Short-Term Effects of Alfalfa Silage Versus Hay, with or Without Hydrolysable Tannins, on Production Performance, Rumen Fermentation, and Nutrient Digestibility in Mid-Lactation Dairy Cows
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Management
2.2. Experimental Diet
2.3. Sample Collection and Analytical Methods
2.3.1. Production Performances
2.3.2. Feed and Fecal Samples Collection and Analysis
2.3.3. Rumen Content Sampling and Parameter Analysis
2.3.4. Milk Production and DHI Monitor
2.3.5. Collection of Blood and Analysis of Serum Indexes
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Effect of Forage Form and Hydrolysable Tannins on Apparent Nutrient Digestibility
3.2. Rumen Microbiota and Fermentation Responses to Forage Form and Tannins
3.3. Effects of Forage Form and Hydrolysable Tannin Supplementation on Intake, Body Weight, and Milk Production
3.4. Effects of Forage Form and Hydrolysable Tannins on Blood Metabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, K.; Chen, M.; Huang, G.; Su, C.; Tang, W.; Li, N.; Yang, J.; Wu, X.; Si, B.; Zhao, S.; et al. Variations in the milk lipidomic profile of lactating dairy cows fed the diets containing alfalfa hay versus alfalfa silage. Anim. Nutr. 2024, 19, 261–271. [Google Scholar] [CrossRef]
- Agarussi, M.C.N.; Pereira, O.G.; da Silva, V.P.; Leandro, E.S.; Ribeiro, K.G.; Santos, S.A. Fermentative profile and lactic acid bacterial dynamics in non-wilted and wilted alfalfa silage in tropical conditions. Mol. Biol. Rep. 2019, 46, 451–460. [Google Scholar] [CrossRef]
- Bao, X.; Feng, H.; Guo, G.; Huo, W.; Li, Q.; Xu, Q.; Liu, Q.; Wang, C.; Chen, L. Effects of laccase and lactic acid bacteria on the fermentation quality, nutrient composition, enzymatic hydrolysis, and bacterial community of alfalfa silage. Front. Microbiol. 2022, 13, 1035942. [Google Scholar] [CrossRef]
- Li, R.; Jiang, D.; Zheng, M.; Tian, P.; Zheng, M.; Xu, C. Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Sci. Rep. 2020, 10, 17782. [Google Scholar] [CrossRef]
- Rufino-Moya, P.J.; Bertolín, J.R.; Blanco, M.; Lobón, S.; Joy, M. Fatty acid profile, secondary compounds and antioxidant activities in the fresh forage, hay and silage of sainfoin (Onobrychis viciifolia) and sulla (Hedysarum coronarium). J. Sci. Food Agric. 2022, 102, 4736–4743. [Google Scholar] [CrossRef]
- Szumacher-Strabel, M.; Stochmal, A.; Cieslak, A.; Kozłowska, M.; Kuznicki, D.; Kowalczyk, M.; Oleszek, W. Structural and quantitative changes of saponins in fresh alfalfa compared to alfalfa silage. J. Sci. Food Agric. 2019, 99, 2243–2250. [Google Scholar] [CrossRef] [PubMed]
- Al-Gaadi, K.A. Impact of raking and baling patterns on alfalfa hay dry matter and quality losses. Saudi J. Biol. Sci. 2018, 25, 1040–1048. [Google Scholar] [CrossRef]
- Nelson, W.F.; Satter, L.D. Impact of alfalfa maturity and preservation method on milk production by cows in early lactation. J. Dairy Sci. 1992, 75, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Yang, G.L.; Jing, Y.Y.; He, Z.N.; Liu, B.; Sun, L.; Zhang, Y.; Gao, F. Alfalfa quality improvement and loss reduction technology advances. Front. Anim. Sci. 2025, 6, 1550492. [Google Scholar] [CrossRef]
