Research Progress in the Development of Vaccines Against Riemerella anatipestifer
Abstract
1. Introduction
2. Conventional Vaccines
2.1. Inactivated Vaccines
2.2. Live Attenuated Vaccines
3. Genetic Engineering Vaccines
3.1. Subunit Vaccines
3.2. Recombinant Vector Live Vaccines
3.3. Gene Deletion Vaccines
3.3.1. Capsule and Outer Membrane Protein Targets
3.3.2. Iron Acquisition System Targets
3.3.3. Regulatory Gene Targets
3.3.4. LPS Synthesis Pathway Targets
3.4. DNA Vaccines
4. Immune Program and Immunologic Adjuvant
5. Prospects and Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Huang, M.; Shui, Y.; Biville, F.; Zhu, D.; Wang, M.; Jia, R.; Chen, S.; Sun, K.; Zhao, X.; et al. Roles of B739_1343 in iron acquisition and pathogenesis in Riemerella anatipestifer CH-1 and evaluation of the RA-CH-1ΔB739_1343 mutant as an attenuated vaccine. PLoS ONE 2018, 13, e0197310. [Google Scholar] [CrossRef]
- Flores, R.A.; Cammayo, P.L.T.; Nguyen, B.T.; Fernandez-Colorado, C.P.; Kim, S.; Kim, W.H.; Min, W. Duck Interleukin-22: Identification and Expression Analysis in Riemerella anatipestifer Infection. J. Immunol. Res. 2021, 2021, 3862492. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Xu, X.; Gu, J.; Yang, Y.; Liu, T.; Wang, S.; Chen, S.; Li, J. Duck Complement Factor H Binds to Outer Membrane Protein Omp24 of Riemerella anatipestifer. Avian Dis. 2021, 65, 261–268. [Google Scholar] [CrossRef]
- Gyuris, E.; Wehmann, E.; Czeibert, K.; Magyar, T. Antimicrobial susceptibility of Riemerella anatipestifer strains isolated from geese and ducks in Hungary. Acta Vet. Hung. 2017, 65, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.L. Pasteurella anatipestifer infections in California turkey flocks: Circumstantial evidence of a mosquito vector. Avian Dis. 1989, 33, 809–815. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, Z.; Hu, M.; Ma, J.; Luo, Y.; Zhang, Q.; Li, L.; Zhao, X.; Zhao, M.; et al. Genomic analysis and experimental pathogenic characterization of Riemerella anatipestifer isolates from chickens in China. Poult. Sci. 2024, 103, 103497. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, H.; Liao, C.; Zhao, J.; Wang, J.; Liu, Y.; Han, Q.; Zhang, H. In Silico Analysis and Immune Response of YaeT Protein Against Riemerella anatipestifer in Ducks. Appl. Biochem. Biotechnol. 2023, 195, 7483–7501. [Google Scholar] [CrossRef]
- Deka, N.J.; Kalita, D.J.; Tamuly, S.; Sharma, R.K.; Bora, D.P.; Dutta, R.; Hazorika, M.; Chabukdhara, P.; George, S. Calcium phosphate nanoparticles conjugated with outer membrane vesicle of Riemerella anatipestifer for vaccine development in ducklings. Microb. Pathog. 2023, 185, 106446. [Google Scholar] [CrossRef]
- Huang, M.; Liu, M.; Liu, J.; Wang, M.; Jia, R.; Zhu, D.; Chen, S.; Zhao, X.; Yang, Q.; Wu, Y.; et al. Evaluation of the immunoprotection efficacy of Riemerella anatipestifer fur-deficient mutant as an attenuated vaccine. Poult. Sci. 2023, 102, 102450. [Google Scholar] [CrossRef]
