Y.; Ao, J.; Jiang, Y.; Huang, Z. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese Fir Plantations. Front. Microbiol. 2018, 9, 1543. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, H.M.; Zhao, J.N.; Li, G.; Lai, X.; Li, J.; Wang, H.; Yang, D.L. Effects of simulated nitrogen deposition and precipitation change on soil bacterial community structure in a Stipa baicalensis steppe. Acta Ecol. Sinica 2018, 38, 244–253. [Google Scholar] [CrossRef]
- Li, L.; Song, J.; Peng, C.; Yang, Z.; Wang, L.; Lin, J.; Li, L.; Huang, Z.; Gong, B. Co-occurrence network of microbes linking growth and immunity parameters with the gut microbiota in Nile tilapia (Oreochromis niloticus) after feeding with fermented soybean meal. Aquacult Rep 2022, 26, 101280. [Google Scholar] [CrossRef]
- Qiu, C.; Bao, Y.; Petropoulos, E.; Wang, Y.; Zhong, Z.; Jiang, Y.; Ye, X.; Lin, X.; Feng, Y. Organic and inorganic amendments shape bacterial indicator communities that can, in turn, promote rice yield. Microorganisms 2022, 10, 482. [Google Scholar] [CrossRef]
- Yang, X.Y.; Duan, P.P.; Wang, K.L.; Li, D.J. Topography modulates effects of nitrogen deposition on soil nitrogen transformations by impacting soil properties in a subtropical forest. Geoderma 2023, 432, 116381. [Google Scholar] [CrossRef]
- Miller, M.N.; Zebarth, B.J.; Dandie, C.E.; Burton, D.L.; Goyer, C.; Trevors, J.T. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 2008, 40, 2553–2562. [Google Scholar] [CrossRef]
- Li, Y.; Tremblay, J.; Bainard, L.D.; Cade-Menun, B.; Hamel, C. Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environ. Microbiol. 2020, 22, 1066–1088. [Google Scholar] [CrossRef]
- Liao, X.H.; Tang, T.G.; Li, J.N.; Wang, J.C.; Neher, D.A.; Zhang, W.; Xiao, J.; Xiao, D.; Hu, P.L.; Wang, K.L.; et al. Nitrogen fertilization increases the niche breadth of soil nitrogen-cycling microbes and stabilizes their co-occurrence network in a karst agroecosystem. Agric. Ecosyst. Environ. 2024, 374, 109177. [Google Scholar] [CrossRef]
- Liu, C.R.; Zhang, Y.S.; Liu, H.R.; Liu, X.Q.; Ren, D.Y.; Wang, L.; Guan, D.H.; Li, Z.H.; Zhang, M.C. Fertilizer stabilizers reduce nitrous oxide emissions from agricultural soil by targeting microbial nitrogen transformations. Sci. Total Environ. 2022, 806, 151225. [Google Scholar] [CrossRef]
- Tang, L.; Zhong, L.; Xue, K.; Wang, S.P.; Xu, Z.H.; Lin, Q.Y.; Luo, C.Y.; Rui, Y.C.; Li, X.Z.; Li, M.; et al. Warming counteracts grazing effects on the functional structure of the soil microbial community in a Tibetan grassland. Soil Biol. Biochem. 2019, 134, 113–121. [Google Scholar] [CrossRef]
- Du, R.; Peng, Y.Z.; Ji, J.T.; Shi, L.L.; Gao, R.T.; Li, X.C. Partial denitrification providing nitrite: Opportunities of extending application for anammox. Environ. Int. 2019, 131, 105001. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.J.; Gu, H.D.; Liu, J.J.; Wei, D.; Zhu, P.; Cui, X.A.; Zhou, B.K.; Chen, X.L.; Jin, J.; Liu, X.B.; et al. Metagenomics reveals divergent functional profiles of soil carbon and nitrogen cycling under long-term addition of chemical and organic fertilizers in the black soil region. Geoderma 2022, 418, 115846. [Google Scholar] [CrossRef]