- Sikora, M.C.; Hatfield, R.D.; Kalscheur, K.F. Impact of long-term storage on alfalfa leaf and stem silage characteristics. Agronomy 2021, 11, 2505. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, S.; Xue, M.Y.; Chen, H.; Xu, J.; Song, M.; Tang, Y.; Liu, X.; Tao, Y.; Zhang, T.; et al. Single-cell transcriptomics across 2,534 microbial species reveals functional heterogeneity in the rumen microbiome. Nat. Microbiol. 2024, 9, 1884–1898. [Google Scholar] [CrossRef]
- Stergiadis, S.; Cabeza-Luna, I.; Mora-Ortiz, M.; Stewart, R.D.; Dewhurst, R.J.; Humphries, D.J.; Watson, M.; Roehe, R.; Auffret, M.D. Unravelling the role of rumen microbial communities, genes, and activities on milk fatty acid profile using a combination of omics approaches. Front. Microbiol. 2021, 11, 590441. [Google Scholar] [CrossRef]
- Putri, E.M.; World, V. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Vet. World 2021, 14, 640–648. [Google Scholar] [CrossRef]
- Bagheri, V.M.; Klevenhusen, F.; Zebeli, Q.; Petri, R. Scrophularia striata Extract Supports Rumen Fermentation and Improves Microbial Diversity in vitro Compared to Monensin. Front. Microbiol. 2018, 9, 2164. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.S.; Lee, S.J.; Lee, Y.; Kim, H.S.; Choi, Y.Y.; Kim, H.S.; Kim, D.H.; Lee, S.S. Effects of supplementation levels of Allium fistulosum L. extract on in vitro ruminal fermentation characteristics and methane emission. PeerJ 2020, 8, e9651. [Google Scholar] [CrossRef]
- Jayanegara, A.; Yogianto, Y.; Wina, E.; Sudarman, A.; Kondo, M.; Obitsu, T.; Kreuzer, M. Combination Effects of Plant Extracts Rich in Tannins and Saponins as Feed Additives for Mitigating in Vitro Ruminal Methane and Ammonia Formation. Animals 2020, 10, 1531. [Google Scholar] [CrossRef]
- Buzzini, P.; Arapitsas, P.; Goretti, M.; Branda, E.; Turchetti, B.; Pinelli, P.; Ieri, F.; Romani, A. Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev. Med. Chem. 2008, 8, 1179–1187. [Google Scholar] [CrossRef]
- Tadese, D.A.; Song, C.; Sun, C.; Liu, B.; Liu, B.; Zhou, Q.; Xu, P.; Ge, X.; Liu, M.; Xu, X.; et al. The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Rev. Aquac. 2022, 14, 816–847. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Beauchemin, K.A. Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: A review. Animals 2019, 9, 856. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Vaddella, V.; Zhou, D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J. Dairy Sci. 2011, 94, 6069–6077. [Google Scholar] [CrossRef] [PubMed]
- Avila, A.S.; Zambom, M.A.; Faccenda, A.; Werle, C.H.; Almeida, A.R.; Schneider, C.R.; Grunevald, D.G.; Faciola, A.P. Black Wattle (Acacia mearnsii) condensed tannins as feed additives to lactating dairy cows. Animals 2020, 10, 662. [Google Scholar] [CrossRef]