- Sawicka-Durkalec, A.; Tomczyk, G.; Gerilovych, I.; Kursa, O. Molecular Detection and Phylogenetic Analysis of Riemerella anatipestifer in Poultry and Wild Geese in Poland. Pathogens 2023, 12, 256. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Zhu, D.; Yang, L.; Liu, M.; Yin, S.; Wang, M.; Jia, R.; Chen, S.; Sun, K.; et al. Comparative genomics of Riemerella anatipestifer reveals genetic diversity. BMC Genom. 2014, 15, 479. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, S.; Yang, Z.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhao, X.; Yang, Q.; Wu, Y.; et al. Capsular polysaccharide determines the serotyping of Riemerella anatipestifer. Microbiol. Spectr. 2023, 11, e0180423. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, J.; He, X.; Wang, Y.; Su, J.; Long, J.; Zhang, L.; Guo, Z.; Zheng, Y.; Wang, M.; et al. Unveiling the silent threat: A comprehensive review of Riemerella anatipestifer—From pathogenesis to drug resistance. Poult. Sci. 2025, 104, 104915. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.T.; Dang, V.T.; Le, D.H.; Nguyen, T.H. Identification, serotyping, and antimicrobial susceptibility of Riemerella anatipestifer isolated from ducks in Vietnam. Open Vet. J. 2022, 12, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Omaleki, L.; Blackall, P.J.; Bisgaard, M.; Turni, C. Molecular and serological characterization of Riemerella isolates associated with poultry in Australia. Avian Pathol. 2021, 50, 31–40. [Google Scholar] [CrossRef]
- Lyu, Z.; Han, S.; Li, J.; Guo, Z.; Geng, N.; Lyu, C.; Qin, L.; Li, N. Epidemiological investigation and drug resistance characteristics of Riemerella anatipestifer strains from large-scale duck farms in Shandong Province, China from March 2020 to March 2022. Poult. Sci. 2023, 102, 102759. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; He, X.; Du, X.; Gao, Y.; Shan, X.; Hu, Z.; Hu, Q. PaR1 secreted by the type IX secretion system is a protective antigen of Riemerella anatipestifer. Front. Microbiol. 2022, 13, 1082712. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Wang, Y.; Zhang, Y.; Shi, B.; Gan, L.; Yu, S.; Jia, X.; Yang, K.; Li, Z. Immunogenicity of live phoP gene deletion strain of Riemerella anatipestifer serotype 1. Poult. Sci. 2023, 102, 102294. [Google Scholar] [CrossRef]
- Yang, S.; Dong, W.; Li, G.; Zhao, Z.; Song, M.; Huang, Z.; Fu, J.; Jia, F.; Lin, S. A recombinant vaccine of Riemerella anatipestifer OmpA fused with duck IgY Fc and Schisandra chinensis polysaccharide adjuvant enhance protective immune response. Microb. Pathog. 2019, 136, 103707. [Google Scholar] [CrossRef]
- Sandhu, T. Immunization of White Pekin ducklings against Pasteurella anatipestifer infection. Avian Dis. 1979, 23, 662–669. [Google Scholar] [CrossRef]
- Chu, C.Y.; Liu, C.H.; Liou, J.J.; Lee, J.W.; Cheng, L.T. Development of a subunit vaccine containing recombinant Riemerella anatipestifer outer membrane protein A and CpG ODN adjuvant. Vaccine 2015, 33, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Seo, H.S.; Soh, S.H.; Jang, H.K. Immunogenicity and safety of a live Riemerella anatipestifer vaccine and the contribution of IgA to protective efficacy in Pekin ducks. Vet. Microbiol. 2018, 222, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Ding, C.; Tu, J.; Wang, X.; Han, X.; Duan, Y.; Yu, S. Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer. Vet. Microbiol. 