Artificial Intelligence Driven Framework for the Design and Development of Next-Generation Avian Viral Vaccines
Abstract
1. Introduction
1.1. An Overview of Artificial Intelligence (AI)
1.2. Current Challenges in Veterinary AI Adoption
1.3. AI Applications in Veterinary Medicine
1.4. Some Potential Roles of AI/ML in Studying Viral Diseases in the Context of the One Health Concept
1.5. Accelerating Vaccine and Antiviral Therapy Development Using the Enhanced ML/AI Tools
1.6. Integration of AI in Vaccine Design Enhances the Pandemic Preparedness Programs in the Context of One Health
2. Historical and Conceptual Background of Vaccines and the Integration of AI in Modern Vaccine Development
2.1. Types of Currently Known Vaccines
2.1.1. First Generation Vaccines
2.1.2. Second-Generation Vaccines
2.1.3. Third Generation Vaccines
2.2. Integration of ML/AI and Bioinformatics in Vaccine Design and Evaluation
3. AI-Driven Approaches in Vaccine Design and Development
3.1. Comparative Analysis of AI/ML and the Traditional Approaches in Vaccine Design and Development
3.2. Identification of the Key Viral Proteins/Immunogens for Vaccine Design
3.3. The Procedure of Vaccine Design and Optimization Using the AI/ML Tools
3.4. Roles of AI/ML in the Design and Development of the Next Generation Viral Vaccines for Common Viral Diseases of Birds
3.5. Transforming the Preclinical and Clinical Vaccine Development Through the AI-Driven Simulations and Trial Optimization
4. Pipelines of Vaccine Design Using Enhanced Computational/AI/ML Tools
4.1. Preprocessing and Curation of Viral Protein Sequences for the AI/ML-Based Vaccine Design for Some Common Viral Diseases of Poultry
4.2. Epitope Mapping and Antigen-Predicting Tools
4.3. Structural Modeling and Validation of Viral Proteins Using AlphaFold2 for Accurate Epitope Localization and Vaccine Design
4.4. Approaches to the Design and Optimization of Some Multi-Epitope-Based DNA Vaccine Constructs Against Some Common Avian Viruses
4.5. The In Silico Assessment of the Immunogenicity, Allergenicity, Toxicity, and Structural Stability of the Multi-Epitope DNA Vaccine Constructs
4.6. In Silico Immune Simulation
4.7. The AI/ML Parameters, Models, and Validation Techniques Used for the Design and Development of the Next-Generation Vaccines Against the Common Viral Diseases of Birds
- A.
- Parameters of the epitope selection
- B.
- Parameters related to the structural modeling and validation of the selected vaccines
- C.
- Parameters related to the vaccine design, construction of common viral diseases of birds
- D.
- Parameters related to the in silico immune simulation
- E.
- Experimental validation parameters
4.8. Validation/Cross-Validation Approaches for the Computational/AI/ML-Designed Vaccines for the Common Viral Diseases of Birds
4.9. The Integration of the Computational/ AI/ML Tools and Functional Validation to Enhance and Increase the Efficacy of the Next-Generation Vaccines Against the Common Viral Diseases of Birds
5. Some Future Directions in the Application of AI/ML in Avian Viral Vaccine Design and Development
5.1. Integration of AI/ML and Other Bioinformatics Tools to Enhance the Vaccine Design and Development
5.2. Integration of AI/ML in the Personalized Vaccine Development
5.3. The Potential Roles of the AI Tools and Their Applications in the Emergency Preparedness Plans for the Next Pandemic
6. Challenges and Limitations of the Use of AI/ML in Vaccine Design
6.1. Data Quality and Availability
6.2. Some Ethical and Regulatory Challenges in the AI/ML-Driven Vaccine Development
6.3. The Availability of the Infrastructure and Sustainability Challenges in Using AI/ML in Vaccine Development
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ML | Machine learning |
DNA | Deoxyribonucleic acid |
RNA | Ribonucleic acid |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus-2 |
COVID-19 | Coronavirus disease-2019 |
USDA | United States Department of Agriculture |
FDA | Food and Drug Administration |
References
- Lu, H. Generative AI for vaccine misbelief correction: Insights from targeting extraversion and pseudoscientific beliefs. Vaccine 2025, 54, 127018. [Google Scholar] [CrossRef]
- Feuerriegel, S.; Hartmann, J.; Janiesch, C.; Zschech, P. Generative AI. Bus. Inf. Syst. Eng. 2024, 66, 111–126. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Appleby, R.B.; Basran, P.S. Artificial intelligence in veterinary medicine. J. Am. Vet. Med. Assoc. 2022, 260, 819–824. [Google Scholar] [CrossRef]
- Duraisamy, N.; Khan, M.Y.; Shah, A.U.; Elalaoui, R.N.; Cherkaoui, M.; Hemida, M.G. Machine learning tools used for mapping some immunogenic epitopes within the major structural proteins of the bovine coronavirus (BCoV) and for the in silico design of the multiepitope-based vaccines. Front. Vet. Sci. 2024, 11, 1468890. [Google Scholar] [CrossRef] [PubMed]