- Costa, M.; Alves, S.P.; Cabo, Â.; Guerreiro, O.; Stilwell, G.; Dentinho, M.T.; Bessa, R.J. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannin sources. J. Sci. Food Agric. 2017, 97, 629–635. [Google Scholar] [CrossRef]
- Perna Junior, F.; Galbiatti Sandoval Nogueira, R.; Ferreira Carvalho, R.; Cuellar Orlandi Cassiano, E.; Mazza Rodrigues, P.H. Use of tannin extract as a strategy to reduce methane in Nellore and Holstein cattle and its effect on intake, digestibility, microbial efficiency and ruminal fermentation. J. Anim. Physiol. Anim. Nutr. 2023, 107, 89–102. [Google Scholar] [CrossRef]
- Jayanegara, A.; Goel, G.; Makkar, H.P.; Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 2015, 209, 60–68. [Google Scholar] [CrossRef]
- Jones, W.T.; Mangan, J.L. Complexes of the condensed tannins of sainfoin (Onobrychis viciifolia Scop.) with fraction 1 leaf protein and with submaxillary mucoprotein, and their reversal by polyethylene glycol and pH. J. Sci. Food Agric. 1977, 28, 126–136. [Google Scholar] [CrossRef]
- Frutos, P.; Hervas, G.; Giráldez, F.J.; Mantecón, A.R. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef]
- Malmuthuge, N.; Griebel, P.J.; Guan, L.L. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl. Environ. Microbiol. 2014, 80, 2021–2028. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G.; Fonseca, M.A.; Cavalcanti, L.F.L. Models of protein and amino acid requirements for cattle. Rev. Bras. Zootec. 2015, 44, 109–132. [Google Scholar] [CrossRef]
- Jung, S.; Rickert, D.A.; Deak, N.A.; Aldin, E.D.; Recknor, J.; Johnson, L.A.; Murphy, P.A. Comparison of Kjeldahl and Dumas methods for determining protein contents of soybean products. J. Am. Oil Chem. Soc. 2003, 80, 1169–1173. [Google Scholar] [CrossRef]
- Paulk, C.B.; Stark, C.R.; Dunmire, K.M. Feed processing technology and quality of feed. In Sustainable Swine Nutrition; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 429–444. [Google Scholar] [CrossRef]
- Venter, K.M.; Angel, R.; Fourie, J.; Plumstead, P.W.; Li, W.; Enting, H.; Dersjant-Li, Y.; Jansen van Rensburg, C. Determination of calcium and phosphorus digestibility of individual feed ingredients as affected by limestone, in the presence and absence of phytase in broilers. Animals 2024, 14, 3603. [Google Scholar] [CrossRef]
- Wang, S.; Ma, T.; Zhao, G.; Zhang, N.; Tu, Y.; Li, F.; Cui, K.; Bi, Y.; Ding, H.; Diao, Q. Effect of age and weaning on growth performance, rumen fermentation, and serum parameters in lambs fed starter with limited ewe–lamb interaction. Animals 2019, 9, 825. [Google Scholar] [CrossRef]
- Li, H.Q.; Liu, Q.; Wang, C.; Guo, G.; Huo, W.J.; Zhang, S.L.; Zhang, Y.L.; Pei, C.X.; Yang, W.Z.; Wang, H. Effects of rumen-protected pantothenate on ruminal fermentation, microbial enzyme activity, cellulolytic bacteria and urinary excretion of purine derivatives in growing beef steers. Livest. Sci. 2017, 202, 159–165. [Google Scholar] [CrossRef]
- Maia, G.G.; Siqueira, L.G.B.; de Paula Vasconcelos, C.O.; Tomich, T.R.; de Almeida Camargo, L.S.; Rodrigues, J.P.P.; de Menezes, R.A.; Gonçalves, L.C.; Teixeira, B.F.; Grando, R.d.O.; et al. Effects of heat stress on rumination activity in Holstein-Gyr dry cows. Livest. Sci. 2020, 239, 104092. [Google Scholar] [CrossRef]
