Rumen-Protected Leucine Improved Growth Performance of Fattening Sheep by Changing Rumen Fermentation Patterns
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Experimental Animals and Group Design
2.3. Sample Collection
2.4. Growth Performance
2.5. Apparent Nutrient Digestibility
2.6. Rumen Fermentation Parameters
2.7. Ruminal Free Amino Acids
2.8. Rumen Microorganisms
2.9. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Apparent Nutrient Digestibility
3.3. Rumen Fermentation Parameters
3.4. Free Amino Acid Concentrations in Rumen Fluid
3.5. Rumen Microbiota
3.6. Correlations Between Rumen Fermentation Parameters, Free Amino Acids, and Microbiota
4. Discussion
4.1. Effects of RP-Leu on Growth Performance and Nutrient Apparent Digestibility
4.2. Effects of RP-Leu on Rumen Fermentation Patterns
4.3. Effects of RP-Leu on Ruminal Free Amino Acid
4.4. Effects of RP-Leu on the Rumen Microbiota
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, J.; Zhang, R.; Chang, J.; Chen, L.; Nabi, M.; Zhang, H.; Zhang, G.; Zhang, P. Rumen Microbes, Enzymes, Metabolisms, and Application in Lignocellulosic Waste Conversion—A Comprehensive Review. Biotechnol. Adv. 2024, 71, 108308. [Google Scholar] [CrossRef]
- Du, W.; Xu, W.; Hu, Y.; Zhao, S.; Li, F.; Song, D.; Shen, J.; Xu, Q. Editorial: Crosslinking of Feed Nutrients, Microbiome and Production in Ruminants. Front. Vet. Sci. 2025, 12, 1610490. [Google Scholar] [CrossRef] [PubMed]
- Leal Yepes, F.A.; Mann, S.; Overton, T.R.; Ryan, C.M.; Bristol, L.S.; Granados, G.E.; Nydam, D.V.; Wakshlag, J.J. Effect of Rumen-Protected Branched-Chain Amino Acid Supplementation on Production- and Energy-Related Metabolites during the First 35 Days in Milk in Holstein Dairy Cows. J. Dairy Sci. 2019, 102, 5657–5672. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, J.; Wang, D.; Zhao, C.; Tian, X.; Meng, Y.; Zou, Y.; Zhao, Y.; Qin, G.; Wang, T.; et al. Metabolomic Analysis of Rumen-Protected Branched-Chain Amino Acids in Primiparous Dairy Cows. Front. Immunol. 2024, 15, 1385896. [Google Scholar] [CrossRef] [PubMed]
- An, J.; He, H.; Lan, X.; Liu, L.; Wang, Z.; Ge, Y.; Shen, W.; Cheng, A.; Wan, F. Branched-Chain Amino Acids in Ruminant Nutrition: Function Effects and Summary of Recent Advances. Anim. Feed Sci. Technol. 2024, 312, 115972. [Google Scholar] [CrossRef]
- Madeira, M.S.; Alfaia, C.M.; Costa, P.; Lopes, P.A.; Lemos, J.P.C.; Bessa, R.J.B.; Prates, J.A.M. The Combination of Arginine and Leucine Supplementation of Reduced Crude Protein Diets for Boars Increases Eating Quality of Pork. J. Anim. Sci. 2014, 92, 2030–2040. [Google Scholar] [CrossRef]
- Salles, J.; Chanet, A.; Berry, A.; Giraudet, C.; Patrac, V.; Domingues-Faria, C.; Rocher, C.; Guillet, C.; Denis, P.; Pouyet, C.; et al. Fast Digestive, Leucine-Rich, Soluble Milk Proteins Improve Muscle Protein Anabolism, and Mitochondrial Function in Undernourished Old Rats. Mol. Nutr. Food Res. 2017, 61, 1700287. [Google Scholar] [CrossRef]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ali, R.; Zhang, H.; Zafar, M.H.; Wang, M. Research Progress in the Role and Mechanism of Leucine in Regulating Animal Growth and Development. Front. Physiol. 2023, 14, 1252089. [Google Scholar] [CrossRef]