2012, 157, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Pathanasophon, P.; Phuektes, P.; Tanticharoenyos, T.; Narongsak, W.; Sawada, T. A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol. 2002, 31, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Li, H.; Yang, D.; Yin, L.; Wu, Y.; Liu, J.; Zhou, Q. A novel bivalent inactivated vaccine for ducks against Riemerella anatipestifer based on serotype distribution in southern China. Poult. Sci. 2024, 103, 103427. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Ding, C.; Han, X.; Cheng, A.; Wang, S.; Yu, S. Development and evaluation of a trivalent Riemerella anatipestifer-inactivated vaccine. Clin. Vaccine Immunol. 2013, 20, 691–697. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, D.; Guo, J.; Wang, T.; Xiao, Y.; Wang, X.; Li, S.; Liu, M.; Li, Z.; Bi, D.; et al. Riemerella anatipestifer Type IX Secretion System Is Required for Virulence and Gelatinase Secretion. Front. Microbiol. 2017, 8, 2553. [Google Scholar] [CrossRef]
- Yu, G.; Wang, X.; Dou, Y.; Wang, S.; Tian, M.; Qi, J.; Li, T.; Ding, C.; Wu, Y.; Yu, S. Riemerella anatipestifer M949_1360 Gene Functions on the Lipopolysaccharide Biosynthesis and Bacterial Virulence. PLoS ONE 2016, 11, e0160708. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Dou, Y.; Fan, H.; Wang, S.; Li, T.; Ding, C.; Yu, S. The Riemerella anatipestifer AS87_01735 Gene Encodes Nicotinamidase PncA, an Important Virulence Factor. Appl. Environ. Microbiol. 2016, 82, 5815–5823. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Q.; Zhang, J.; Luo, Y.; Luo, Y.; Liu, Q.; Li, P.; Kong, Q. Identification of a gene in Riemerella anatipestifer CH-1 (B739-2187) that contributes to resistance to polymyxin B and evaluation of its mutant as a live attenuated vaccine. Microb. Pathog. 2016, 91, 99–106. [Google Scholar] [CrossRef]
- Zou, J.; Wang, X.; Ding, C.; Tian, M.; Han, X.; Wang, S.; Yu, S. Characterization and cross-protection evaluation of M949_1603 gene deletion Riemerella anatipestifer mutant RA-M1. Appl. Microbiol. Biotechnol. 2015, 99, 10107–10116. [Google Scholar] [CrossRef]
- Zou, J.; Wang, X.; Tian, M.; Cao, S.; Hou, W.; Wang, S.; Han, X.; Ding, C.; Yu, S. The M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of Riemerella anatipestifer. Vet. Microbiol. 2015, 177, 193–200. [Google Scholar] [CrossRef]
- Subramaniam, S.; Huang, B.; Loh, H.; Kwang, J.; Tan, H.M.; Chua, K.L.; Frey, J. Characterization of a predominant immunogenic outer membrane protein of Riemerella anatipestifer. Clin. Diagn. Lab. Immunol. 2000, 7, 168–174. [Google Scholar] [CrossRef]
- Wu, H.C.; Chang, W.C.; Wu, M.C.; Wang, H.Y.; Chu, C.Y. Assessment of immunization regimens of duck Riemerella anatipestifer vaccines. J. Appl. Microbiol. 2020, 129, 1185–1192. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y.; Miao, S.; Jiang, P.; Cui, J.; Gong, Y.; Tan, P.; Du, X.; Islam, N.; Hu, Q. Evaluation of the protective immunity of Riemerella anatipestifer OmpA. Appl. Microbiol. Biotechnol. 2020, 104, 1273–1281. [Google Scholar] [CrossRef]
- Han, X.; Hu, Q.; Ding, S.; Chen, W.; Ding, C.; He, L.; Wang, X.; Ding, J.; Yu, S. Identification and immunological characteristics of chaperonin GroEL in Riemerella anatipestifer. Appl. Microbiol. Biotechnol. 2012, 93, 1197–1205. [Google Scholar] [CrossRef]