- Yang, X.D.; Tang, S.; Ni, K.; Shi, Y.Z.; Yi, X.Y.; Ma, Q.X.; Cai, Y.J.; Ma, L.F.; Ruan, J.Y. Long-term nitrogen addition increases denitrification potential and functional gene abundance and changes denitrifying communities in acidic tea plantation soil. Environ. Res. 2023, 216, 114679. [Google Scholar] [CrossRef]
- Ren, B.J.; Wang, W.Q.; Shen, L.D.; Yang, W.T.; Yang, Y.L.; Jin, J.H.; Geng, C.Y. Nitrogen fertilization rate affects communities of ammonia-oxidizing archaea and bacteria in paddy soils across different climatic zones of China. Sci. Total Environ. 2023, 902, 166089. [Google Scholar] [CrossRef]
- Zheng, M.H.; Zhou, Z.H.; Luo, Y.Q.; Zhao, P.; Mo, J.M. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Glob. Change Biol. 2019, 25, 3018–3030. [Google Scholar] [CrossRef]
- Shi, X.; Tan, W.; Tang, S.; Ling, Q.; Tang, C.; Qin, P.; Luo, S.; Zhao, Y.; Yu, F.; Li, Y. Metagenomics reveals taxon-specific responses of soil nitrogen cycling under different fertilization regimes in heavy metal contaminated soil. J. Environ. Manage. 2023, 345, 118766. [Google Scholar] [CrossRef]
- Wang, K.; Flury, M.; Kuzyakov, Y.; Zhang, H.; Zhu, W.; Jiang, R. Aluminum and microplastic release from reflective agricultural films disrupt microbial communities and functions in soil. J. Hazard. Mater. 2025, 491, 137891. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.Y.; Huang, Q.W.; Zhang, R.F.; Li, R.; Shen, B.; Shen, Q.R. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Liu, Z.; Nan, Z.; Lin, S.; Meng, W.; Xie, L.; Yu, H.; Zhang, Z.; Wan, S. Peanut-based intercropping systems altered soil bacterial communities, potential functions, and crop yield. Peer J. 2024, 12, e16907. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yiminijiang, A.; Li, R.X.; Wu, M.D.; Long, M.X.; Yang, P.Z.; He, S.B. Nutrient uptake and rhizosphere microbial community as related to yield advantage in broomcorn millet—alfalfa intercropping under different row configurations. BMC Plant Biol. 2025, 25, 2. [Google Scholar] [CrossRef]








| Soil | N Rate | Moisture (%) | pH | OM (g kg−1) | TN (g kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | NO3−-N (g kg−1) |
|---|---|---|---|---|---|---|---|---|---|
| FS | N0 | 19.11 c | 7.72 a | 17.43 c | 0.88 b | 97.98 b | 19.93 b | 362.58 b | 15.98 c |
| N1 | 21.10 a | 7.74 a | 20.77 a | 1.06 a | 114.31 a | 21.39 b | 392.42 a | 44.82 a | |
| N2 | 20.13 b | 7.44 b | 19.34 b | 1.08 a | 112.20 a | 23.98 a | 359.93 b | 41.68 a | |
| N3 | 20.36 b | 7.25 c | 19.28 b | 1.05 a | 111.68 a | 16.85 c | 407.72 a | 31.88 b | |
| ANOVA p-values | <0.001 | <0.001 | 0.288 | 0.245 | 0.006 | 0.154 | 0.312 | <0.001 | |
| SS | N0 | 12.24 a | 7.65 a | 8.02 a | 0.48 a | 76.38 ab | 14.51 a | 152.04 b | 11.27 c |
| N1 | 9.98 b | 7.32 b | 6.59 c | 0.42 b | 73.74 b | 9.98 c | 95.81 c | 21.17 b | |
| N2 | 9.42 b | 7.22 b | 7.52 ab | 0.49 a | 74.27 b | 12.16 b | 151.41 b | 26.78 b | |
| N3 | 9.78 b | 7.09 c | 6.92 bc | 0.47 a | 83.23 a | 15.06 a | 191.43 a | 36.56 a | |
| ANOVA p-values | <0.001 | <0.001 | 0.001 | 0.001 | 0.063 | <0.001 | <0.001 | <0.001 | |
| BS | N0 | 25.30 c | 7.28 a | 27.16 a | 1.42 a | 132.74 b | 19.75 b | 360.95 a | 18.70 c |
| N1 | 26.77 b | 7.17 a | 22.79 c | 1.29 b | 126.43 c | 18.79 b | 333.33 c | 25.63 b | |