- An, J.; Ge, Y.; He, H.; Ge, H.; Li, J.; Li, Z.; Liu, L.; Wang, Z.; Lan, X.; Shen, W.; et al. Dietary L-Leucine Supplementation Improves Ruminal Fermentation Parameters and Epithelium Development in Fattening Angus Beef Cattle. J. Anim. Sci. Biotechnol. 2025, 16, 60. [Google Scholar] [CrossRef]
- Zhang, H.L.; Chen, Y.; Xu, X.L.; Yang, Y.X. Effects of Branched-Chain Amino Acids on In Vitro Ruminal Fermentation of Wheat Straw. Asian-Australas. J. Anim. Sci. 2013, 26, 523–528. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Shen, W.; Liu, H.; Yang, C.; Chen, K.; Yuan, Q.; Li, Z.; Xiao, D.; Wang, Z.; Lan, X.; et al. Comparison of the Effects of Rumen-Protected and Unprotected L-Leucine on Fermentation Parameters, Bacterial Composition, and Amino Acids Metabolism in in Vitro Rumen Batch Cultures. Front. Microbiol. 2023, 14, 1282767. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Mao, H. Effects of Leucine Addition on Rumen Development and Rumen Bacterial Communities of Early Weaned Hu Lambs. Chin. J. Anim. Sci. 2019, 55, 66–71. [Google Scholar] [CrossRef]
- Roman-Garcia, Y.; Denton, B.L.; Mitchell, K.E.; Lee, C.; Socha, M.T.; Firkins, J.L. Conditions Stimulating Neutral Detergent Fiber Degradation by Dosing Branched-Chain Volatile Fatty Acids. I: Comparison with Branched-Chain Amino Acids and Forage Source in Ruminal Batch Cultures. J. Dairy Sci. 2021, 104, 6739–6755. [Google Scholar] [CrossRef]
- Bentley, O.G.; Johnson, R.R.; Hershberger, T.V.; Cline, J.H.; Moxon, A.L. Cellulolytic-Factor Activity of Certain Short-Chain Fatty Acids for Rumen Microorganisms in Vitro1, 2. J. Nutr. 1955, 57, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Wang, Q.; Yao, W.; Zhu, W. Effect of Eliminating the Anaerobic Fungi on the Metabolism and Digestibility of Rumen. J. Nanjing Agric. Univ. 2002, 25, 61–64. [Google Scholar]
- Bergen, W.G. Amino Acids in Beef Cattle Nutrition and Production. Adv. Exp. Med. Biol. 2021, 1285, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Flakoll, P.J.; VandeHaar, M.J.; Kuhlman, G.; Nissen, S. Influence of α-Ketoisocaproate on Lamb Growth, Feed Conversion, and Carcass Composition. J. Anim. Sci. 1991, 69, 1461–1467. [Google Scholar] [CrossRef]
- Sang, D.; Sun, H.; Guo, J.; Zhao, C. Effects of Rumen-Protected Leucine on the Key Factors Controlling mTOR Signal Transduction Pathway in the Skeletal Muscle of Sheep. Chin. J. Anim. Nutr. 2011, 23, 61–65. [Google Scholar]