- Phonvisay, M.; Lee, J.W.; Liou, J.J.; Wang, H.Y.; Chu, C.Y. Evaluation of Long-term Antibody Response and Cross-serotype Reaction in Ducks Immunised with Recombinant Riemerella anatipestifer Outer Membrane Protein A and CpG ODN. J. Vet. Res. 2019, 63, 543–548. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, C.; Liao, Y.; Luo, Q.; Hu, X.; Zhang, W.; Shao, H.; Cheng, G. Protein expressions and their immunogenicity from Riemerella anatipestifer cultured in iron restriction medium. PLoS ONE 2013, 8, e65901. [Google Scholar] [CrossRef]
- Zhai, Z.; Li, X.; Xiao, X.; Yu, J.; Chen, M.; Yu, Y.; Wu, G.; Li, Y.; Ye, L.; Yao, H.; et al. Immunoproteomics selection of cross-protective vaccine candidates from Riemerella anatipestifer serotypes 1 and 2. Vet. Microbiol. 2013, 162, 850–857. [Google Scholar] [CrossRef]
- Huang, B.; Subramaniam, S.; Frey, J.; Loh, H.; Tan, H.M.; Fernandez, C.J.; Kwang, J.; Chua, K.L. Vaccination of ducks with recombinant outer membrane protein (OmpA) and a 41 kDa partial protein (P45N′) of Riemerella anatipestifer. Vet. Microbiol. 2002, 84, 219–230. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, S.; Wang, Z.; Tao, X.; Liu, Y.; Dai, L.; Li, Y.; Zhang, W. Sifting through the core-genome to identify putative cross-protective antigens against Riemerella anatipestifer. Appl. Microbiol. Biotechnol. 2023, 107, 3085–3098. [Google Scholar] [CrossRef]
- Yang, D.; Mai, K.; Zhou, Q.; Zhu, Y.; Xing, J.; Luo, C.; Liu, S.; Zhou, Q.; Huang, W.; Luo, J.; et al. The protective efficacy of specific egg yolk immunoglobulin Y(IgY) against Riemerella anatipestifer infections. Vet. Microbiol. 2020, 243, 108642. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L.; Zhang, M.; Zhan, H.; Wang, C.; Wang, M.; Chen, S.; Jia, R.; Yang, Q.; Zhu, D.; et al. A Recombinant Duck Plague Virus Containing the ICP27 Deletion Marker Provides Robust Protection in Ducks. Microbiol. Spectr. 2023, 11, e0098323. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, S.; He, Q.; Wang, M.; Chen, S.; Jia, R.; Yang, Q.; Zhu, D.; Liu, M.; Zhao, X.; et al. Deletion of Double Copies of the US1 Gene Reduces the Infectivity of Recombinant Duck Plague Virus In Vitro and In Vivo. Microbiol. Spectr. 2022, 10, e0114022. [Google Scholar] [CrossRef]
- Ruan, P.; Feng, X.; Cheng, A.; Wang, M.; Zhang, W.; Wu, Y.; Yang, Q.; Tian, B.; Ou, X.; Sun, D.; et al. Evaluation of safety and immunogenicity of duck-plague virus gC/gE double gene deletion. Front. Immunol. 2022, 13, 963009. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, S.H.; Kim, J.; Lee, J.; Jeong, J.H.; Kim, J.Y.; Song, S.U.; Lee, H.; Cho, A.Y.; Hyeon, J.Y.; et al. Efficacy of live and inactivated recombinant Newcastle disease virus vaccines expressing clade 2.3.4.4b H5 hemagglutinin against H5N1 highly pathogenic avian influenza in SPF chickens, Broilers, and domestic ducks. Vaccine 2024, 42, 3756–3767. [Google Scholar] [CrossRef]