| N2 | 23.40 d | 7.02 b | 24.01 b | 1.36 ab | 135.38 b | 19.15 b | 347.59 b | 28.60 b | |
| N3 | 28.31 a | 6.88 c | 25.27 b | 1.32 b | 143.81 a | 22.13 a | 287.34 d | 41.71 a | |
| ANOVA p-values | <0.001 | <0.001 | <0.001 | 0.021 | <0.001 | 0.035 | <0.001 | <0.001 | |
| Soil styles (p-values) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.041 | |
| Soils | N Rates | OTUs a | Shannon | Chao | ACE |
|---|---|---|---|---|---|
| FS | N0 | 3207 ± 67 a | 6.96 ± 0.05 a | 4160 ± 93 a | 4160 ± 93 a |
| N1 | 3263 ± 7 a | 6.98 ± 0.01 a | 4274 ± 65 a | 4293 ± 44 a | |
| N2 | 3200 ± 24 a | 6.95 ± 0.01 a | 4190 ± 43 a | 4202 ± 24 a | |
| N3 | 3274 ± 36 a | 6.98 ± 0.02 a | 4222 ± 62 a | 4240 ± 58 a | |
| SS | N0 | 3487 ± 25 a | 6.99 ± 0.04 a | 4529 ± 19 a | 4571 ± 32 a |
| N1 | 3293 ± 33 b | 6.81 ± 0.14 a | 4339 ± 40 b | 4303 ± 20 b | |
| N2 | 3293 ± 27 b | 6.95 ± 0.05 a | 4250 ± 54 b | 4256 ± 38 b | |
| N3 | 3160 ± 61 c | 6.88 ± 0.04 a | 4080 ± 69 c | 4079 ± 66 c | |
| BS | N0 | 2217 ± 35 a | 6.39 ± 0.03 a | 2941 ± 22 a | 2871 ± 31 a |
| N1 | 2322 ± 60 a | 6.47 ± 0.07 a | 2995 ± 70 a | 3003 ± 67 a | |
| N2 | 2283 ± 74 a | 6.46 ± 0.07 a | 2982 ± 55 a | 2960 ± 65 a | |
| N3 | 2266 ± 57 a | 6.40 ± 0.06 a | 2948 ± 112 a | 2930 ± 89 a |
| Diversity Index | Moisture (%) | pH (g kg−1) | OM (g kg−1) | TN (mg kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | NO3−-N (g kg−1) |
|---|---|---|---|---|---|---|---|---|
| OTUs | −0.717 *** | 0.493 *** | −0.748 *** | −0.768 *** | −0.793 *** | −0.478 ** | −0.230 | −0.185 |
| Shannon | −0.549 *** | 0.583 *** | −0.543 *** | −0.539 *** | −0.614 *** | −0.188 | 0.099 | −0.024 |
| Chao | −0.696 *** | 0.566 *** | −0.715 *** | −0.738 *** | −0.787 *** | −0.416 ** | −0.239 | −0.147 |
| Ace | −0.705 *** | 0.560 *** | −0.712 *** | −0.722 *** | −0.774 *** | −0.421 ** | −0.223 | −0.160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Zhang, X.; Han, X.; Kang, J.; Zhang, H.; Zhang, Y.; Lu, H.; Xie, Y.; Ma, D.; Wang, C. Nitrogen Fertilization Effects on Soil Bacterial Communities, Nitrogen-Cycling Genes, and Wheat Yield Across Different Soil Types in the North China Plain. Microorganisms 2025, 13, 2382. https://doi.org/10.3390/microorganisms13102382
Ma G, Zhang X, Han X, Kang J, Zhang H, Zhang Y, Lu H, Xie Y, Ma D, Wang C. Nitrogen Fertilization Effects on Soil Bacterial Communities, Nitrogen-Cycling Genes, and Wheat Yield Across Different Soil Types in the North China Plain. Microorganisms. 2025; 13(10):2382. https://doi.org/10.3390/microorganisms13102382
Chicago/Turabian StyleMa, Geng, Xiaoyan Zhang, Xiaojie Han, Juan Kang, Haiyan Zhang, Yanfei Zhang, Hongfang Lu, Yingxin Xie, Dongyun Ma, and Chenyang Wang. 2025. "Nitrogen Fertilization Effects on Soil Bacterial Communities, Nitrogen-Cycling Genes, and Wheat Yield Across Different Soil Types in the North China Plain" Microorganisms 13, no. 10: 2382. https://doi.org/10.3390/microorganisms13102382
APA StyleMa, G., Zhang, X., Han, X., Kang, J., Zhang, H., Zhang, Y., Lu, H., Xie, Y., Ma, D., & Wang, C. (2025). Nitrogen Fertilization Effects on Soil Bacterial Communities, Nitrogen-Cycling Genes, and Wheat Yield Across Different Soil Types in the North China Plain. Microorganisms, 13(10), 2382. https://doi.org/10.3390/microorganisms13102382