- Lu, M.L.; Pan, L.; Zheng, C.; Mao, R.Y.; Yuan, G.H.; Shi, C.Y.; Pu, Z.H.; Su, H.X.; Diao, Q.-Y.; Rehemujiang, H.; et al. Effects of Compound Microecological Preparation Supplementation on Production Performance and Nutrient Apparent Digestibility in Hu Sheep from the Rumen Perspective. Microorganisms 2025, 13, 999. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Lu, S.; Paengkoum, S.; Chen, S.; Long, Y.; Niu, X.; Thongpea, S.; Taethaisong, N.; Meethip, W.; Paengkoum, P. Impact of Dietary Supplementation of Black Soldier Fly Larvae (Hermetia Illucens L.) on Nutrient Digestibility, Serum Antioxidants, Ruminal Volatile Fatty Acids, and Abundance of Microbial Dominant Flora in Goats. Anim. Nutr. 2025, 22, 402–413. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, J.; Zhang, P.; Fu, C.; Zhang, Z.; MA, J.; LI, Y.; ZHANG, W. Effects of Rumen Amino Acids on Growth Performance, Serum Indexes, and Rumen Fermentation Parameters of Hu Sheep. Feed Res. 2024, 24, 1–6. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, W.; Xu, Y.; Xie, X.; Xiong, G.; Xu, X.; Zhou, G.; Ye, M. Enhanced Flavor Strength of Broth Prepared from Chicken Following Short-Term Frozen Storage. Food Chem. 2021, 356, 129678. [Google Scholar] [CrossRef]
- Wu, G. Dietary Requirements of Synthesizable Amino Acids by Animals: A Paradigm Shift in Protein Nutrition. J. Anim. Sci. Biotechnol. 2014, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Li, J.; Lei, X.; Yao, J. Effects of Dietary Supplementation with Rumen-Protected Leucine on Growth Performance, Rumen Fermentation Parameters, and Blood Parameters in Young Guanzhong Dairy Goats. J. Anim. Sci. Vet. Med. 2020, 39, 15–21. [Google Scholar]
- Yang, X.; Cao, Y.; Zhen, C.; Liu, K.; Guo, L. Effect of Leucine and Phenylalanine Supplementation on Growth Performance and Serum Metabolites of Holstein Male Calves. Sci. Agric. Sin. 2017, 50, 4196–4204. [Google Scholar]
- Wang, C.; Zhang, J.; Liu, Q.; Guo, G.; Huo, W.J.; Pei, C.X.; Xia, C.Q.; Chen, L.; Zhang, Y.W. Rumen Protected Riboflavin and Rumen Protected Pantothenate Improved Growth Performance, Nutrient Digestion and Rumen Fermentation in Angus Bulls. Anim. Feed Sci. Technol. 2022, 291, 115394. [Google Scholar] [CrossRef]
- Chen, J.; Niu, X.; Li, F.; Li, F.; Guo, L. Replacing Soybean Meal with Distillers Dried Grains with Solubles plus Rumen-Protected Lysine and Methionine: Effects on Growth Performance, Nutrients Digestion, Rumen Fermentation, and Serum Parameters in Hu Sheep. Animals 2021, 11, 2428. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xie, T.; Li, F.; Li, F.; Guo, L. Effects of Dietary Supplementation with Cysteamine on Growth Performance, Rumen Microflora, and Endogenous Hormones Levels in Hu Lambs. Anim. Feed Sci. Technol. 2025, 329, 116503. [Google Scholar] [CrossRef]
- D’Souza, G.M.; Harvey, K.; Batista, L.F.D.; Cooke, R.F.; Tedeschi, L.O. PSIV-1 A Comparison of Chromatography Methods to Estimate Ruminal VFA Concentrations. J. Anim. Sci. 2021, 99, 295. [Google Scholar] [CrossRef]