- Wen, Y.; Kong, J.; Shen, Y.; He, J.; Shao, G.; Feng, K.; Xie, Q.; Zhang, X. Construction and immune evaluation of the recombinant duck adenovirus type 3 delivering capsid protein VP1 of the type 1 duck hepatitis virus. Poult. Sci. 2023, 102, 103117. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, Y.; Chen, L.; Li, Z.; Lv, P.; Wang, P.; Li, N.; Wang, F. Bacillus subtilis expressing duck Tembusu virus E protein induces immune protection in ducklings. Microb. Pathog. 2023, 185, 106419. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wang, Z.; Dai, X.; Cao, Y.; Zhang, M.; Zhang, D.; Ni, X.; Zeng, Y.; Pan, K. Surface Display of Duck Hepatitis A Virus Type 1 VP1 Protein on Bacillus subtilis Spores Elicits Specific Systemic and Mucosal Immune Responses on Mice. In Probiotics Antimicrobial Proteins; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Zhang, X.; Zhang, R.; Wang, J.; Sui, N.; Xu, G.; Yan, H.; Zhu, Y.; Xie, Z.; Jiang, S. Construction of Recombinant Lactococcus lactis Strain Expressing VP1 Fusion Protein of Duck Hepatitis A Virus Type 1 and Evaluation of Its Immune Effect. Vaccines 2021, 9, 1479. [Google Scholar] [CrossRef]
- Song, S.; Li, P.; Zhang, R.; Chen, J.; Lan, J.; Lin, S.; Guo, G.; Xie, Z.; Jiang, S. Oral vaccine of recombinant Lactococcus lactis expressing the VP1 protein of duck hepatitis A virus type 3 induces mucosal and systemic immune responses. Vaccine 2019, 37, 4364–4369. [Google Scholar] [CrossRef]
- Amonov, M.; Simbak, N.; Wan Hassan, W.M.R.; Ismail, S.; NI, A.R.; Clarke, S.C.; Yeo, C.C. Disruption of the cpsE and endA Genes Attenuates Streptococcus pneumoniae Virulence: Towards the Development of a Live Attenuated Vaccine Candidate. Vaccines 2020, 8, 187. [Google Scholar] [CrossRef]
- Wei, Z.; Fu, Q.; Chen, Y.; Cong, P.; Xiao, S.; Mo, D.; He, Z.; Liu, X. The capsule of Streptococcus equi ssp. zooepidemicus is a target for attenuation in vaccine development. Vaccine 2012, 30, 4670–4675. [Google Scholar] [CrossRef]
- Wu, X.; Ge, J.; Song, G.; Liu, Y.; Gao, P.; Tian, T.; Li, X.; Xu, J.; Chu, Y.; Zheng, F. The GE296_RS03820 and GE296_RS03830 genes are involved in capsular polysaccharide biosynthesis in Riemerella anatipestifer. FASEB J. 2024, 38, e23763. [Google Scholar] [CrossRef]
- Hu, Q.; Han, X.; Zhou, X.; Ding, C.; Zhu, Y.; Yu, S. OmpA is a virulence factor of Riemerella anatipestifer. Vet. Microbiol. 2011, 150, 278–283. [Google Scholar] [CrossRef]
- Liao, H.; Cheng, X.; Zhu, D.; Wang, M.; Jia, R.; Chen, S.; Chen, X.; Biville, F.; Liu, M.; Cheng, A. TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization. PLoS ONE 2015, 10, e0127506. [Google Scholar] [CrossRef]
- Miao, S.; Xing, L.; Qi, J.; Yu, H.; Jiang, P.; Sun, B.; Cui, J.; Ou, C.; Hu, Q. Roles of the TonB1 and TonB2 proteins in haemin iron acquisition and virulence in Riemerella anatipestifer. Microbiology 2015, 161, 1592–1599. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, P.; Zhu, D.; Wang, M.; Jia, R.; Chen, S.; Sun, K.; Yang, Q.; Wu, Y.; Chen, X.; et al. Identification of the ferric iron utilization gene B739_1208 and its role in the virulence of R. anatipestifer CH-1. Vet. Microbiol. 2017, 201, 162–169. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, Y.; Jia, X.; Li, C.; Zhou, Z.; Hu, S.; Li, Z. Genome-Wide Analysis Reveals that PhoP Regulates Pathogenicity in Riemerella anatipestifer. Microbiol. Spectr. 2022, 10, e0188322. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, X.; Zhou, Z.; Hu, S.; Li, S.; Liu, M.; Wang, X.; Xiao, Y.; Shi, D.; Bi, D.; et al. Cas9 regulated gene expression and pathogenicity in Riemerella anatipestifer. Microb. Pathog. 2019, 136, 103706. [Google Scholar] [CrossRef]
