The Effect of Cefazolin on the Gut Microbiome of Female Rats After Spinal Cord Injury
Abstract
1. Introduction
2. Results
2.1. Study Design and Sample Collection
2.2. Beta Diversity Reveals Distinct Clustering Between INJURY and SHAM Groups
2.3. Alpha Diversity Is Reduced Following Cefazolin Administration and Spinal Cord Injury
2.4. Firmicutes/Bacteroidetes Ratio Is Reduced by Cefazolin and SCI
2.5. Temporal Beta Diversity Patterns Reveal Acute Microbial Disruption Post-SCI
2.6. Longitudinal Alpha Diversity Indicates Acute Loss of Richness and Diversity Post-Injury
2.7. F/B Ratio Indicates Transient Phylum-Level Dysbiosis After SCI and Cefazolin Administration
2.8. Differential Abundance Taxa Identify Microbial Biomarkers Associated with Injury and Treatment
3. Discussion
4. Materials and Methods
4.1. Animal Housing
4.2. Laminectomy, Spinal Cord Injury (SCI), and Drug Administration
4.3. Rat Fecal Matter Collection
4.4. Genomic DNA Extraction
4.5. Microbial Community Analyses
4.5.1. Beta Diversity
4.5.2. Alpha Diversity, Taxonomic Profiles, and Microbial Biomarkers
4.5.3. F/B Ratio
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amanat, M.; Vaccaro, A.R.; Salehi, M.; Rahimi-Movaghar, V. Neurological conditions associated with spinal cord injury. Inform. Med. Unlocked 2019, 16, 100245. [Google Scholar] [CrossRef]
- Wulf, M.J.; Tom, V.J. Consequences of spinal cord injury on the sympathetic nervous system. Front. Cell. Neurosci. 2023, 17, 999253. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Zhang, S.; Yang, M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell 2023, 14, 635–652. [Google Scholar] [CrossRef] [PubMed]
- Katoh, H.; Yokota, K.; Fehlings, M.G. Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds. Front. Cell. Neurosci. 2019, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef]
- Brakel, K.; Aceves, M.; Garza, A.; Yoo, C.; Escobedo, G.; Panchani, N.; Shapiro, L.; Hook, M. Inflammation increases the development of depression behaviors in male rats after spinal cord injury. Brain Behav. Immun. Health 2021, 14, 100258. [Google Scholar] [CrossRef]
- Sauerbeck, A.D.; Laws, J.L.; Bandaru, V.V.; Popovich, P.G.; Haughey, N.J.; McTigue, D.M. Spinal cord injury causes chronic liver pathology in rats. J. Neurotrauma 2015, 32, 159–169. [Google Scholar] [CrossRef]
- Mifflin, K.A.; Brennan, F.H.; Guan, Z.; Kigerl, K.A.; Filous, A.R.; Mo, X.; Schwab, J.M.; Popovich, P.G. Spinal Cord Injury Impairs Lung Immunity in Mice. J. Immunol. 2022, 209, 157–170. [Google Scholar] [CrossRef]
- Saengsuwan, J.; Ruangsuphaphichat, A.; Brockmann, L.; Sirasaporn, P.; Manimmanakorn, N.; Hunt, K.J. Diurnal variation of heart rate variability in individuals with spinal cord injury. Biomed. Eng. Online 2024, 23, 1–12. [Google Scholar] [CrossRef]
- Osei-Owusu, P.; Collyer, E.; Dahlen, S.A.; Adams, R.E.; Tom, V.J. Maladaptation of renal hemodynamics contributes to kidney dysfunction resulting from thoracic spinal cord injury in mice. Am. J. Physiol. Physiol. 2022, 323, F120–F140. [Google Scholar] [CrossRef]
- Schwab, J.M.; Zhang, Y.; Kopp, M.A.; Brommer, B.; Popovich, P.G. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp. Neurol. 2014, 258, 121–129. [Google Scholar] [CrossRef]
- Kwiecien, J.M.; Dabrowski, W.; Dąbrowska-Bouta, B.; Sulkowski, G.; Oakden, W.; Kwiecien-Delaney, C.J.; Yaron, J.R.; Zhang, L.; Schutz, L.; Marzec-Kotarska, B.; et al. Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS ONE 2020, 15, e0226584. [Google Scholar] [CrossRef]
- Holmes, G.M.; Blanke, E.N. Gastrointestinal dysfunction after spinal cord injury. Exp. Neurol. 2019, 320, 113009. [Google Scholar] [CrossRef] [PubMed]
