Relative Contributions of Soil and Litter Properties to Soil Microbial Community Variations During the Restoration of Larch Plantations to Mixed Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Investigation and Sampling
2.3. Analysis of Soil and Litter Properties
2.4. DNA Extraction, PCR, and High-Throughput Sequencing
2.5. Sequencing Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Soil and Litter Properties
3.2. Diversity of Soil Bacteria and Fungi
3.3. Composition of Soil Bacteria and Fungi
3.4. Relationship Between Soil Properties, Litter Properties, and Soil Microbial Communities
4. Discussion
4.1. Response of Litter and Soil Properties to Restoration Stages and Soil Depths
4.2. Changes in Microbial Diversity and Influencing Factors Across Restoration Stages and Soil Depths
4.3. Changes in Microbial Community Composition Across Restoration Stages and Soil Depths
4.4. Relationships Between Microbial Community and Soil and Litter Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manning, P.; van der Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.T.; Mace, G.; Whittingham, M.J.; Fischer, M. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2018, 2, 427–436, Erratum in Nat. Ecol. Evol. 2018, 2, 1515. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Dong, L.B.; Liu, Z.G. Factors driving native tree species restoration in plantations and tree structure conversion in Chinese temperate forests. For. Ecol. Manag. 2022, 507, 119989. [Google Scholar] [CrossRef]
- Zeng, F.P.; Chen, X.; Huang, B.; Chi, G.Y. Distribution Changes of Phosphorus in Soil-Plant Systems of Larch Plantations across the Chronosequence. Forests 2018, 9, 563. [Google Scholar] [CrossRef]
- Yu, D.P.; Zhou, L.; Zhou, W.M.; Ding, H.; Wang, Q.W.; Wang, Y.; Wu, X.Q.; Dai, L.M. Forest Management in Northeast China: History, Problems, and Challenges. Environ. Manag. 2011, 48, 1122–1135. [Google Scholar] [CrossRef]
- Magura, T.; Tóthmérész, B.; Elek, Z. Impacts of leaf-litter addition on carabids in a conifer plantation. Biodivers. Conserv. 2005, 14, 475–491. [Google Scholar] [CrossRef]
- He, B.; Li, Q.; Zou, S.; Bai, X.L.; Li, W.J.; Chen, Y. Dynamic Changes of Soil Microbial Communities During the Afforestation of Pinus armandii in a Karst Region of Southwest China. Microb. Ecol. 2024, 87, 36. [Google Scholar] [CrossRef]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.L.; Li, W.T.; Pang, X.Y.; Liu, Q.H.; Yin, C.Y. Soil properties and root traits are important factors driving rhizosphere soil bacterial and fungal community variations in alpine Rhododendron nitidulum shrub ecosystems along an altitudinal gradient. Sci. Total Environ. 2023, 864, 161048. [Google Scholar] [CrossRef]
- Lei, J.; Duan, A.G.; Guo, W.F.; Zhang, J.G. Effects of tree species mixing and soil depth on the soil bacterial and fungal communities in Chinese fir (Cunninghamia lanceolata) plantations. Appl. Soil Ecol. 2024, 195, 105270. [Google Scholar] [CrossRef]
- Qiu, Z.L.; Zhang, M.; Wang, K.F.; Shi, F.C. Vegetation community dynamics during naturalized developmental restoration of Pinus tabulaeformis plantation in North warm temperate zone. J. Plant Ecol. 2023, 16, rtac102. [Google Scholar] [CrossRef]