- Önder, A. Anticancer activity of natural coumarins for biological targets. Stud. Nat. Prod. Chem. 2020, 64, 85–109. [Google Scholar] [CrossRef]
- Minas, K.; McEwan, N.R.; Newbold, C.J.; Scott, K.P. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol. Lett. 2011, 325, 162–169. [Google Scholar] [CrossRef]
- Castro-Montoya, J.; Makkar, H.P.S.; Becker, K. Effects of dietary tannins on milk composition: A quantitative synthesis. Anim. Feed Sci. Technol. 2022, 285, 115203. [Google Scholar] [CrossRef]
- Xia, T.; Liu, Z.; Yang, Z.; Jiang, A.; Zhou, C.; Tan, Z. Effects of Partial Replacement of Alfalfa Hay with Alfalfa Silage in Dairy Cows: Impacts on Production Performance and Rumen Microbiota. Animals 2025, 15, 2748. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Meng, Z.; Tan, D.; Datsomor, O.; Zhan, K.; Lin, M.; Zhao, G. Effects of supplementation of sodium acetate on rumen fermentation and microbiota in postpartum dairy cows. Front. Microbiol. 2022, 13, 1053503. [Google Scholar] [CrossRef] [PubMed]
- Jawaid, M.Z.; Ashfaq, M.Y.; Al-Ghouti, M.; Zouari, N. Insights into population adaptation and biodiversity of lactic acid bacteria in challenged date palm leaves silaging, using MALDI–TOF MS. Curr. Res. Microb. Sci. 2024, 6, 100235. [Google Scholar] [CrossRef] [PubMed]
- Caparra, P.; Chies, L.; Scerra, M.; Foti, F.; Bognanno, M.; Cilione, C.; De Caria, P.; Claps, S.; Cifuni, G.F. Effect of dietary ensiled olive cake supplementation on performance and meat quality of Apulo-Calabrese pigs. Animals 2023, 13, 2022. [Google Scholar] [CrossRef]
- Zou, Y.; Zou, X.; Li, X.; Guo, G.; Ji, P.; Wang, Y.; Li, S.; Wang, Y.; Cao, Z. Substituting oat hay or maize silage for portion of alfalfa hay affects growth performance, ruminal fermentation, and nutrient digestibility of weaned calves. Asian-Australas. J. Anim. Sci. 2017, 31, 369. [Google Scholar] [CrossRef]
- Weimer, P.J. Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef]
- Qu, X.; Raza, S.H.A.; Zhao, Y.; Deng, J.; Ma, J.; Wang, J.; Alkhorayef, N.; Alkhalil, S.S.; Pant, S.D.; Lei, H.; et al. Effect of tea saponins on rumen microbiota and rumen function in Qinchuan beef cattle. Microorganisms 2023, 11, 374. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Jin, M.; Shao, Y.; Yin, J.; Li, H.; Chen, T.; Shi, D.; Zhou, S.; Li, J.; Yang, D. High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Gut Microbes 2022, 14, 2022442. [Google Scholar] [CrossRef]
- Niu, J.; Liu, X.; Xu, J.; Li, F.; Wang, J.; Zhang, X.; Yang, X.; Wang, L.; Ma, S.; Li, D.; et al. Effects of silage diet on meat quality through shaping gut microbiota in finishing pigs. Microbiol. Spectr. 2023, 11, e02416-22. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Muir, J.P.; Naumann, H.D.; Norris, A.B.; Ramírez-Restrepo, C.A.; Mertens-Talcott, S.U. Nutritional aspects of ecologically relevant phytochemicals in ruminant production. Front. Vet. Sci. 2021, 8, 628445. [Google Scholar] [CrossRef] [PubMed]