- Duraisamy, N.; Shah, A.U.; Khan, M.Y.; Cherkaoui, M.; Hemida, M.G. A Pan-H5N1 Multiepitope DNA Vaccine Construct Targeting Some Key Proteins of the Clade 2.3.4.4b Using AI-Assisted Epitope Mapping and Molecular Docking. Viruses 2025, 17, 1152. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Y.; Shah, A.U.; Duraisamy, N.; Cherkaoui, M.; Hemida, M.G. Repurposing of Some Nucleoside Analogs Targeting Some Key Proteins of the Avian H5N1 Clade 2.3.4.4b to Combat the Circulating HPAI in Birds: An In Silico Approach. Viruses 2025, 17, 972. [Google Scholar] [CrossRef]
- Khan, M.Y.; Shah, A.U.; Duraisamy, N.; Moawad, N.; ElAlaoui, R.N.; Cherkaoui, M.; Hemida, M.G. Identification of potential inhibitors of the main protease from feline infectious peritonitis virus using molecular docking and dynamic simulation approaches. PeerJ 2025, 13, e19744. [Google Scholar] [CrossRef]
- Khan, M.Y.; Shah, A.U.; Duraisamy, N.; ElAlaoui, R.N.; Cherkaoui, M.; Hemida, M.G. Leveraging Artificial Intelligence and Gene Expression Analysis to Identify Some Potential Bovine Coronavirus (BCoV) Receptors and Host Cell Enzymes Potentially Involved in the Viral Replication and Tissue Tropism. Int. J. Mol. Sci. 2025, 26, 1328. [Google Scholar] [CrossRef]
- Krishna, K.; Khosla, S.; Bigham, J.P.; Lipton, Z.C. Generating SOAP Notes from Doctor-Patient Conversations Using Modular Summarization Techniques. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 2–4 August 2021; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021. [Google Scholar]
- Lee, C.; Britto, S.; Diwan, K. Evaluating the Impact of Artificial Intelligence (AI) on Clinical Documentation Efficiency and Accuracy Across Clinical Settings: A Scoping Review. Cureus 2024, 16, e73994. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.U.; Esparza, B.; Illanes, O.; Hemida, M.G. Comparative Genome Sequencing Analysis of Some Novel Feline Infectious Peritonitis Viruses Isolated from Some Feral Cats in Long Island. Viruses 2025, 17, 209. [Google Scholar] [CrossRef]
- Shah, A.U.; Gauger, P.; Hemida, M.G. Isolation and molecular characterization of an enteric isolate of the genotype-Ia bovine coronavirus with notable mutations in the receptor binding domain of the spike glycoprotein. Virology 2025, 603, 110313. [Google Scholar] [CrossRef]
- Shah, A.U.; Peddireddi, L.; Wood, B.; Hemida, M.G. Some novel field isolates belonging to lineage-1 of the genotype GI-avian infectious bronchitis virus (AIBV) show strong evidence of recombination with field/vaccinal strains. Infect. Genet. Evol. 2025, 129, 105723. [Google Scholar] [CrossRef]
- Acs, B.; Rantalainen, M.; Hartman, J. Artificial intelligence as the next step towards precision pathology. J. Intern. Med. 2020, 288, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Al-Kubati, A.A.G.; Kandeel, M.; Hussen, J.; Hemida, M.G.; Al-Mubarak, A.I.A. Immunoinformatic prediction of the pathogenicity of bovine viral diarrhea virus genotypes: Implications for viral virulence determinants, designing novel diagnostic assays and vaccines development. Front. Vet. Sci. 2023, 10, 1130147. [Google Scholar] [CrossRef] [PubMed]
- Hemida, M.G. The next-generation coronavirus diagnostic techniques with particular emphasis on the SARS-CoV-2. J. Med. Virol. 2021, 93, 4219–4241. [Google Scholar] [CrossRef] [PubMed]
- Ranschaert, E.; Topff, L.; Pianykh, O. Optimization of Radiology Workflow with Artificial Intelligence. Radiol. Clin. N. Am. 2021, 59, 955–966. [Google Scholar] [CrossRef]
- Guo, W.; Lv, C.; Guo, M.; Zhao, Q.; Yin, X.; Zhang, L. Innovative applications of artificial intelligence in zoonotic disease management. Sci. One Health 2023, 2, 100045. [Google Scholar] [CrossRef]
- Sharma, S.; Yadav, P.D.; Cherian, S. Comprehensive immunoinformatics and bioinformatics strategies for designing a multi-epitope based vaccine targeting structural proteins of Nipah virus. Front. Immunol. 2025, 16, 1535322. [Google Scholar] [CrossRef]
- Naveed, M.; Makhdoom, S.I.; Ali, U.; Jabeen, K.; Aziz, T.; Khan, A.A.; Jamil, S.; Shahzad, M.; Alharbi, M.; Alshammari, A. Immunoinformatics Approach to Design Multi-Epitope-Based Vaccine against Machupo Virus Taking Viral Nucleocapsid as a Potential Candidate. Vaccines 2022, 10, 1732. [Google Scholar] [CrossRef]
- Dashti, F.; Raisi, A.; Pourali, G.; Razavi, Z.S.; Ravaei, F.; Nahand, J.S.; Kourkinejad-Gharaei, F.; Mirazimi, S.M.A.; Zamani, J.; Tarrahimofrad, H.; et al. A computational approach to design a multiepitope vaccine against H5N1 virus. Virol. J. 2024, 21, 67. [Google Scholar] [CrossRef]
- Saihar, A.; Yaseen, A.R.; Suleman, M.; Parveen, R.; Bashir, H. From bytes to bites: In-silico creation of a novel multi-epitope vaccine against Murray Valley Encephalitis Virus. Microb. Pathog. 2025, 198, 107171. [Google Scholar] [CrossRef]
- de Sena, B.V.; de Mello, B.C.; Horta, R.D.S.; Costa, M.P.; Melo, M.M.; Mariano, R.; Giunchetti, R.C.; Giuliano, A.; de Oliveira Paes Leme, F.; de Paula Sabino, A.; et al. Extreme lymphocytosis in a dog with T-zone lymphoma. Open Vet. J. 2023, 13, 1760–1768. [Google Scholar] [CrossRef]