- Ogunade, I.; Schweickart, H.; Andries, K.; Lay, J.; Adeyemi, J. Monensin Alters the Functional and Metabolomic Profile of Rumen Microbiota in Beef Cattle. Animals 2018, 8, 211. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Sheperd, A.C.; Smagala, A.M.; Endres, K.M.; Bessett, C.A.; Ranjit, N.K.; Glancey, J.L. The Effect of Preservatives Based on Propionic Acid on the Fermentation and Aerobic Stability of Corn Silage and a Total Mixed Ration. J. Dairy Sci. 1998, 81, 1322–1330. [Google Scholar] [CrossRef]
- Yang, C.-M.J. Response of Forage Fiber Degradation by Ruminal Microorganisms to Branched-Chain Volatile Fatty Acids, Amino Acids, and Dipeptides. J. Dairy Sci. 2002, 85, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ni, Z.; Chen, Y.; Zhang, E.; Wang, Y. Study on Distribution of Free Amino Acid and Small Peptide and the Expression of Related Transporter Genes in Gastrointestinal Tract of Sheep. ACTA Vet. Zootech. Sin. 2017, 48, 462–473. [Google Scholar]
- Zhong, K.; Liu, Z.; Wang, H. Effects of Unconventional Protein Ingredients on Nitrogen Metabolism Andmicrobial Protein Synthesis in Lactation Goats. China Feed 2021, 672, 64–67. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, H.; Huang, W.; Ding, L.; Wang, M. Research Progress on the Mechanism of Synergistic Metabolism Through Tyrosine-DOPA Pathway Between Rumen Microorganisms and Ruminants. Life Sci. Res. 2024, 358, 320–326. [Google Scholar] [CrossRef]
- Yokoyama, M.T.; Carlson, J.R. Dissimilation of Tryptophan and Related Indolic Compounds by Ruminal Microorganisms in Vitro. Appl. Microbiol. 1974, 27, 540–548. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Khas, E.; Ao, C.; Bai, C. Effects of Allium Mongolicum Regel Ethanol Extract on Three Flavor-Related Rumen Branched-Chain Fatty Acids, Rumen Fermentation and Rumen Bacteria in Lambs. Front. Microbiol. 2022, 13, 978057. [Google Scholar] [CrossRef]
- Yan, J.; Pan, Y.; Shao, W.; Wang, C.; Wang, R.; He, Y.; Zhang, M.; Wang, Y.; Li, T.; Wang, Z.; et al. Beneficial Effect of the Short-Chain Fatty Acid Propionate on Vascular Calcification through Intestinal Microbiota Remodelling. Microbiome 2022, 10, 195. [Google Scholar] [CrossRef]
- Jami, E.; Mizrahi, I. Composition and Similarity of Bovine Rumen Microbiota across Individual Animals. PLoS ONE 2012, 7, e33306. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef]
- Chen, Y.; Lan, D.; Tang, C.; Yang, X.; Li, J. Effect of DNA Extraction Methods on the Apparent Structure of Yak Rumen Microbial Communities as Revealed by 16S rDNA Sequencing. Pol. J. Microbiol. 2015, 64, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Gao, Y.; Lu, Y.; Qu, M.; Xiong, X.; Xu, L.; Zhao, X.; Pan, K.; Ouyang, K. Niacin Alters the Ruminal Microbial Composition of Cattle under High-Concentrate Condition. Anim. Nutr. 2017, 3, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.; Macfarlane, G.T. Regulation of Short-Chain Fatty Acid Production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef]
- Sun, X.; Tian, Y.; Li, S.; Zhang, X.; Shen, Y.; Li, J. Effects of N-Carbamylglutamate on Gastrointestinal Microflora Composition of Holstein Bulls. Chin. J. Anim. Nutr. 2023, 35, 3081–3092. [Google Scholar]