- Quadri, S.A.; Farooqui, M.; Ikram, A.; Zafar, A.; Khan, M.A.; Suriya, S.S.; Claus, C.F.; Fiani, B.; Rahman, M.; Ramachandran, A.; et al. Recent update on basic mechanisms of spinal cord injury. Neurosurg. Rev. 2020, 43, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Herrera, J.; Bockhorst, K.; Bhattarai, D.; Uray, K. Gastrointestinal vascular permeability changes following spinal cord injury. Neurogastroenterol. Motil. 2020, 32, e13834. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Yang, D.; Bai, F.; Zhang, C.; Qin, C.; Li, D.; Wang, L.; Yang, M.; Chen, Z.; Li, J. Melatonin treatment alleviates spinal cord injury-induced gut dysbiosis in mice. J. Neurotrauma 2019, 36, 2646–2664. [Google Scholar] [CrossRef]
- Reynoso-García, J.; Miranda-Santiago, A.E.; Meléndez-Vázquez, N.M.; Acosta-Pagán, K.; Sánchez-Rosado, M.; Díaz-Rivera, J.; Rosado-Quiñones, A.M.; Acevedo-Márquez, L.; Cruz-Roldán, L.; Tosado-Rodríguez, E.L.; et al. A complete guide to human microbiomes: Body niches, transmission, development, dysbiosis, and restoration. Front. Syst. Biol. 2022, 2, 951403. [Google Scholar] [CrossRef]
- Dethlefsen, L.; McFall-Ngai, M.; Relman, D.A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 2007, 449, 811–818. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, K.-Y.; Jang, Y.-S. Mucosal Immune System and M Cell-targeting Strategies for Oral Mucosal Vaccination. Immune Netw. 2012, 12, 165–175. [Google Scholar] [CrossRef]
- Morowitz, M.J.; Carlisle, E.M.; Alverdy, J.C. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg. Clin. N. Am. 2011, 91, 771–785. [Google Scholar] [CrossRef]
- Hrncir, T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Y.; Dai, N.; Yang, Y.; He, Y.; Chen, H.; Zhao, M.; Fu, X.; Chen, T.; Xing, Z. Functional metagenomic and metabolomics analysis of gut dysbiosis induced by hyperoxia. Front. Microbiol. 2023, 14, 1197970. [Google Scholar] [CrossRef] [PubMed]
- Grigor’eva, I.N. Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. J. Pers. Med. 2020, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Mariman, R.; Kremer, B.; Koning, F.; Nagelkerken, L. The probiotic mixture VSL#3 mediates both pro- and anti-inflammatory responses in bone marrow-derived dendritic cells from C57BL/6 and BALB/c mice. Br. J. Nutr. 2014, 112, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Welch, B.A.; Harris, K.K.; Garrett, M.R.; Grayson, B.E. Nutrient composition influences the gut microbiota in chronic thoracic spinal cord-injured rats. Physiol. Genom. 2022, 54, 402–415. [Google Scholar] [CrossRef]
- Du, D.; Tang, W.; Zhou, C.; Sun, X.; Wei, Z.; Zhong, J.; Huang, Z. Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury. Oxidative Med. Cell. Longev. 2021, 2021, 5816837. [Google Scholar] [CrossRef]
- Bazzocchi, G.; Turroni, S.; Bulzamini, M.C.; D’aMico, F.; Bava, A.; Castiglioni, M.; Cagnetta, V.; Losavio, E.; Cazzaniga, M.; Terenghi, L.; et al. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Kong, G.; Zhang, W.; Zhang, S.; Chen, J.; He, K.; Zhang, C.; Yuan, X.; Xie, B. The gut microbiota and metabolite profiles are altered in patients with spinal cord injury. Mol. Brain 2023, 16, 1–14. [Google Scholar] [CrossRef]
- Gungor, B.; Adiguzel, E.; Gursel, I.; Yilmaz, B.; Gursel, M. Intestinal microbiota in patients with spinal cord injury. PLoS ONE 2016, 11, e0145878. [Google Scholar] [CrossRef]
- Kigerl, K.A.; Hall, J.C.; Wang, L.; Mo, X.; Yu, Z.; Popovich, P.G. Gut dysbiosis impairs recovery after spinal cord injury. J. Exp. Med. 2016, 213, 2603–2620. [Google Scholar] [CrossRef]