- Ding, K.; Zhang, Y.T.; Yrjälä, K.; Tong, Z.K.; Zhang, J.H. The introduction of Phoebe bournei into Cunninghamia lanceolata monoculture plantations increased microbial network complexity and shifted keystone taxa. For. Ecol. Manag. 2022, 509, 120072. [Google Scholar] [CrossRef]
- Han, W.J.; Wang, G.M.; Liu, J.L.; Ni, J. Effects of vegetation type, season, and soil properties on soil microbial community in subtropical forests. Appl. Soil Ecol. 2021, 158, 103813. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, H.; Dou, Y.X.; An, S.S. Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau. Sci. Total Environ. 2020, 708, 134560. [Google Scholar] [CrossRef]
- He, K.R.; Lai, Y.R.; Hu, S.R.; Song, M.Y.; Su, Y.; Li, C.Y.; Wu, X.L.; Zhang, C.Y.; Hua, Y.H.; Huang, J.Y.; et al. Assembly Characteristics and Influencing Factors of the Soil Microbial Community in the Typical Forest of Funiu Mountain. Microorganisms 2024, 12, 2355. [Google Scholar] [CrossRef] [PubMed]
- Dini-Andreote, F.; Silva, M.; Triadó-Margarit, X.; Casamayor, E.O.; van Elsas, J.D.; Salles, J.F. Dynamics of bacterial community succession in a salt marsh chronosequence: Evidences for temporal niche partitioning. ISME J. 2014, 8, 1989–2001. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Jiang, S.; Xing, Y.J.; Liu, G.C.; Hu, C.Y.; Wang, X.C.; Yan, G.Y.; Wang, Q.G. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biol. Biochem. 2021, 161, 108393. [Google Scholar] [CrossRef]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Drivers of microbial community structure in forest soils. Appl. Microbiol. Biotechnol. 2018, 102, 4331–4338. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, F.B.; Wang, Y.; Wang, J.M.; Li, J.W.; Zhang, Z.X. Variation and drivers of soil fungal and functional groups among different forest types in warm temperate secondary forests. Glob. Ecol. Conserv. 2023, 45, e02523. [Google Scholar] [CrossRef]
- Wang, M.M.; Shao, Y.H.; Zhang, W.X.; Yu, B.B.; Shen, Z.F.; Fan, Z.J.; Zu, W.Z.; Dai, G.H.; Fu, S.L. Secondary succession increases diversity and network complexity of soil microbial communities in subtropical and temperate forests. Catena 2025, 249, 108662. [Google Scholar] [CrossRef]
- Liang, Y.M.; Pan, F.J.; Ma, J.M.; Yang, Z.Q.; Yan, P.D. Long-term forest restoration influences succession patterns of soil bacterial communities. Environ. Sci. Pollut. Res. 2021, 28, 20598–20607. [Google Scholar] [CrossRef]
- Wu, Q.X.; Ni, X.Y.; Sun, X.Y.; Chen, Z.H.; Hong, S.B.; Berg, B.; Zheng, M.H.; Chen, J.; Zhu, J.J.; Ai, L.; et al. Substrate and climate determine terrestrial litter decomposition. Proc. Natl. Acad. Sci. USA 2025, 122, e2420664122. [Google Scholar] [CrossRef]
- Lin, Y.P.; Wang, K.F.; Wang, Z.L.; Fang, X.; Wang, H.M.; Li, N.; Shi, C.; Shi, F.C. Microaggregates as Nutrient Reservoirs for Fungi Drive Natural Regeneration in Larch Plantation Forests. J. Fungi 2025, 11, 316. [Google Scholar] [CrossRef]
- Cao, M.L.; Gong, Y.X.; Feng, Z.K.; Zhang, W.W.; Wang, X.A. Structural Analysis of Original Korean Pine ForestIn Langxiang Nature Reserve of Yichun. For. Surv. Plan. 2012, 37, 75–80. [Google Scholar]