- Zaher, M.R.; El-Husseiny, M.H.; Hagag, N.M.; El-Amir, A.M.; El Zowalaty, M.E.; Tammam, R.H. A novel immunoinformatic approach for design and evaluation of heptavalent multiepitope foot-and-mouth disease virus vaccine. BMC Vet. Res. 2025, 21, 152. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Bai, B.; Fang, J.; Zhang, K.; Yin, X.; Li, S.; Li, W.; Ma, Y.; Cui, Y.; et al. Construction of an attenuated goatpox virus AV41 strain by deleting the TK gene and ORF8-18. Antivir. Res. 2018, 157, 111–119. [Google Scholar] [CrossRef]
- Izhari, M.A.; Alharthi, S.B.; Alharbi, R.A.; Almontasheri, A.H.A.; Alghamdi, W.A.; Sindi, A.A.A.; Salem, A.A.; Mahzari, A.; Alghamdi, F.; Gosady, A.R.A. Design and Validation of a Multi-Epitope mRNA Vaccine Construct Against Human Monkeypox Virus (hMPXV) by Annotating Protein of Intracellular Mature Virus (IMV) Form of hMPXV. Biomedicines 2025, 13, 1439. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Singleton, C.M. Parasitic bacteria control foam formation. Nat. Microbiol. 2021, 6, 701–702. [Google Scholar] [CrossRef]
- Sanetra, A.M.; Palus-Chramiec, K.; Chrobok, L.; Lewandowski, M.H. Electrophysiological complexity in the rat dorsomedial hypothalamus and its susceptibility to daily rhythms and high-fat diet. Eur. J. Neurosci. 2022, 56, 4363–4377. [Google Scholar] [CrossRef] [PubMed]
- Kar, P.P.; Araveti, P.B.; Kuriakose, A.; Srivastava, A. Design of a multi-epitope protein as a subunit vaccine against lumpy skin disease using an immunoinformatics approach. Sci. Rep. 2022, 12, 19411. [Google Scholar] [CrossRef] [PubMed]
- Tataje-Lavanda, L.; Malaga, E.; Verastegui, M.; Huatuco, E.M.; Icochea, E.; Fernandez-Diaz, M.; Zimic, M. Identification and evaluation in-vitro of conserved peptides with high affinity to MHC-I as potential protective epitopes for Newcastle disease virus vaccines. BMC Vet. Res. 2023, 19, 196. [Google Scholar] [CrossRef] [PubMed]
- Elshafei, S.O.; Mahmoud, N.A.; Almofti, Y.A. Immunoinformatics, molecular docking and dynamics simulation approaches unveil a multi epitope-based potent peptide vaccine candidate against avian leukosis virus. Sci. Rep. 2024, 14, 2870. [Google Scholar] [CrossRef]
- Chen, L.M.; Jiang, F.; Hu, H. A Case of Spontaneous Ovarian Artery Haemorrhage in a Post-Menopausal Woman with Congenital Solitary Kidney. J. Coll. Physicians Surg. Pak. 2022, 32, SS137–SS139. [Google Scholar]
- Paul, B.; Alam, J.; Hossain, M.M.K.; Hoque, S.F.; Bappy, M.N.I.; Akter, H.; Ahmed, N.; Akter, M.; Ali Zinnah, M.; Das, S.; et al. Immunoinformatics for Novel Multi-Epitope Vaccine Development in Canine Parvovirus Infections. Biomedicines 2023, 11, 2180. [Google Scholar] [CrossRef]
- Simbulan, A.M.; Banico, E.C.; Sira, E.; Odchimar, N.M.O.; Orosco, F.L. Immunoinformatics-guided approach for designing a pan-proteome multi-epitope subunit vaccine against African swine fever virus. Sci. Rep. 2024, 14, 1354. [Google Scholar] [CrossRef]
- Sharma, A.D.; Magdaleno, J.S.L.; Singh, H.; Orduz, A.F.C.; Cavallo, L.; Chawla, M. Immunoinformatics-driven design of a multi-epitope vaccine targeting neonatal rotavirus with focus on outer capsid proteins VP4 and VP7 and non structural proteins NSP2 and NSP5. Sci. Rep. 2025, 15, 11879. [Google Scholar] [CrossRef] [PubMed]
- Pang, F.; Long, Q.; Liang, S. Designing a multi-epitope subunit vaccine against Orf virus using molecular docking and molecular dynamics. Virulence 2024, 15, 2398171. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Wei, M.; Wang, Y.; Pang, F. Design of a multi-epitope vaccine against goatpox virus using an immunoinformatics approach. Front. Cell. Infect. Microbiol. 2023, 13, 1309096. [Google Scholar] [CrossRef]
- Roy, R.R.; Tadkalkar, N.; Deshpande, G.R.; Atre, N.M.; Shil, P.; Sapkal, G. Identification of B-cell epitopes of Indian Zika virus strains using immunoinformatics. Front. Immunol. 2025, 16, 1534737. [Google Scholar] [CrossRef] [PubMed]
- Naskar, S.; Chandpa, H.H.; Agarwal, S.; Meena, J. Super epitope dengue vaccine instigated serotype independent immune protection in-silico. Vaccine 2024, 42, 3857–3873. [Google Scholar] [CrossRef]
- Fatima, I.; Ahmad, S.; Abbasi, S.W.; Ashfaq, U.A.; Shahid, F.; Qamar, M.T.U.; Rehman, A.; Allemailem, K.S. Designing of a multi-epitopes-based peptide vaccine against rift valley fever virus and its validation through integrated computational approaches. Comput. Biol. Med. 2022, 141, 105151. [Google Scholar] [CrossRef]
- Katayama, M.; Murakami, S.; Ishida, H.; Matsugo, H.; Sekine, W.; Ohira, K.; Takenaka-Uema, A.; Horimoto, T. Antigenic commonality and divergence of hemagglutinin-esterase-fusion protein among influenza D virus lineages revealed using epitope mapping. J. Virol. 2024, 98, e0190823. [Google Scholar] [CrossRef]
- Mahdeen, A.A.; Hossain, I.; Masum, M.H.U.; Islam, S.; Rabbi, T.M.F. Designing novel multiepitope mRNA vaccine targeting Hendra virus (HeV): An integrative approach utilizing immunoinformatics, reverse vaccinology, and molecular dynamics simulation. PLoS ONE 2024, 19, e0312239. [Google Scholar] [CrossRef]