- Matei-Lațiu, M.-C.; Gal, A.-F.; Rus, V.; Buza, V.; Martonos, C.; Lațiu, C.; Ștefănuț, L.-C. Intestinal Dysbiosis in Rats: Interaction between Amoxicillin and Probiotics, a Histological and Immunohistochemical Evaluation. Nutrients 2023, 15, 1105. [Google Scholar] [CrossRef]
- Yao, G.; Cao, C.; Zhang, M.; Kwok, L.Y.; Zhang, H.; Zhang, W. Lactobacillus casei Zhang exerts probiotic effects to antibi-otic-treated rats. Comput. Struct. Biotechnol. J. 2021, 19, 5888–5897. [Google Scholar] [PubMed]
- Wu, H.; Ma, Y.; Peng, X.; Qiu, W.; Kong, L.; Ren, B.; Li, M.; Cheng, G.; Zhou, X.; Cheng, L. Antibiotic-induced dysbiosis of the rat oral and gut microbiota and resistance to Salmonella. Arch. Oral Biol. 2020, 114, 104730. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, Z.; Li, C.; Chen, J.; Zhou, X.; Cui, J.; Liu, P.; Shen, C.; Chen, C.; Hong, H.; et al. Hspb1 and Lgals3 in spinal neurons are closely associated with autophagy following excitotoxicity based on machine learning algorithms. PLoS ONE 2024, 19, e0303235. [Google Scholar] [CrossRef]
- Jing, Y.; Yang, D.; Bai, F.; Wang, Q.; Zhang, C.; Yan, Y.; Li, Z.; Li, Y.; Chen, Z.; Li, J.; et al. Spinal cord injury-induced gut dysbiosis influences neurological recovery partly through short-chain fatty acids. npj Biofilms Microbiomes 2023, 9, 1–15. [Google Scholar] [CrossRef]
- Gur Arie, A.; Toren, I.; Hadar, R.; Braun, T.; Efroni, G.; Glick Saar, E.; Madar, Z.; Amir, A.; Zeilig, G.; Haberman, Y. Lack of gut microbiome recovery with spinal cord injury rehabilitation. Gut Microbes 2024, 16, 2309682. [Google Scholar]
- Schmidt, E.K.A.; Raposo, P.J.F.; Torres-Espin, A.; Fenrich, K.K.; Fouad, K. Beyond the lesion site: Minocycline augments inflammation and anxiety-like behavior following SCI in rats through action on the gut microbiota. J. Neuroinflammation 2021, 18, 1–16. [Google Scholar] [CrossRef]
- Rastogi, S.; Singh, A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front. Pharmacol. 2022, 13, 1042189. [Google Scholar] [CrossRef]
- Xin, Y.; Peng, G.; Song, W.; Zhou, X.; Huang, X.; Cao, X. Gut microbiota as a prognostic biomarker for unresectable hepatocellular carcinoma treated with anti-PD-1 therapy. Front. Genet. 2024, 15, 1366131. [Google Scholar] [CrossRef]
- Yan, X.; Feng, Y.; Hao, Y.; Zhong, R.; Jiang, Y.; Tang, X.; Lu, D.; Fang, H.; Agarwal, M.; Chen, L.; et al. Gut-Testis Axis: Microbiota Prime Metabolome to Increase Sperm Quality in Young Type 2 Diabetes. Microbiol. Spectr. 2022, 10, e0142322. [Google Scholar] [CrossRef]
- Wang, J.; Qie, J.; Zhu, D.; Zhang, X.; Zhang, Q.; Xu, Y.; Wang, Y.; Mi, K.; Pei, Y.; Liu, Y.; et al. The landscape in the gut microbiome of long-lived families reveals new insights on longevity and aging—Relevant neural and immune function. Gut Microbes 2022, 14, 2107288. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Van Der Pol, W.; Eraslan, M.; McLain, A.; Cetin, H.; Cetin, B.; Morrow, C.; Carson, T.; Yarar-Fisher, C. Comparison of the gut microbiome composition among individuals with acute or long-standing spinal cord injury vs. able-bodied controls. J. Spinal Cord Med. 2022, 45, 91–99. [Google Scholar] [CrossRef] [PubMed]
- DiSabato, D.J.; Marion, C.M.; Mifflin, K.A.; Alfredo, A.N.; Rodgers, K.A.; Kigerl, K.A.; Popovich, P.G.; McTigue, D.M. System failure: Systemic inflammation following spinal cord injury. Eur. J. Immunol. 2023, 54, e2250274. [Google Scholar] [CrossRef] [PubMed]