- Valcl, N.; Lavrenčič, A. Effect of tannins and drying methods on in vitro dry matter and crude protein degradability and digestibility of soybean meal for ruminants. Sci. Rep. 2025, 15, 28612. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Ramírez-Restrepo, C.A.; Muir, J.P. Developing a conceptual model of possible benefits of condensed tannins for ruminant production. Animal 2014, 8, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Salminen, J.P.; Karonen, M.; Sinkkonen, J. Chemical ecology of tannins: Recent developments in tannin chemistry reveal new structures and structure–activity patterns. Chem. Eur. J. 2011, 17, 2806–2816. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Capozzolo, M.C.; Lencioni, P.; Cabral, C.; Wattiaux, M.A. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. J. Dairy Sci. 2016, 99, 4476–4486. [Google Scholar] [CrossRef]
- Prodanović, R.; Nedić, S.; Simeunović, P.; Borozan, S.; Nedić, S.; Bojkovski, J.; Kirovski, D.; Vujanac, I. Effects of chestnut tannins supplementation of prepartum moderate yielding dairy cows on metabolic health, antioxidant and colostrum indices. Ann. Anim. Sci. 2021, 21, 609–621. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Li, F.; Usman, S.; Huang, W.; Jia, M.; Kharazian, Z.A.; Ran, T.; Li, F.; Ding, Z.; Guo, X. Correction: Effects of inoculating feruloyl esterase-producing Lactiplantibacillus plantarum A1 on ensiling characteristics, in vitro ruminal fermentation and microbiota of alfalfa silage. J. Anim. Sci. Biotechnol. 2023, 14, 53. [Google Scholar] [CrossRef] [PubMed]
Item | HC | HT | SC | ST |
---|---|---|---|---|
Ingredients, % of DM | ||||
Corn silage | 27 | 27 | 27 | 27 |
Oaten hay | 8 | 8 | 8 | 8 |
Alfalfa hay | 15 | 15 | 0 | 0 |
Alfalfa silage | 0 | 0 | 15 | 15 |
Concentrate mix 1 | 45 | 44.7 | 45 | 44.7 |
Additive, % of DM | ||||
Hydrolysable tannin extract 2 | - | 0.3 | - | 0.3 |
Nutritive value 3 | ||||
Net energy for lactating cow (MJ/kg) | 6.73 | 6.73 | 6.73 | 6.73 |
Crude protein (g/kg DM) | 178 | 178 | 176 | 176 |
Neutral detergent fiber (g/kg DM) | 514 | 514 | 511 | 511 |
Acid detergent fiber (g/kg DM) | 158 | 158 | 157 | 157 |
Calcium (g/kg DM) | 8.18 | 8.18 | 8.22 | 8.22 |
Phosphorus (g/kg DM) | 5.69 | 5.69 | 5.8 | 5.8 |
Item | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
HC 1 | HT | SC | ST | D 2 | T | D × T | ||
Dry matter (%) | 79.4 b | 81.1 b | 85.1 b | 84.6 ab | 0.85 | 0.0040 | 0.6682 | 0.4040 |
Organic substance (%) | 80.9 b | 82.2 b | 86.2 a | 85.7 a | 0.80 | 0.0037 | 0.7341 | 0.4540 |
Crude protein (%) | 80.8 b | 81.6 b | 86.2 a | 84.7 a | 0.92 | 0.0217 | 0.8405 | 0.4940 |
Neutral detergent fiber (%) | 76.4 b | 79.7 b | 83.3 a | 84.4 a | 1.22 | 0.0155 | 0.3047 | 0.6095 |
Acid detergent fiber (%) | 55.7 b | 62.4 b | 68.5 a | 70.4 a | 2.46 | 0.0358 | 0.3484 | 0.5920 |
Crude fat (%) | 71.6 | 75.9 | 78.8 | 79.6 | 1.45 | 0.0646 | 0.3516 | 0.5276 |
Calcium (%) | 56.2 b | 58.2 b | 67.4 a | 66.8 a | 2.32 | 0.0412 | 0.8765 | 0.7711 |