- El Arab, R.A.; Alkhunaizi, M.; Alhashem, Y.N.; Al Khatib, A.; Bubsheet, M.; Hassanein, S. Artificial intelligence in vaccine research and development: An umbrella review. Front. Immunol. 2025, 16, 1567116. [Google Scholar] [CrossRef]
- Waheed, A.; Aljundi, I.H.; Baig, U. Recovery of Dissolved Hydrogen Sulfide from Various Wastewater Streams Using Membranes and Other Relevant Techniques: A Review. Membranes 2023, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, D.; Prakash, A.; Nguyen, Q.A.; Suntisukwattana, R.; Atthaapa, W.; Tantituvanont, A.; Nilubol, D. Designing a multi-epitope vaccine against African swine fever virus using immunoinformatics approach. Sci. Rep. 2025, 15, 16044. [Google Scholar] [CrossRef] [PubMed]
- Kolla, H.B.; Dutt, M.; Kumar, A.; Nanjunadappa, R.H.; Karakach, T.; Singh, K.P.; Kelvin, D.; Mertens, P.P.C.; Umeshappa, C.S. Immuno-informatics study identifies conserved T cell epitopes in non-structural proteins of Bluetongue virus serotypes: Formulation of a computationally optimized next-generation broad-spectrum multi-epitope vaccine. Front. Immunol. 2024, 15, 1424307. [Google Scholar] [CrossRef]
- Hou, W.; Wu, H.; Wang, W.; Wang, R.; Han, W.; Wang, S.; Wang, B.; Wang, H. Developing a multi-epitope vaccine candidate to combat porcine epidemic diarrhea virus and porcine deltacoronavirus co-infection by employing an immunoinformatics approach. Front. Microbiol. 2023, 14, 1295678. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Ullah, H.; Fatima, K.; Lei, T. In Silico Designed Multi-Epitope Vaccine Based on the Conserved Fragments in Viral Proteins for Broad-Spectrum Protection Against Porcine Reproductive and Respiratory Syndrome Virus. Vet. Sci. 2025, 12, 577. [Google Scholar] [CrossRef]
- Adhikari, U.K.; Rahman, M.M. Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach. Infect. Genet. Evol. 2017, 56, 75–91. [Google Scholar] [CrossRef]
- Sinha, P.R.; Hegde, S.R.; Mittal, R.; Jagat, C.C.; Gowda, U.; Chandrashekhar, R.; Muthaiah, G.; Shamshad, S.; Chanda, M.M.; Ganji, V.; et al. In Silico Development of a Multi-Epitope Subunit Vaccine against Bluetongue Virus in Ovis aries Using Immunoinformatics. Pathogens 2024, 13, 944. [Google Scholar] [CrossRef]
- Sira, E.M.J.S.; Fajardo, L.E.; Banico, E.C.; Odchimar, N.M.O.; Orosco, F.L. Design of a Multiepitope Pan-Proteomic mRNA Vaccine Construct Against African Swine Fever Virus: A Reverse Vaccinology Approach. Vet. Med. Int. 2025, 2025, 2638167. [Google Scholar] [CrossRef]
- Lei, X.; Wu, Z.; Feng, Q.; Jia, W.; Xie, J.; Zhou, Q.; Ban, J.; Zhu, S. A Universal Multi-Epitope Vaccine Design Against Porcine Reproductive and Respiratory Syndrome Virus via Bioinformatics and Immunoinformatics Approaches. Vet. Sci. 2024, 11, 659. [Google Scholar] [CrossRef]
- Barazesh, M.; Abbasi, M.; Mohammadi, M.; Nasiri, M.N.; Rezaei, F.; Mohammadi, S.; Kavousipour, S. Bioinformatics analysis to design a multi-epitope mRNA vaccine against S. agalactiae exploiting pathogenic proteins. Sci. Rep. 2024, 14, 28294. [Google Scholar]
- Martinez, G.S.; Dutt, M.; Kelvin, D.J.; Kumar, A. PoxiPred: An Artificial-Intelligence-Based Method for the Prediction of Potential Antigens and Epitopes to Accelerate Vaccine Development Efforts against Poxviruses. Biology 2024, 13, 125. [Google Scholar] [CrossRef]
- Olawade, D.B.; Teke, J.; Fapohunda, O.; Weerasinghe, K.; Usman, S.O.; Ige, A.O.; David-Olawade, A.C. Leveraging artificial intelligence in vaccine development: A narrative review. J. Microbiol. Methods 2024, 224, 106998. [Google Scholar] [CrossRef]
- Akinsulie, O.C.; Idris, I.; Aliyu, V.A.; Shahzad, S.; Banwo, O.G.; Ogunleye, S.C.; Olorunshola, M.; Okedoyin, D.O.; Ugwu, C.; Oladapo, I.P.; et al. The potential application of artificial intelligence in veterinary clinical practice and biomedical research. Front. Vet. Sci. 2024, 11, 1347550. [Google Scholar] [CrossRef] [PubMed]
- Izmailyan, R.; Matevosyan, M.; Khachatryan, H.; Shavina, A.; Gevorgyan, S.; Ghazaryan, A.; Tirosyan, I.; Gabrielyan, Y.; Ayvazyan, M.; Martirosyan, B.; et al. Discovery of new antiviral agents through artificial intelligence: In vitro and in vivo results. Antivir. Res. 2024, 222, 105818. [Google Scholar] [CrossRef] [PubMed]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Hemida, M.G. Middle East Respiratory Syndrome Coronavirus and the One Health concept. PeerJ 2019, 7, e7556. [Google Scholar] [CrossRef]
- Hemida, M.G.; Ali, M.; Alhammadi, M.; Alnaeem, A. The Middle East respiratory syndrome coronavirus in the breath of some infected dromedary camels (Camelus dromedarius). Epidemiol. Infect. 2020, 148, e247. [Google Scholar] [CrossRef]
- Hemida, M.G.; Alnaeem, A. Some One Health based control strategies for the Middle East respiratory syndrome coronavirus. One Health 2019, 8, 100102. [Google Scholar] [CrossRef]