- Guo, Y.; Fan, Z.; Li, M.; Xie, H.; Peng, L.; Yang, C. Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes. Microorganisms 2023, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, H.; Chen, W.; Liu, C.; Meng, Q.; Zhou, Z. Rumen Microbiome and Metabolome of High and Low Residual Feed Intake Angus Heifers. Front. Vet. Sci. 2022, 9, 812861. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, K.; Xu, D.; Jiang, S.; Wang, M. Analysis of Microbial Composition Differences in High and Low Feed Conversion Rates Pig Feces Based on 16S rRNA Sequencing. ACTA Vet. Zootech. Sin. 2024, 55, 1605–1614. [Google Scholar] [CrossRef]
- Jize, Z.; Zhuoga, D.; Xiaoqing, Z.; Na, T.; Jiacuo, G.; Cuicheng, L.; Bandan, P. Different Feeding Strategies Can Affect Growth Performance and Rumen Functions in Gangba Sheep as Revealed by Integrated Transcriptome and Microbiome Analyses. Front. Microbiol. 2022, 13, 908326. [Google Scholar] [CrossRef]
- Battelli, M.; Colombini, S.; Parma, P.; Galassi, G.; Crovetto, G.M.; Spanghero, M.; Pravettoni, D.; Zanzani, S.A.; Manfredi, M.T.; Rapetti, L. In Vitro Effects of Different Levels of Quebracho and Chestnut Tannins on Rumen Methane Production, Fermentation Parameters, and Microbiota. Front. Vet. Sci. 2023, 10, 1178288. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Zhang, N.; Bi, Y.; Ma, T.; Paengkoum, P.; Xin, J.; Xiao, W.; Zhao, Y.; Yuan, C.; Wang, D.; et al. Partially Substituting Roughage with Traditional Chinese Herbal Medicine Residues in the Diet of Goats Improved Feed Quality, Growth Performance, Hematology, and Rumen Microbial Profiles. BMC Vet. Res. 2024, 20, 576. [Google Scholar] [CrossRef] [PubMed]
- Kyawt, Y.Y.; Aung, M.; Xu, Y.; Sun, Z.; Zhou, Y.; Zhu, W.; Padmakumar, V.; Tan, Z.; Cheng, Y. Dynamic Changes of Rumen Microbiota and Serum Metabolome Revealed Increases in Meat Quality and Growth Performances of Sheep Fed Bio-Fermented Rice Straw. J. Anim. Sci. Biotechnol. 2024, 15, 34. [Google Scholar] [CrossRef] [PubMed]
Items | Content | Nutritional Composition, % | Content | ||
---|---|---|---|---|---|
Ingredients, % | Crude protein | 11.97 | |||
Corn straw | 17.00 | Crude fat | 1.90 | ||
Alfalfa hay | 33.00 | Crude ash | 8.76 | ||
Corn | 25.06 | Neutral detergent fiber | 57.57 | ||
Wheat | 3.26 | Acid detergent fiber | 24.20 | ||
Soybean meal 43% | 3.26 | Calcium | 0.70 | ||
Cottonseed meal 50% | 3.97 | Phosphorus | 0.28 | ||
Corn germ meal | 3.80 | Leucine | 0.78 | ||
Corn bran | 7.30 | Metabolizable Energy (MJ/kg) | 9.64 | ||
Limestone powder | 0.70 | ||||
Soybean oil | 0.38 | ||||
NH4Cl | 0.27 | ||||
NaCl | 0.50 | ||||
NaHCO3 | 0.50 | ||||
Premix | 1.00 | ||||
Total | 100.00 |
Items | Groups | SEM | p-Value | Contrast p-Value | ||||
---|---|---|---|---|---|---|---|---|
L-0 | L-0.5 | L-1.0 | L-1.5 | Linear | Quadratic | |||
IBW, kg | 18.74 | 19.23 | 18.96 | 19.44 | 0.38 | 0.93 | 0.61 | 0.99 |