- Wang, K.F.; Qiu, Z.L.; Zhang, M.; Li, X.Y.; Fang, X.; Zhao, M.Y.; Shi, F.C. Responses of Rhizosphere Soil Chemical Properties and Bacterial Community Structure to Major Afforestation Tree Species in Xiong’an New Area. Forests 2022, 13, 1822. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Lie, Z.Y.; Lin, W.; Huang, W.J.; Fang, X.; Huang, C.M.; Wu, T.; Chu, G.W.; Liu, S.Z.; Meng, Z.; Zhou, G.Y.; et al. Warming changes soil N and P supplies in model tropical forests. Biol. Fertil. Soils 2019, 55, 751–763. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Lai, J.S.; Zou, Y.; Zhang, J.L.; Peres-Neto, P.R. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol. Evol. 2022, 13, 782–788. [Google Scholar] [CrossRef]
- Wang, H.C.; Crowther, T.W.; Isobe, K.; Wang, H.; Tateno, R.; Shi, W.Y. Niche Conservatism and Community Assembly Reveal Microbial Community Divergent Succession Between Litter and Topsoil. Mol. Ecol. 2025, 34, e17723. [Google Scholar] [CrossRef]
- Joshi, R.K.; Garkoti, S.C. Structure and FT-IR spectroscopic analyses of complexes phosphorylated betaines with rare earth metal ions. Catena 2023, 222, 106835. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, J.J.; Zhang, W.W.; Zhang, Q.; Lu, D.L.; Zhang, Y.K.; Zheng, X.; Xu, S.; Wang, G.G. Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects. J. Ecol. 2022, 110, 1673–1686. [Google Scholar] [CrossRef]
- Wan, B.B.; Barnes, A.D.; Potapov, A.; Yang, J.N.; Zhu, M.Y.; Chen, X.Y.; Hu, F.; Liu, M.Q. Altered litter stoichiometry drives energy dynamics of food webs through changing multiple facets of soil biodiversity. Soil Biol. Biochem. 2024, 191, 109331. [Google Scholar] [CrossRef]
- Bani, A.; Pioli, S.; Ventura, M.; Panzacchi, P.; Borruso, L.; Tognetti, R.; Tonon, G.; Brusetti, L. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil Ecol. 2018, 126, 75–84. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, J.; Zhao, X.; Zhao, Z.; Wang, Y.C.; Zhang, X.P.; Wang, D.X. The linkages of plant, litter and soil C:N:P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. Peerj 2020, 8, e9274. [Google Scholar] [CrossRef]
- Liu, S.Q.; Yang, R.; Peng, X.D.; Hou, C.L.; Ma, J.B.; Guo, J.R. Contributions of Plant Litter Decomposition to Soil Nutrients in Ecological Tea Gardens. Agriculture-Basel 2022, 12, 957. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 2001, 53, 51–77. [Google Scholar] [CrossRef]
- Duan, A.G.; Lei, J.; Hu, X.Y.; Zhang, J.G.; Du, H.L.; Zhang, X.Q.; Guo, W.F.; Sun, J.J. Effects of Planting Density on Soil Bulk Density, pH and Nutrients of Unthinned Chinese Fir Mature Stands in South Subtropical Region of China. Forests 2019, 10, 351. [Google Scholar] [CrossRef]
- Wang, K.F.; Zhao, M.Y.; Zhang, M.; Fang, X.; Wang, H.M.; Lv, J.; Shi, F.C. Topography- and depth-dependent rhizosphere microbial community characteristics drive ecosystem multifunctionality in Juglans mandshurica forest. Sci. Total Environ. 2024, 949, 175070. [Google Scholar] [CrossRef]
- Du, Z.; Zhou, R.; Chen, Y.; Zhan, E.R.; Chen, Y.J.; Zheng, H.; Deng, D.Z.; He, L.; Chen, D.C.; Gao, H.J.; et al. Effects of long-term vegetation restoration on soil aggregate and aggregate-associated nutrient stoichiometry of desertified grassland on the eastern Qinghai-Tibet Plateau. Agric. Ecosyst. Environ. 2025, 388, 109661. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Liu, Y.H.; Yang, M.Y.; Tian, P.; Mu, X.M.; Zhao, G.J. Impact of vegetation restoration on preferential flow and soil infiltration capacity in the hilly region of the Loess Plateau. J. Hydrol. Reg. Stud. 2025, 59, 102333. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.H.; Shao, Y.N.; Liu, Y.L.; Liu, Y.K. Study on species diversity and soil physical and chemical characteristics of broad-leaved Pinus koraiensis forest. Ecol. Environ. Sci. 2022, 31, 679–687. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Morreale, S.J.; Schneider, R.L.; Li, Z.G.; Wu, G.L. Contributions of plant litter to soil microbial activity improvement and soil nutrient enhancement along with herb and shrub colonization expansions in an arid sandy land. Catena 2023, 227, 107098. [Google Scholar] [CrossRef]
- Bai, Y.X.; Zhou, Y.C.; Chen, X.L.; An, Z.F.; Zhang, X.N.; Du, J.J.; Chang, S.X. Tree species composition alters the decomposition of mixed litter and the associated microbial community composition and function in subtropical plantations in China. For. Ecol. Manag. 2023, 529, 120743. [Google Scholar] [CrossRef]
- Zhu, K.Y. Characteristics of Soil Microbial Community at Different Succession Stages in Broad-Leaved Korean Pine Forest. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2024. [Google Scholar] [CrossRef]
- Feng, H.L.; Guo, J.H.; Wang, W.F.; Song, X.Z.; Yu, S.Q. Soil Depth Determines the Composition and Diversity of Bacterial and Archaeal Communities in a Poplar Plantation. Forests 2019, 10, 550. [Google Scholar] [CrossRef]
- Frey, B.; Walthert, L.; Perez-Mon, C.; Stierli, B.; Köchli, R.; Dharmarajah, A.; Brunner, I. Deep Soil Layers of Drought-Exposed Forests Harbor Poorly Known Bacterial and Fungal Communities. Front. Microbiol. 2021, 12, 674160. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Zhang, J.G.; Bourque, C.P.A.; Xiang, Q.; Zhang, J.J.; Yang, X.L.; Zhu, J.X.; Ma, J.Y. Soil depth affects bacterial, but not fungal community structure and assembly in Robinia pseudoacacia plantations. Eur. J. Soil Biol. 2025, 126, 103747. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P.; Holden, P.A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 2003, 35, 167–176. [Google Scholar] [CrossRef]
- Kang, E.Z.; Li, Y.; Zhang, X.D.; Yan, Z.Q.; Wu, H.D.; Li, M.; Yan, L.; Zhang, K.R.; Wang, J.Z.; Kang, X.M. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Sci. Total Environ. 2021, 774, 145780. [Google Scholar] [CrossRef]
- Yarwood, S.A.; Högberg, M.N. Soil bacteria and archaea change rapidly in the first century of Fennoscandian boreal forest development. Soil Biol. Biochem. 2017, 114, 160–167. [Google Scholar] [CrossRef]
- Liu, J.; Jia, X.Y.; Yan, W.N.; Zho, Y.Q.W.; Shangguan, Z.P. Changes in soil microbial community structure during long-term secondary succession. Land Degrad. Dev. 2020, 31, 1151–1166. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Reich, P.B.; Khachane, A.N.; Campbell, C.D.; Thomas, N.; Freitag, T.E.; Abu Al-Soud, W.; Sorensen, S.; Bardgett, R.D.; Singh, B.K. It is elemental: Soil nutrient stoichiometry drives bacterial diversity. Environ. Microbiol. 2017, 19, 1176–1188. [Google Scholar] [CrossRef] [PubMed]