- Hemida, M.G.; Chu, D.; Abdelaziz, A.; Alnaeem, A.; Chan, S.M.S.; Peiris, M. Molecular characterisation of an avian influenza (H5N8) outbreak in backyard flocks in Al Ahsa, Eastern Saudi Arabia, 2017–2018. Vet. Rec. Open 2019, 6, e000362. [Google Scholar] [CrossRef] [PubMed]
- Hemida, M.G.; Perera, R.; Chu, D.K.W.; Alnaeem, A.A.; Peiris, M. Evidence of equine influenza A (H3N8) activity in horses from Eastern and Central Saudi Arabia: 2013–2015. Equine Vet. J. 2019, 51, 218–221. [Google Scholar] [CrossRef]
- Mubarak, A.; Alturaiki, W.; Hemida, M.G. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Infection, Immunological Response, and Vaccine Development. J. Immunol. Res. 2019, 2019, 6491738. [Google Scholar] [CrossRef]
- Ba Abduallah, M.M.; Hemida, M.G. Comparative analysis of the genome structure and organization of the Middle East respiratory syndrome coronavirus (MERS-CoV) 2012 to 2019 revealing evidence for virus strain barcoding, zoonotic transmission, and selection pressure. Rev. Med. Virol. 2021, 31, 1–12. [Google Scholar] [CrossRef] [PubMed]
- MacLachlan, J.N.a.D.; Edward, J. Antiviral Immunity and Virus Vaccines. In Fenner’s Veterinary Virology; James Maclachlan, N., Dubovi, E.J., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 79–104. [Google Scholar]
- Tahamtan, A.; Charostad, J.; Shokouh, S.J.H.; Barati, M. An Overview of History, Evolution, and Manufacturing of Various Generations of Vaccines. J. Arch. Mil. Med. 2017, 5, e12315. [Google Scholar] [CrossRef]
- Aida, V.; Pliasas, V.C.; Neasham, P.J.; North, J.F.; McWhorter, K.L.; Glover, S.R.; Kyriakis, C.S. Novel Vaccine Technologies in Veterinary Medicine: A Herald to Human Medicine Vaccines. Front. Vet. Sci. 2021, 8, 654289. [Google Scholar] [CrossRef]
- Bishop, D.H.L. The release into the environment of genetically engineered viruses, vaccines and viral pesticides. Trends Ecol. Evol. 1988, 3, S12–S15. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Hoai, T.; Kobelt, D.; Hohn, O.; Vu, M.D.; Schlag, P.M.; Dörken, B.; Norley, S.; Lipp, M.; Walther, W.; Pezzutto, A.; et al. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2012, 1, 1537–1545. [Google Scholar] [CrossRef]
- Kannan, S.; Subbaram, K.; Faiyazuddin, M. Chapter 17—Artificial intelligence in vaccine development: Significance and challenges ahead. In A Handbook of Artificial Intelligence in Drug Delivery; Philip, A., Shahiwala, A., Rashid, M., Faiyazuddin, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 467–486. [Google Scholar]
- Kaushik, R.; Kant, R.; Christodoulides, M. Artificial intelligence in accelerating vaccine development—Current and future perspectives. Front. Bacteriol. 2023, 2, 1258159. [Google Scholar] [CrossRef]
- Gorki, V.; Medhi, B. Use of artificial intelligence in vaccine development against pathogens: Challenges and future directions. Indian J. Pharmacol. 2024, 56, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Shafi, M.; Shabir, S.; Jan, S.; Wani, Z.A.; Rather, M.A.; Beigh, Y.A.; Kamil, S.A.; Mir, M.S.; Rafiq, A.; Shah, S.A. The role of artificial intelligence in detecting avian influenza virus outbreaks: A review. Open Vet. J. 2025, 15, 1880–1894. [Google Scholar] [CrossRef] [PubMed]
- Ong, E.; Wang, H.; Wong, M.U.; Seetharaman, M.; Valdez, N.; He, Y. Vaxign-ML: Supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens. Bioinformatics 2020, 36, 3185–3191. [Google Scholar] [CrossRef]
- Ali, L.; Rauf, S.; Khan, A.; Rasool, S.; Raza, R.Z.; Alshabrmi, F.M.; Khan, T.; Suleman, M.; Waheed, Y.; Mohammad, A.; et al. In silico design of multi-epitope vaccines against the hantaviruses by integrated structural vaccinology and molecular modeling approaches. PLoS ONE 2024, 19, e0305417. [Google Scholar] [CrossRef]
- Wickramasinghe, I.N.; van Beurden, S.J.; Weerts, E.A.; Verheije, M.H. The avian coronavirus spike protein. Virus Res. 2014, 194, 37–48. [Google Scholar] [CrossRef]
- Dortmans, J.C.; Peeters, B.P.; Koch, G. Newcastle disease virus outbreaks: Vaccine mismatch or inadequate application? Vet. Microbiol. 2012, 160, 17–22. [Google Scholar] [CrossRef]
- Tripathy, D.N.; Reed, W.M. Pox. In Diseases of Poultry, 12th ed.; Saif, Y.M., Ed.; Blackwell: Oxford, UK, 2000; pp. 291–307. [Google Scholar]
- Sun, H.; Yu, S.; Jiang, T.; Yan, Z.; Wang, D.; Chen, L.; Zhou, Q.; Yin, L.; Chen, F. Molecular characterization of chicken infectious anaemia virus (CIAV) in China during 2020–2021. Avian Pathol. 2023, 52, 119–127. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef]
- The UniProt Consortium; Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Zost, S.J.; Wu, N.C.; Hensley, S.E.; Wilson, I.A. Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. J. Infect. Dis. 2019, 219, S38–S45. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006, 65, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef]
- Larsen, M.V.; Lundegaard, C.; Lamberth, K.; Buus, S.; Lund, O.; Nielsen, M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 2007, 8, 424. [Google Scholar] [CrossRef]
- Nielsen, M.; Lundegaard, C.; Worning, P.; Hvid, C.S.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 2004, 20, 1388–1397. [Google Scholar] [CrossRef]
- Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System. PLoS ONE 2010, 5, e9862. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—A server for in silico prediction of allergens. J. Mol. Model. 2014, 20, 2278. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Weiskopf, D.; Angelo, M.A.; Sidney, J.; Peters, B.; Sette, A. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J. Immunol. 2013, 191, 5831–5839. [Google Scholar] [CrossRef]
- Li, K.; Courtillon, C.; Guionie, O.; Allée, C.; Amelot, M.; Qi, X.; Gao, Y.; Wang, X.; Eterradossi, N. Genetic, antigenic and pathogenic characterization of four infectious bursal disease virus isolates from China suggests continued evolution of very virulent viruses. Infect. Genet. Evol. 2015, 30, 120–127. [Google Scholar] [CrossRef]
- Tartaglia, J.; Pincus, S.; Paoletti, E. Poxvirus-based vectors as vaccine candidates. Crit. Rev. Immunol. 1990, 10, 13–30. [Google Scholar] [PubMed]
- Zhavoronkov, A. Artificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel Chemistry. Mol. Pharm. 2018, 15, 4311–4313. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Shi, L.; Berkenpas, J.W.; Dao, F.Y.; Zulfiqar, H.; Ding, H.; Zhang, Y.; Yang, L.; Cao, R. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief. Bioinform. 2021, 22, bbab320. [Google Scholar] [CrossRef] [PubMed]
- Cellina, M.; Cè, M.; Alì, M.; Irmici, G.; Ibba, S.; Caloro, E.; Fazzini, D.; Oliva, G.; Papa, S. Digital Twins: The New Frontier for Personalized Medicine? Appl. Sci. 2023, 13, 7940. [Google Scholar] [CrossRef]
- Jreich, R.; Zhang, H.; Meng, Z.; Wang, F. Evaluating the robustness of an AI pathfinder application on eligibility criteria in multiple myeloma trials using real-world data and historical trials. J. Comp. Eff. Res. 2024, 13, e230164. [Google Scholar] [CrossRef]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Ostell, J.; Pruitt, K.D.; Sayers, E.W. GenBank. Nucleic Acids Res. 2017, 46, D41–D47. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Falcon, A.; Martinez-Pulgarin, S.; Lopez-Serrano, S.; Reytor, E.; Cid, M.; Nunez, M.D.C.; Cordoba, L.; Darji, A.; Escribano, J.M. Development of a Fully Protective Pandemic Avian Influenza Subunit Vaccine in Insect Pupae. Viruses 2024, 16, 829. [Google Scholar] [CrossRef]
- Yang, T.; Wang, H.N.; Wang, X.; Tang, J.N.; Gao, R.; Li, J.; Guo, Z.C.; Li, Y.L. Multivalent DNA vaccine enhanced protection efficacy against infectious bronchitis virus in chickens. J. Vet. Med. Sci. 2009, 71, 1585–1590. [Google Scholar] [CrossRef]
- Govindarajan, D.; Yunus, A.S.; Samal, S.K. Complete sequence of the G glycoprotein gene of avian metapneumovirus subgroup C and identification of a divergent domain in the predicted protein. J. Gen. Virol. 2004, 85, 3671–3675. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chee, L.L.; Wei, T.; Kwang, J.; Zhou, J.; Wang, J.; Shi, L.; Liu, J. The VP1 protein of avian encephalomyelitis virus is a major host-protective immunogen that serves as diagnostic potential. J. Virol. Methods 2008, 149, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Firouzamandi, M.; Moeini, H.; Hosseini, D.; Bejo, M.H.; Omar, A.R.; Mehrbod, P.; Ideris, A. Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes. J. Vet. Sci. 2016, 17, 21–26. [Google Scholar] [CrossRef]
- Olbert, M.; Romer-Oberdorfer, A.; Herden, C.; Malberg, S.; Runge, S.; Staeheli, P.; Rubbenstroth, D. Viral vector vaccines expressing nucleoprotein and phosphoprotein genes of avian bornaviruses ameliorate homologous challenge infections in cockatiels and common canaries. Sci. Rep. 2016, 6, 36840. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Liu, R.; Zhuang, L.; Dai, T.; Meng, Q.; Zhang, X.; Bao, Y.; Huang, C.; Lin, W.; Huang, Y.; et al. Gp85 protein encapsulated by alginate-chitosan composite microspheres induced strong immunogenicity against avian leukosis virus in chicken. Front. Vet. Sci. 2024, 11, 1374923. [Google Scholar] [CrossRef]
- Kant, A.; Balk, F.; Born, L.; van Roozelaar, D.; Heijmans, J.; Gielkens, A.; ter Huurne, A. Classification of Dutch and German avian reoviruses by sequencing the sigma C protein. Vet. Res. 2003, 34, 203–212. [Google Scholar] [CrossRef]
- Ali, S.A.; Almofti, Y.A.; Abd-Elrahman, K.A. Immunoinformatics Approach for Multiepitopes Vaccine Prediction against Glycoprotein B of Avian Infectious Laryngotracheitis Virus. Adv. Bioinform. 2019, 2019, 1270485. [Google Scholar] [CrossRef]
- Fazel, F.; Matsuyama-Kato, A.; Alizadeh, M.; Boodhoo, N.; Sharif, S. Efficacy and tolerability of an mRNA vaccine expressing gB and pp38 antigens of Marek’s disease virus in chickens. Virology 2024, 590, 109970. [Google Scholar] [CrossRef]
- Fang, L.; Zhen, Y.; Su, Q.; Zhu, H.; Guo, X.; Zhao, P. Efficacy of CpG-ODN and Freund’s immune adjuvants on antibody responses induced by chicken infectious anemia virus VP1, VP2, and VP3 subunit proteins. Poult. Sci. 2019, 98, 1121–1126. [Google Scholar] [CrossRef]