- Dou, Y.; Yu, G.; Wang, X.; Wang, S.; Li, T.; Tian, M.; Qi, J.; Ding, C.; Yu, S. The Riemerella anatipestifer M949_RS01035 gene is involved in bacterial lipopolysaccharide biosynthesis. Vet. Res. 2018, 49, 93. [Google Scholar] [CrossRef]
- Wang, X.; Ding, C.; Wang, S.; Han, X.; Hou, W.; Yue, J.; Zou, J.; Yu, S. The AS87_04050 gene is involved in bacterial lipopolysaccharide biosynthesis and pathogenicity of Riemerella anatipestifer. PLoS ONE 2014, 9, e109962. [Google Scholar] [CrossRef]
- Chen, N.; Jiang, D.; Liu, Y.; Zhang, Z.; Zhou, Y.; Zhu, Z. Preparation of Escherichia coli ghost of anchoring bovine Pasteurella multocida OmpH and its immunoprotective effect. BMC Vet. Res. 2023, 19, 192. [Google Scholar] [CrossRef]
- Gong, Q.; Qu, N.; Niu, M.; Qin, C.; Cheng, M.; Sun, X.; Zhang, A. Immune responses and protective efficacy of a novel DNA vaccine encoding outer membrane protein of avian Pasteurella multocida. Vet. Immunol. Immunopathol. 2013, 152, 317–324. [Google Scholar] [CrossRef]
- Gao, X.; Ren, X.; Zhang, S.; Song, H.; Guo, X.; Jia, H.; Xin, T.; Jiang, Y.; Zhang, Z.; Hou, S. Interleukin-2 shows high adjuvanticity for an inactivated vaccine against duck Tembusu virus disease. Poult. Sci. 2020, 99, 6454–6461. [Google Scholar] [CrossRef]
- Huang, J.; Yu, T.; Long, Z.; Wang, M.; Liu, M.; Zhu, D.; Chen, S.; Zhao, X.; Yang, Q.; Wu, Y.; et al. Duck IL-7 as a novel adjuvant improves the humoral immune response to an inactivated duck tembusu virus vaccine. Vet. Microbiol. 2023, 279, 109665. [Google Scholar] [CrossRef]
- Zhao, Z.Z.; Zhang, H.B.; Chen, Q.; Su, D.; Xie, Z.; Wang, Y.Y.; Yang, Y.; Wang, Z.Z.; Li, J.L.; Wu, K.Y.; et al. Promotion of immunity of mice to Pasteurella multocida and hog cholera vaccine by pig interleukin-6 gene and CpG motifs. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 191–205. [Google Scholar] [CrossRef]
- Tzora, A.; Skoufos, S.; Bonos, E.; Fotou, K.; Karamoutsios, A.; Nelli, A.; Giannenas, I.; Tsinas, A.; Skoufos, I. Identification by MALDI-TOF MS and Antibiotic Resistance of Riemerella anatipestifer, Isolated from a Clinical Case in Commercial Broiler Chickens. Vet. Sci. 2021, 8, 29. [Google Scholar] [CrossRef]
- Chen, Y.P.; Lee, S.H.; Chou, C.H.; Tsai, H.J. Detection of florfenicol resistance genes in Riemerella anatipestifer isolated from ducks and geese. Vet. Microbiol. 2012, 154, 325–331. [Google Scholar] [CrossRef]
- Doyle, M.E. Multidrug-resistant pathogens in the food supply. Foodborne Pathog. Dis. 2015, 12, 261–279. [Google Scholar] [CrossRef]
- Chang, F.F.; Chen, C.C.; Wang, S.H.; Chen, C.L. Epidemiology and Antibiogram of Riemerella anatipestifer Isolated from Waterfowl Slaughterhouses in Taiwan. J. Vet. Res. 2019, 63, 79–86. [Google Scholar] [CrossRef]
- Pathanasophon, P.; Sawada, T.; Pramoolsinsap, T.; Tanticharoenyos, T. Immunogenicity of Riemerella anatipestifer broth culture bacterin and cell-free culture filtrate in ducks. Avian Pathol. 1996, 25, 705–719. [Google Scholar] [CrossRef]