- Geml, J.; Arnold, A.E.; Semenova-Nelsen, T.A.; Nouhra, E.R.; Drechsler-Santos, E.R.; Góes-Neto, A.; Morgado, L.N.; Odor, P.; Hegyi, B.; Oriol, G.; et al. Community dynamics of soil-borne fungal communities along elevation gradients in neotropical and palaeotropical forests. Mol. Ecol. 2022, 31, 2044–2060. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Zeng, X.N.; Li, M.S.; Weng, X.H.; Frey, B.; Yang, L.B.; Li, M.H. Influence of Different Vegetation Types on Soil Physicochemical Parameters and Fungal Communities. Microorganisms 2022, 10, 829. [Google Scholar] [CrossRef]
- Pan, J.W.; Guo, Q.Q.; Li, H.E.; Luo, S.Q.; Zhang, Y.Q.; Yao, S.; Fan, X.; Sun, X.G.; Qi, Y.J. Dynamics of Soil Nutrients, Microbial Community Structure, Enzymatic Activity, and Their Relationships along a Chronosequence of Pinus massoniana Plantations. Forests 2021, 12, 376. [Google Scholar] [CrossRef]
- García-Palacios, P.; McKie, B.G.; Handa, I.T.; Frainer, A.; Hättenschwiler, S. The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes. Funct. Ecol. 2016, 30, 819–829. [Google Scholar] [CrossRef]
- Kim, H.M.; Jung, J.Y.; Yergeau, E.; Hwang, C.Y.; Hinzman, L.; Nam, S.; Hong, S.G.; Kim, O.S.; Chun, J.; Lee, Y.K. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. FEMS Microbiol. Ecol. 2014, 89, 465–475. [Google Scholar] [CrossRef]
- Dong, X.D.; Gao, P.; Zhou, R.; Li, C.; Dun, X.J.; Niu, X. Changing characteristics and influencing factors of the soil microbial community during litter decomposition in a mixed Quercus acutissima Carruth. and Robinia pseudoacacia L. forest in Northern China. Catena 2021, 196, 104811. [Google Scholar] [CrossRef]
- Ren, C.J.; Liu, W.C.; Zhao, F.Z.; Zhong, Z.K.; Deng, J.; Han, X.H.; Yang, G.H.; Feng, Y.Z.; Ren, G.X. Soil bacterial and fungal diversity and compositions respond differently to forest development. Catena 2019, 181, 104071. [Google Scholar] [CrossRef]
- Zhong, Z.K.; Wang, X.; Zhang, X.Y.; Zhang, W.; Xu, Y.D.; Ren, C.J.; Han, X.H.; Yang, G.H. Edaphic factors but not plant characteristics mainly alter soil microbial properties along a restoration chronosequence of Pinus tabulaeformis stands on Mt. Ziwuling, China. For. Ecol. Manag. 2019, 453, 117625. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.B.; Xue, S.; Wang, G.L. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, Y.F.; Parikh, S.J.; Colinet, G.; Garland, G.; Huo, L.J.; Zhang, N.; Shan, H.; Zeng, X.B.; Su, S.M. Water-fertilizer regulation drives microorganisms to promote iron, nitrogen and manganese cycling: A solution for arsenic and cadmium pollution in paddy soils. J. Hazard. Mater. 2024, 477, 135244. [Google Scholar] [CrossRef]
- Treseder, K.K.; Maltz, M.R.; Hawkins, B.A.; Fierer, N.; Stajich, J.E.; McGuire, K.L. Evolutionary histories of soil fungi are reflected in their large-scale biogeography. Ecol. Lett. 2014, 17, 1086–1093. [Google Scholar] [CrossRef]
- Genre, A.; Lanfranco, L.; Perotto, S.; Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020, 18, 649–660. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Wang, Q.C.; Zhang, Y.; Zarif, N.; Ma, S.J.; Xu, L.Q. Variation in Soil Bacterial and Fungal Community Composition at Different Successional Stages of a Broad-Leaved Korean Pine Forest in the Lesser Hinggan Mountains. Forests 2022, 13, 625. [Google Scholar] [CrossRef]
- Frew, A.; Varga, S.; Klein, T. Mycorrhizal networks: Understanding hidden complexity. Funct. Ecol. 2025, 39, 1322–1327. [Google Scholar] [CrossRef]