FBW, kg | 28.25 | 29.34 | 30.58 | 30.67 | 0.46 | 0.2 | 0.04 | 0.58 |
ADMI, kg/d | 0.91 | 0.87 | 0.89 | 0.93 | 0.03 | 0.88 | 0.67 | 0.66 |
ADG, g/d | 158.53 c | 168.55 bc | 193.73 a | 187.10 ab | 4.44 | <0.01 | <0.01 | 0.30 |
F:G ratio | 5.74 a | 5.16 ab | 4.59 b | 4.97 b | 0.15 | <0.01 | <0.01 | 0.04 |
Items | Groups | SEM | p-Value | Contrast p-Value | ||||
---|---|---|---|---|---|---|---|---|
L-0 | L-0.5 | L-1.0 | L-1.5 | Linear | Quadratic | |||
DM, % | 68.15 | 70.76 | 71.2 | 72.37 | 0.98 | 0.58 | 0.23 | 0.75 |
NDF, % | 57.48 | 58.6 | 56.92 | 59.27 | 0.67 | 0.71 | 0.62 | 0.71 |
ADF, % | 44.4 | 36.55 | 45.26 | 43 | 2.03 | 0.51 | 0.82 | 0.54 |
CP, % | 71.38 | 74.06 | 66.05 | 72.6 | 2.21 | 0.22 | 0.41 | 0.22 |
EE, % | 77.09 | 80.53 | 80.89 | 84.91 | 2.15 | 0.75 | 0.34 | 0.96 |
Items | Groups | SEM | p-Value | Contrast p-Value | ||||
---|---|---|---|---|---|---|---|---|
L-0 | L-0.5 | L-1.0 | L-1.5 | Linear | Quadratic | |||
pH | 7.49 | 7.51 | 7.45 | 7.41 | 0.04 | 0.86 | 0.47 | 0.75 |
NH3-N, mg/L | 100.11 | 131.00 | 113.16 | 123.53 | 4.80 | 0.1 | 0.18 | 0.24 |
Acetic acid, mmol/L | 107.24 | 107.33 | 86.19 | 86.48 | 4.52 | 0.13 | 0.04 | 0.99 |
Propionic acid, mmol/L | 22.62 b | 21.94 b | 21.90 b | 26.15 a | 0.6 | <0.01 | <0.01 | <0.01 |
Isobutyric acid, mmol/L | 1.29 | 1.45 | 1.49 | 1.45 | 0.07 | 0.81 | 0.47 | 0.55 |
Butyric acid, mmol/L | 12.19 | 12.22 | 12.96 | 13.23 | 0.39 | 0.78 | 0.35 | 0.9 |
Isovaleric acid, mmol/L | 1.41 b | 2.09 a | 2.30 a | 2.13 a | 0.11 | <0.01 | <0.01 | <0.01 |
Valeric acid, mmol/L | 0.58 | 0.64 | 0.69 | 0.74 | 0.03 | 0.12 | 0.02 | 0.98 |
A:P ratio | 4.47 a | 4.92 a | 3.94 ab | 3.32 b | 0.25 | 0.04 | 0.01 | 0.30 |
TVFA, mmol/L | 145.32 | 145.67 | 125.53 | 130.18 | 4.09 | 0.18 | 0.08 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhao, J.; Zhang, P.; Pang, S.; Ma, M.; Nie, Y.; Xu, Z.; Li, S.; Li, Y.; Zhang, W. Rumen-Protected Leucine Improved Growth Performance of Fattening Sheep by Changing Rumen Fermentation Patterns. Microorganisms 2025, 13, 2377. https://doi.org/10.3390/microorganisms13102377
Li S, Zhao J, Zhang P, Pang S, Ma M, Nie Y, Xu Z, Li S, Li Y, Zhang W. Rumen-Protected Leucine Improved Growth Performance of Fattening Sheep by Changing Rumen Fermentation Patterns. Microorganisms. 2025; 13(10):2377. https://doi.org/10.3390/microorganisms13102377
Chicago/Turabian StyleLi, Shu, Jiantao Zhao, Peng Zhang, Shaoyang Pang, Mingyu Ma, Yifan Nie, Zhenzi Xu, Sijin Li, Yuanyuan Li, and Wenju Zhang. 2025. "Rumen-Protected Leucine Improved Growth Performance of Fattening Sheep by Changing Rumen Fermentation Patterns" Microorganisms 13, no. 10: 2377. https://doi.org/10.3390/microorganisms13102377
APA StyleLi, S., Zhao, J., Zhang, P., Pang, S., Ma, M., Nie, Y., Xu, Z., Li, S., Li, Y., & Zhang, W. (2025). Rumen-Protected Leucine Improved Growth Performance of Fattening Sheep by Changing Rumen Fermentation Patterns. Microorganisms, 13(10), 2377. https://doi.org/10.3390/microorganisms13102377