Phosphorus (%) | 66.2 | 67.4 | 75.7 | 73.5 | 1.92 | 0.0510 | 0.9077 | 0.6448 |
Item | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
HC 2 | HT | SC | ST | D 3 | T | D × T | ||
Carboxymethyl-cellulase 1 | 0.123 b | 0.123 b | 0.130 a | 0.134 a | 0.002 | 0.0125 | 0.4686 | 0.5248 |
Pectinase | 0.593 a | 0.587 a | 0.533 b | 0.533 b | 0.008 | 0.0002 | 0.7945 | 0.7819 |
Cellobiase | 0.101 | 0.103 | 0.106 | 0.107 | 0.001 | 0.1592 | 0.4940 | 0.8476 |
Xylanase | 0.575 b | 0.567 b | 0.630 b | 0.626 ab | 0.009 | 0.0010 | 0.6983 | 0.8780 |
Item | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
HC 1 | HT | SC | ST | D 2 | T | D × T | ||
pH | 6.51 | 6.48 | 6.45 | 6.46 | 0.02 | 0.2620 | 0.7017 | 0.6231 |
NH3-N 3 (mg/dL) | 16.9 a | 16.8 bc | 15.1 b | 12.4 ac | 0.52 | 0.0001 | 0.0192 | 0.0259 |
Microbial protein (mg/dL) | 42.0 a | 40.5 ab | 35.9 b | 40.6 ab | 0.68 | 0.0222 | 0.6226 | 0.0217 |
Volatile fatty acids (mmol/L) | 119 b | 120 b | 124 a | 124 a | 1.46 | 0.0261 | 0.7707 | 0.8548 |
Acetic acid (mmol/L) | 64.7 b | 65.2 b | 72.7 a | 73.0 a | 1.35 | 0.0017 | 0.8285 | 0.9740 |
Propanoic acid (mmol/L) | 33.1 | 33.7 | 31.1 | 32.2 | 0.59 | 0.1646 | 0.4894 | 0.8361 |
Isobutyric acid (mmol/L) | 1.19 | 1.33 | 1.31 | 1.33 | 0.02 | 0.1817 | 0.1030 | 0.1576 |
Butyric acid (mmol/L) | 15.3 a | 15.5 a | 14.3 b | 13.3 b | 0.31 | 0.0076 | 0.4483 | 0.2084 |
Isovaleric acid (mmol/L) | 2.34 | 2.60 | 2.51 | 2.43 | 0.06 | 0.9750 | 0.4531 | 0.1807 |
Valeric acid (mmol/L) | 1.89 | 1.55 | 1.93 | 1.89 | 0.11 | 0.4215 | 0.4326 | 0.5394 |
Propionic acid ratio | 1.95 b | 1.93 b | 2.34 a | 2.28 a | 0.06 | 0.0007 | 0.6611 | 0.8483 |
Item | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
HC 1 | HT | SC | ST | D 2 | T | D × T | ||
Lactation period (d) | 100 | 105 | 101 | 104 | 3.85 | 0.9623 | 0.9455 | 0.9588 |
Initial weight (kg) | 618 | 617 | 619 | 624 | 7.65 | 0.5864 | 0.7011 | 0.6237 |
Final weight (kg) | 626 | 636 | 641 | 646 | 8.98 | 0.3123 | 0.3621 | 0.3215 |
Item | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
HC 1 | HT | SC | ST | D 2 | T | D × T | ||
Dry matter intake (DMI) (kg/d) | 22.3 | 22.1 | 22.6 | 22.7 | 0.44 | 0.1563 | 0.5877 | 0.5964 |
Average daily milk yield (kg/d) | 29.7 | 28.6 | 29.8 | 30.3 | 0.33 | 0.1758 | 0.6586 | 0.2207 |
Fat corrected milk (kg/d) | 28.9 b | 29.0 b | 30.3 a | 31.4 a | 0.52 | 0.0007 | 0.1863 | 0.3320 |
Fat (%) | 3.85 d | 4.05 c | 4.38 b | 4.50 a | 0.07 | 0.0001 | 0.0294 | 0.6144 |
True protein (%) | 3.19 b | 3.29 b | 3.35 a | 3.39 a | 0.03 | 0.0373 | 0.2279 | 0.6198 |
Fat protein ratio | 1.21 b | 1.24 b | 1.31 a | 1.33 a | 0.02 | 0.0088 | 0.4785 | 0.9301 |
Lactose (%) | 5.02 | 5.05 | 4.98 | 5.04 | 0.02 | 0.6624 | 0.4257 | 0.7646 |
Solid no fat (%) | 8.21 | 8.33 | 8.42 | 8.23 | 0.03 | 0.1077 | 0.0876 | 0.9055 |
Total solids (%) | 12.1 d | 12.4 c | 12.7 b | 12.9 a | 0.09 | 0.0001 | 0.0028 | 0.5866 |
Somatic cell count (SCC) (×104 cells/mL) | 21.3 | 22.3 | 19.5 | 21.3 | 1.92 | 0.8120 | 0.3127 | 0.4186 |
Urea nitroge (mg/dL) | 12.8 a | 12.5 a | 15.8 b | 15.2 b | 0.51 | 0.0032 | 0.5648 | 0.8144 |