- Legay, N.; Baxendale, C.; Grigulis, K.; Krainer, U.; Kastl, E.; Schloter, M.; Bardgett, R.D.; Arnoldi, C.; Bahn, M.; Dumont, M.; et al. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann. Bot. 2014, 114, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.X.; Zhang, J.B.; Hua, J.N.; Li, J.J.; Liu, D.; Bhople, P.; Ruan, H.H.; Yang, N. Desertification induced changes in soil bacterial and fungal diversity and community structure in a dry-hot valley forest. Appl. Soil Ecol. 2023, 189, 104953. [Google Scholar] [CrossRef]
- Huang, R.L.; Li, W.; Qiu, S.M.; Long, Y.L.; Zeng, Z.F.; Tang, J.; Huang, Q.H. Impact of land use types on soil microbial community structure and functional structure in Baihualing Village, China. Glob. Ecol. Conserv. 2025, 57, e03379. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, Y.; Yang, X.Q.; Niu, B.; Jiao, H.Z.; Yang, Y.; Huang, G.Q.; Hou, W.G.; Zhang, G.X. Seasonality and Vertical Structure of Microbial Communities in Alpine Wetlands. Microorganisms 2025, 13, 962. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Qu, H.; Wang, M.Y.; Meng, X.Y.; Zhang, Y.J.; Gao, X.; Zhang, Y.H.; Sui, X.; Li, M.H. Variations in the Structure and Composition of Soil Microbial Communities of Different Forests in the Daxing’anling Mountains, Northeastern China. Microorganisms 2025, 13, 1298. [Google Scholar] [CrossRef]
- Widdig, M.; Heintz-Buschart, A.; Schleuss, P.M.; Guhr, A.; Borer, E.T.; Seabloom, E.W.; Spohn, M. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biol. Biochem. 2020, 151, 108041. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.P.; An, B.; Ma, X.Q.; Zhang, H.; Liu, Q.G.; Mao, R. The succession patterns and drivers of soil bacterial and fungal communities with stand development in Chinese fir plantations. Plant Soil 2024, 500, 547–569. [Google Scholar] [CrossRef]
- Li, W.Q.; Huang, Y.X.; Chen, F.S.; Liu, Y.Q.; Lin, X.F.; Zong, Y.Y.; Wu, G.Y.; Yu, Z.R.; Fang, X.M. Mixing with broad-leaved trees shapes the rhizosphere soil fungal communities of coniferous tree species in subtropical forests. For. Ecol. Manag. 2021, 480, 118664. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Lin, Y.; Wang, K.; Fang, X.; Li, N.; Shi, C.; Shi, F. Relative Contributions of Soil and Litter Properties to Soil Microbial Community Variations During the Restoration of Larch Plantations to Mixed Forests. Microorganisms 2025, 13, 2359. https://doi.org/10.3390/microorganisms13102359
Wang Z, Lin Y, Wang K, Fang X, Li N, Shi C, Shi F. Relative Contributions of Soil and Litter Properties to Soil Microbial Community Variations During the Restoration of Larch Plantations to Mixed Forests. Microorganisms. 2025; 13(10):2359. https://doi.org/10.3390/microorganisms13102359
Chicago/Turabian StyleWang, Zilu, Yiping Lin, Kefan Wang, Xin Fang, Nuo Li, Cong Shi, and Fuchen Shi. 2025. "Relative Contributions of Soil and Litter Properties to Soil Microbial Community Variations During the Restoration of Larch Plantations to Mixed Forests" Microorganisms 13, no. 10: 2359. https://doi.org/10.3390/microorganisms13102359
APA StyleWang, Z., Lin, Y., Wang, K., Fang, X., Li, N., Shi, C., & Shi, F. (2025). Relative Contributions of Soil and Litter Properties to Soil Microbial Community Variations During the Restoration of Larch Plantations to Mixed Forests. Microorganisms, 13(10), 2359. https://doi.org/10.3390/microorganisms13102359