- Mato, T.; Penzes, Z.; Rueda, P.; Vela, C.; Kardi, V.; Zolnai, A.; Misak, F.; Palya, V. Recombinant subunit vaccine elicits protection against goose haemorrhagic nephritis and enteritis. Avian Pathol. 2009, 38, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Song, M.; Song, C.; Zhao, S.; Yang, P.; Qiao, Q.; Cong, Y.; Wang, Y.; Wang, Z.; Zhao, J. An inactivated novel chimeric FAdV-4 containing fiber of FAdV-8b provides full protection against hepatitis-hydropericardium syndrome and inclusion body hepatitis. Vet. Res. 2022, 53, 75. [Google Scholar] [CrossRef]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLoS Comput. Biol. 2012, 8, e1002829. [Google Scholar] [CrossRef]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 2017, 45, W24–W29. [Google Scholar] [CrossRef]
- Hoie, M.H.; Gade, F.S.; Johansen, J.M.; Wurtzen, C.; Winther, O.; Nielsen, M.; Marcatili, P. DiscoTope-3.0: Improved B-cell epitope prediction using inverse folding latent representations. Front. Immunol. 2024, 15, 1322712. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef] [PubMed]
- Reynisson, B.; Barra, C.; Kaabinejadian, S.; Hildebrand, W.H.; Peters, B.; Nielsen, M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J. Proteome Res. 2020, 19, 2304–2315. [Google Scholar] [CrossRef] [PubMed]
- Haste Andersen, P.; Nielsen, M.; Lund, O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 2006, 15, 2558–2567. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Zidek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D.C.; Jahn, D. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005, 33, W526–W531. [Google Scholar] [CrossRef] [PubMed]
- Al-Kubati, A.A.G.; Hemida, M.G.; Al-Mubarak, A.I.A. The efficacy of the prime-boost regimen for heterologous infectious bronchitis vaccines mandates the administration of homologous vaccines. Virusdisease 2022, 33, 291–302. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, T.; Chen, S.; Nie, Y.; Xie, Z.; Feng, K.; Zhang, H.; Xie, Q. The Efficacy of a Live Attenuated TW I-Type Infectious Bronchitis Virus Vaccine Candidate. Virol. Sin. 2021, 36, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
Virus | Host | AI Method | Reference |
---|---|---|---|
Nipah Virus | Animal Reservoirs | Epitope mapping, structural validation | [20] |
Machupo Virus | Animal Reservoirs | Epitope prediction, vaccine construct design | [21] |
H5N1 Influenza | Birds | B-/T-cell epitope pipeline + docking | [22] |
MVEV | Birds/Mammals | Envelope epitope mapping, structural validation | [23] |
Feline Infectious Peritonitis Virus (FIPV) | Cats | Epitope prediction, docking | [8,24] |
BCoV | Cattle | ML epitope mapping + AlphaFold2 | [5] |
Foot-and-Mouth Disease Virus (FMDV) | Cattle | Immunoinformatics, structural modeling | [25] |
Foot-and-Mouth Disease Virus (FMDV) | Cattle | Epitope fusion with TLR agonist | [26] |
FMDV | Cattle | Multi-serotype epitope design, stability/autogenetics analysis | [27] |
FMDV | Cattle | Serotype mapping, structural validation | [25] |
BEFV | Cattle | Multi-epitope subunit | [28] |
Bovine Leukemia Virus (BLV) | Cattle | Epitope prediction, MD, immune simulation | [29] |
Lumpy Skin Disease Virus (LSDV) | Cattle | Epitope prediction, TLR docking, MD simulation | [30] |
Newcastle Disease Virus (NDV) | Chickens | ANN epitope affinity prediction, docking | [31] |
Avian Leukosis Virus (ALV) | Chickens | Peptide design, TLR7 docking | [32] |
Infectious Bursal Disease Virus (IBDV) | Chickens | Immunoinformatic (VP2/VP3 proteins) | [33] |
CPV-2 | Dogs | Immunoinformatics + docking | [34] |
Canine Circovirus (CanineCV) | Dogs | Immunoinformatics, in vivo validation | [35] |
Rota virus | Elephants | Epitope prediction, structural validation, and immune simulation | [36] |
Goatpox Virus (GTPV) | Goats | Epitope mapping, TLR docking, immune sim | [37] |
Orf Virus | Goats/Sheep | Immunoinformatics, epitope selection | [38] |
Zika | Humans | Epitope prediction + docking | [39] |
Dengue (multi-serotype) | Humans | Structural modeling + conserved targeting | [40] |
Rift Valley Fever Virus (RVFV) | Livestock | Epitope prediction, docking, and molecular dynamics | [41] |
Influenza D Virus (IDV) | Livestock | Epitope mapping, allergenicity & toxicity checks | [42] |
Hendra Virus (HeV) | Livestock | Epitope prediction, immune simulation, TLR docking | [43] |
HeV | Livestock | Epitope screening, TLR docking | [44] |
Marburg Virus (MARV) | Non-human primates/Humans | Reverse vaccinology, epitope mapping, TLR docking | [45] |
ASFV | Pigs | Immunoinformatics + docking + simulation | [46] |
Porcine Epidemic Diarrhea Virus (PEDV) | Pigs | Epitope selection, TLR docking, immune sim | [47] |
Porcine Epidemic Diarrhea Virus (PEDV) | Pigs | Epitope selection, immune simulation | [48] |
PRRSV | Pigs | Conserved epitope selection, immune modeling | [49] |
Avian Influenza A (H5N1) | Poultry | Reverse vaccinology, epitope mapping | [6,22] |
RVFV | Ruminants | ML peptide prediction + immune simulation | [41] |