- Colón-Mercado, J.M.; Torrado-Tapias, A.I.; Salgado, I.K.; Santiago, J.M.; Rivera, S.E.O.; Bracho-Rincon, D.P.; Rivera, L.H.P.; Miranda, J.D. The sexually dimorphic expression of glutamate transporters and their implication in pain after spinal cord injury. Neural Regen. Res. 2025, 20, 3317–3329. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Xia, H.; Wang, B.; Zhang, R.; Zeng, Q.; Guo, L.; Shen, K.; Wang, B.; Zhong, Y.; et al. CD8 T cell-derived perforin aggravates secondary spinal cord injury through destroying the blood-spinal cord barrier. Biochem. Biophys. Res. Commun. 2019, 512, 367–372. [Google Scholar] [CrossRef]
- Burke, D.A.; Magnuson, D.S.K.; Nunn, C.D.; Fentress, K.G.; Wilson, M.L.; Shum-Siu, A.H.; Moore, M.C.; Turner, L.E.; King, W.W.; Onifer, S.M. Use of environmentally enriched housing for rats with spinal cord injury: The need for standardization. J. Am. Assoc. Lab. Anim. Sci. 2007, 46, 34–41. [Google Scholar]
- Rosas, O.R.; Figueroa, J.D.; Torrado, A.I.; Rivera, M.; Santiago, J.M.; Konig-Toro, F.; Miranda, J.D. Expression and activation of ephexin is altered after spinal cord injury. Dev. Neurobiol. 2010, 71, 595–607. [Google Scholar] [CrossRef]
- Santiago, J.M.; Rosas, O.; Torrado, A.I.; González, M.M.; Kalyan-Masih, P.O.; Miranda, J.D. Molecular, Anatomical, Physiological, and Behavioral Studies of Rats Treated with Buprenorphine after Spinal Cord Injury. J. Neurotrauma 2009, 26, 1783–1793. [Google Scholar] [CrossRef]
- Colón, J.M.; Torrado, A.I.; Cajigas, Á.; Santiago, J.M.; Salgado, I.K.; Arroyo, Y.; Miranda, J.D. Tamoxifen administration immediately or 24 hours after spinal cord injury improves locomotor recovery and reduces secondary damage in female rats. J. Neurotrauma 2016, 33, 1696–1708. [Google Scholar] [CrossRef]
- Gonzalez, A.; Navas-Molina, J.A.; Kosciolek, T.; McDonald, D.; Vázquez-Baeza, Y.; Ackermann, G.; Dereus, J.; Janssen, S.; Swafford, A.D.; Orchanian, S.B.; et al. Qiita: Rapid, web-enabled microbiome meta-analysis. Nat. Methods 2018, 15, 796–798. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, G.; Ewald, J.; Pang, Z.; Shiri, T.; Xia, J. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 2023, 51, W310–W318. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagán-Rivera, L.H.; Godoy-Vitorino, F.; Meléndez-Vázquez, N.M.; Ocasio-Rivera, S.E.; Santiago-Gascot, M.E.; Santiago, J.M.; Salgado, I.; González, V.; Martínez-Guzmán, O.; Cáceres-Chacón, M.; et al. The Effect of Cefazolin on the Gut Microbiome of Female Rats After Spinal Cord Injury. Microorganisms 2025, 13, 2324. https://doi.org/10.3390/microorganisms13102324
Pagán-Rivera LH, Godoy-Vitorino F, Meléndez-Vázquez NM, Ocasio-Rivera SE, Santiago-Gascot ME, Santiago JM, Salgado I, González V, Martínez-Guzmán O, Cáceres-Chacón M, et al. The Effect of Cefazolin on the Gut Microbiome of Female Rats After Spinal Cord Injury. Microorganisms. 2025; 13(10):2324. https://doi.org/10.3390/microorganisms13102324
Chicago/Turabian StylePagán-Rivera, Luis H., Filipa Godoy-Vitorino, Natalie M. Meléndez-Vázquez, Samuel E. Ocasio-Rivera, María E. Santiago-Gascot, Jose M. Santiago, Iris Salgado, Viviana González, Osmarie Martínez-Guzmán, Mauricio Cáceres-Chacón, and et al. 2025. "The Effect of Cefazolin on the Gut Microbiome of Female Rats After Spinal Cord Injury" Microorganisms 13, no. 10: 2324. https://doi.org/10.3390/microorganisms13102324
APA StylePagán-Rivera, L. H., Godoy-Vitorino, F., Meléndez-Vázquez, N. M., Ocasio-Rivera, S. E., Santiago-Gascot, M. E., Santiago, J. M., Salgado, I., González, V., Martínez-Guzmán, O., Cáceres-Chacón, M., Torrado-Tapias, A., & Miranda, J. D. (2025). The Effect of Cefazolin on the Gut Microbiome of Female Rats After Spinal Cord Injury. Microorganisms, 13(10), 2324. https://doi.org/10.3390/microorganisms13102324