Item | Dietary Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
HC 1 | HT | SC | ST | D 2 | T | D × T | ||
Glucose (µmol/L) | 337 | 347 | 322 | 409 | 16.6 | 0.4669 | 0.1527 | 0.2477 |
Total protein (µg/mL) | 882 a | 780 b | 882 a | 783 b | 39.1 | 0.9812 | 0.0461 | 0.9802 |
Albumin (µg/mL) | 337 | 348 | 329 | 401 | 14.6 | 0.4396 | 0.0688 | 0.0603 |
Globulin (µg/mL) | 545 a | 432 b | 553 a | 382 b | 45.2 | 0.8259 | 0.0471 | 0.7549 |
Urea nitrogen (µmol/L) | 196 | 175 | 225 | 185 | 10.5 | 0.3875 | 0.0545 | 0.0622 |
Blood calcium (mmol/L) | 2.37 | 2.42 | 2.73 | 2.57 | 0.10 | 0.2176 | 0.7950 | 0.6140 |
Serum phosphorus (mmol/L) | 1.22 | 1.20 | 1.46 | 1.29 | 0.05 | 0.1215 | 0.3533 | 0.4729 |
Total cholesterol (mmol/L) | 13.2 | 12.9 | 12.5 | 11.9 | 0.24 | 0.0789 | 0.3642 | 0.8176 |
Triglyceride (mmol/L) | 13.1 | 13.0 | 13.7 | 14.0 | 0.23 | 0.1006 | 0.8451 | 0.6329 |
Non-esterified fatty acid (µmol/L) | 685 | 681 | 670 | 598 | 16.4 | 0.1333 | 0.2429 | 0.2773 |
β-hydroxybutyric acid (µmol/L) | 223 | 208 | 213 | 205 | 11.6 | 0.8053 | 0.6498 | 0.9035 |
Acetoacetic acid (µmol/L) | 19.3 b | 16.7 b | 23.3 a | 21.5 a | 1.10 | 0.0464 | 0.2970 | 0.8310 |
Acetyl coenzyme A (U/L) | 53.2 | 46.5 | 40.5 | 51.5 | 2.56 | 0.4567 | 0.6676 | 0.1012 |
Fatty acid synthetase (U/mL) | 12.2 | 10.4 | 10.6 | 13.5 | 0.57 | 0.4710 | 0.6015 | 0.0472 |
Adipose triglyceride lipase (U/L) | 2009 | 1670 | 1887 | 1761 | 100 | 0.5442 | 0.2952 | 0.6260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, X.; Bai, C.; Chen, G.; Sun, J.; Du, H.; Shen, C.; Huo, W.; Liu, Q.; Wang, C.; Chen, L.; et al. Short-Term Effects of Alfalfa Silage Versus Hay, with or Without Hydrolysable Tannins, on Production Performance, Rumen Fermentation, and Nutrient Digestibility in Mid-Lactation Dairy Cows. Microorganisms 2025, 13, 2327. https://doi.org/10.3390/microorganisms13102327
Miao X, Bai C, Chen G, Sun J, Du H, Shen C, Huo W, Liu Q, Wang C, Chen L, et al. Short-Term Effects of Alfalfa Silage Versus Hay, with or Without Hydrolysable Tannins, on Production Performance, Rumen Fermentation, and Nutrient Digestibility in Mid-Lactation Dairy Cows. Microorganisms. 2025; 13(10):2327. https://doi.org/10.3390/microorganisms13102327
Chicago/Turabian StyleMiao, Xuning, Chun Bai, Guofang Chen, Jiajin Sun, He Du, Chen Shen, Wenjie Huo, Qiang Liu, Cong Wang, Lei Chen, and et al. 2025. "Short-Term Effects of Alfalfa Silage Versus Hay, with or Without Hydrolysable Tannins, on Production Performance, Rumen Fermentation, and Nutrient Digestibility in Mid-Lactation Dairy Cows" Microorganisms 13, no. 10: 2327. https://doi.org/10.3390/microorganisms13102327
APA StyleMiao, X., Bai, C., Chen, G., Sun, J., Du, H., Shen, C., Huo, W., Liu, Q., Wang, C., Chen, L., & Guo, G. (2025). Short-Term Effects of Alfalfa Silage Versus Hay, with or Without Hydrolysable Tannins, on Production Performance, Rumen Fermentation, and Nutrient Digestibility in Mid-Lactation Dairy Cows. Microorganisms, 13(10), 2327. https://doi.org/10.3390/microorganisms13102327