RVFV (M-protein) | Ruminants | Reverse vaccinology + docking | [50] |
Bluetongue Virus (BTV) | Sheep | Epitope mapping, TLR docking | [51] |
ASFV | Swine | Reverse vaccinology + dynamics | [46] |
African Swine Fever Virus (ASFV) | Swine | Reverse vaccinology, SLA docking, MD simulations | [52] |
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) | Swine | Epitope mining, antigenicity/allergenicity | [53] |
ASFV | Swine | Reverse vaccinology, SLA docking, MD simulations | [54] |
PRRSV | Swine | Global epitope mining, antigenicity/allergenicity profiling | [49] |
ASFV | Swine | SLA docking, MD simulation | [46] |
Poxviruses | various | Proteome-wide AI epitope predictor | [55] |
Serial Numbers | RNA Viruses | Target Protein | Protein Function | Protein Length (aa) | Structural Coverage by Alpha Fold 2 | Accession Numbers of the Reference NCBI Sequences for Each Virus | References |
---|---|---|---|---|---|---|---|
1. | Avian Influenza | HA | Binds to host cell receptors (sialic acids) | 1760 | 81 | NC_007362.1 | [106] |
2. | Infectious Bronchitis Virus (IBV) | Spike | Inserts into the ligand on the surface of the host cell receptor, opening the cell wall | 3461 | 58 | NC_048213.1 | [107] |
3. | Avian Metapneumovirus | G protein | Attachment to the host cell surface receptor allows viral entry into the host | 1175 | 0 | NC_039231.1 | [108] |
4. | Avian Encephalomyelitis | VP1 | Host protective immunogen | 270 | 63 | AFM73888.1—VP1 partial | [109] |
5. | Newcastle Disease | HN | Bind to host cell receptors | 1715 | 81.4 | NC_039223.1 | [110] |
6. | Avian Bornavirus | N and P protein | Packing viral RNA, essential for polymerase activity, shuttles RNP into and out of the nucleus; a cofactor of bornavirus polymerase | 1121, 605 | 64.2 | NC_039189.1 | [111] |
7. | Avian Leukosis | G protein | Mediates viral attachment to the cell surface | 2111 | 53.3 | MT179556.1 | [112] |
8. | Avian Reovirus | Sigma C | binding to the host cell surface | 326 | 71.4 | AAK18188.1 | [113] |
DNA Viruses | Target Protein | Protein Function | Protein Length (bp) | Structural Coverage by Alpha Fold 2 | Accession Numbers | References | |
9. | Infectious Laryngotracheitis Virus | B-glycoprotein spike | viral attachment to the host cell surface to form a heterodimer | 2651 | 62.7 | NC_006623.1 | [114] |
10. | Marek’s Disease (Gallid Herpesvirus-2) | B-glycoprotein spike | viral attachment to the host cell surface to form a heterodimer | 2597 | 62.8 | NC_002229.3 | [115] |
11. | Infectious Anemia Virus | VP3 | induces apoptosis in chicken lymphocytes | 388 | 29.8 | AF199501.1 | [116] |
12. | Avian Polyoma Virus | VP1 | Capsid protein that binds to host cell receptors for infection | 1031 | 87.2 | PP057981.1 | [117] |
13. | Fowl Adenovirus | Fiber Genes | responsible for hemagglutination | 1386 | 81.3 | DQ864436.1 | [118] |
Types of Epitopes | Recognized by | Immune Function | AI Prediction Tool Used | Reference |
---|---|---|---|---|
Linear B Cell Epitopes | B-cell Receptors (BCRs) | Induce antibody production; direct neutralization of extracellular virus | BepiPred 2.0, ABC Pred | https://services.healthtech.dtu.dk/services/BepiPred-2.0/ (accessed on 14 September 2025) [120] |
Conformational B-cell Epitopes | BCRs (3D-dependent) | Target protein folding-dependent antigenic sites | DiscoTope, Ellipro | https://services.healthtech.dtu.dk/services/DiscoTope-3.0/ (accessed on 14 September 2025) [121] |
CD8+ T cell Epitopes | Cytotoxic T Lymphocytes (CTLs) | Kill infected cells by recognizing MHC-I-bound peptides | NetMHCpan | https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/ (accessed on 14 September 2025) [122] |
CD4+ T cell Epitopes | Helper T Lymphocytes (Th cells) | Aid in inactivating B cells and CTLs via cytokine release | NetMHCIIpan | https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.0/ (accessed on 14 September 2025) [122,123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goud, M.D.; Ramos, E.; Shah, A.U.; Hemida, M.G. Artificial Intelligence Driven Framework for the Design and Development of Next-Generation Avian Viral Vaccines. Microorganisms 2025, 13, 2361. https://doi.org/10.3390/microorganisms13102361
Goud MD, Ramos E, Shah AU, Hemida MG. Artificial Intelligence Driven Framework for the Design and Development of Next-Generation Avian Viral Vaccines. Microorganisms. 2025; 13(10):2361. https://doi.org/10.3390/microorganisms13102361
Chicago/Turabian StyleGoud, Muddapuram Deeksha, Elisa Ramos, Abid Ullah Shah, and Maged Gomaa Hemida. 2025. "Artificial Intelligence Driven Framework for the Design and Development of Next-Generation Avian Viral Vaccines" Microorganisms 13, no. 10: 2361. https://doi.org/10.3390/microorganisms13102361
APA StyleGoud, M. D., Ramos, E., Shah, A. U., & Hemida, M. G. (2025). Artificial Intelligence Driven Framework for the Design and Development of Next-Generation Avian Viral Vaccines. Microorganisms, 13(10), 2361. https://doi.org/10.3390/microorganisms13102361