- Sandhu, T.S. Immunogenicity and safety of a live Pasteurella anatipestifer vaccine in White Pekin ducklings: Laboratory and field trials. Avian Pathol. 1991, 20, 423–432. [Google Scholar] [CrossRef]
- Higgins, D.A.; Henry, R.R.; Kounev, Z.V. Duck immune responses to Riemerella anatipestifer vaccines. Dev. Comp. Immunol. 2000, 24, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Eladl, A.H.; Nabil, N.M.; Awad, A.; Badr, S.; Ebrahem, A.F.; Tawakol, M.M.; Hammad, E.; Ali, H.S.; El-Shafei, R.A. Effects of dietary nano-selenium supplementation on Riemerella anatipestifer vaccinated and challenged Pekin ducklings (Anas platyrhynchos). Vet. Microbiol. 2023, 284, 109816. [Google Scholar] [CrossRef] [PubMed]
- Fiyouzi, T.; Reche, P.A. Vaccine Design: An Introduction. Methods Mol. Biol. 2023, 2673, 1–14. [Google Scholar]
- Shi, B.; Yang, G.; Xiao, Y.; Qian, K.; Shao, H.; Xu, M.; Qin, A. Long-Term Protection against Virulent Newcastle Disease Virus (NDV) in Chickens Immunized with a Single Dose of Recombinant Turkey Herpesvirus Expressing NDV F Protein. Vaccines 2024, 12, 604. [Google Scholar] [CrossRef]
- Hasan, M.; Ghosh, P.P.; Azim, K.F.; Mukta, S.; Abir, R.A.; Nahar, J.; Hasan Khan, M.M. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microb. Pathog. 2019, 130, 19–37. [Google Scholar] [CrossRef]
- Zai, X.; Shi, B.; Shao, H.; Qian, K.; Ye, J.; Yao, Y.; Nair, V.; Qin, A. Identification of a Novel Insertion Site HVT-005/006 for the Generation of Recombinant Turkey Herpesvirus Vector. Front. Microbiol. 2022, 13, 886873. [Google Scholar] [CrossRef]
- Tang, N.; Zhang, Y.; Sadigh, Y.; Moffat, K.; Shen, Z.; Nair, V.; Yao, Y. Generation of A Triple Insert Live Avian Herpesvirus Vectored Vaccine Using CRISPR/Cas9-Based Gene Editing. Vaccines 2020, 8, 97. [Google Scholar] [CrossRef]
- Fagan, P.K.; Djordjevic, S.P.; Chin, J.; Eamens, G.J.; Walker, M.J. Oral immunization of mice with attenuated Salmonella typhimurium aroA expressing a recombinant Mycoplasma hyopneumoniae antigen (NrdF). Infect. Immun. 1997, 65, 2502–2507. [Google Scholar] [CrossRef]
- Okamba, F.R.; Arella, M.; Music, N.; Jia, J.J.; Gottschalk, M.; Gagnon, C.A. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine. Vaccine 2010, 28, 4802–4809. [Google Scholar] [CrossRef]
- Pawar, D.; Jaganathan, K.S. Mucoadhesive glycol chitosan nanoparticles for intranasal delivery of hepatitis B vaccine: Enhancement of mucosal and systemic immune response. Drug Deliv. 2016, 23, 185–194. [Google Scholar] [CrossRef]
- Neutra, M.R.; Kozlowski, P.A. Mucosal vaccines: The promise and the challenge. Nat. Rev. Immunol. 2006, 6, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Han, J.; Zhang, Y.; Wei, L.; Yu, S.; Wang, X.; Jin, Z.; Wang, Y. Enhancing Mucosal Immune Response of Newcastle Disease Virus DNA Vaccine Using N-2-Hydroxypropyl Trimethylammonium Chloride Chitosan and N,O-Carboxymethyl Chitosan Nanoparticles as Delivery Carrier. Mol. Pharm. 2018, 15, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.G.; Shi, M.; Yu, E.D.; Xu, Y.L.; Zhang, Y.Y.; Geng, X.L.; Liu, F.; Li, J.D.; Chen, Z.; Yu, J.; et al. Metal-organic framework-based delivery systems as nanovaccine for enhancing immunity against porcine circovirus type 2. Mater. Today Bio 2025, 32, 101712. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.G.; Ji, X.; Liu, Y.Y.; Shi, M.; Li, J.D.; Liu, F.; Zhang, Y.Y.; Yu, J.; Wu, J.Q. Covalent Organic Framework-Based Theranostic Platforms for Restricting H1N1 Influenza Virus Infection. Int. J. Nanomed. 2024, 19, 7399–7414. [Google Scholar] [CrossRef]
- Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11 (Suppl. S4), S45–S53. [Google Scholar] [CrossRef]
- Yuki, Y.; Kiyono, H. Mucosal vaccines: Novel advances in technology and delivery. Expert Rev. Vaccines 2009, 8, 1083–1097. [Google Scholar] [CrossRef]
- Carvalho, H.M.B.; Fidalgo, T.A.S.; Acurcio, R.C.; Matos, A.I.; Satchi-Fainaro, R.; Florindo, H.F. Better, Faster, Stronger: Accelerating mRNA-Based Immunotherapies with Nanocarriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024, 16, e2017. [Google Scholar] [CrossRef]
- Elfatimi, E.; Lekbach, Y.; Prakash, S.; BenMohamed, L. Artificial intelligence and machine learning in the development of vaccines and immunotherapeutics-yesterday, today, and tomorrow. Front. Artif. Intell. 2025, 8, 1620572. [Google Scholar] [CrossRef]
- Bahrami, Y.; Bolideei, M.; Mohammadzadeh, S.; Gahrouei, R.B.; Mohebbi, E.; Haider, K.H.; Barzigar, R.; Mehran, M.J. Applications of artificial intelligence and nanotechnology in vaccine development. Int. J. Pharm. 2025, 684, 126096. [Google Scholar] [CrossRef]
- Gholap, A.D.; Uddin, M.J.; Faiyazuddin, M.; Omri, A.; Gowri, S.; Khalid, M. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Comput. Biol. Med. 2024, 178, 108702. [Google Scholar] [CrossRef]
Types of Vaccines | Representative Vaccines | Key Features | Challenges/Limitations |
---|---|---|---|
Inactivated vaccine | Mono/Multivalent Vaccines (WZX-XT5 [25], trivalent inactivated RA vaccine (serotypes 1, 2, and 10) [26]) | Cost-effective; Use of adjuvants |
|
Live-attenuated vaccines | Various gene deletion strains (e.g., RA CH-1 Δfur [9], D15-RDA-92 and D14-RDA-8 [22], RA CH-1 ΔB739_1343 [1], RA YM ΔsprT [27], RA Δ604 [28], Yb2 ΔpncA [29], RA M1 [31], CH3 ΔM949_1556) [32] | Attenuated by deleting virulence-associated genes |
|
Types of Vaccines | Key Antigens/Mechanisms/Vectors | Advantages | Challenges |
---|---|---|---|
Subunit vaccines | Main Antigens: OmpA [33], GroEL [36], YaeT [7], Riean_1750/1752 [38], etc. Strategies: Fusion proteins (OmpA-IgY Fc), combination with adjuvants (SCP, CpG ODN) [19,37] |
|
|
Recombinant live vector vaccines | Viral Vectors: Duck plague virus [43,44,45], Influenza virus, Newcastle disease virus [46], Adenovirus [47] Bacterial Vectors: Bacillus subtilis [48,49], Lactococcus lactis [50,51] |
| Limited development for waterfowl |
Gene deletion vaccines | Targets: |
| Need to balance attenuation degree and immunogenicity Require safety evaluation |
DNA vaccines | Main Antigens: OmpA, OmpH [63] Strategy: Constructing multivalent vaccines |
| Current development is mainly focused on OmpA, and insufficient exploration of DNA vaccines for other protective antigens |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, J.; Wu, S.; Zhao, L.; Li, F.; Xing, D.; Li, F.; Tian, H.; Yang, X.; Sun, S.; Wang, M. Research Progress in the Development of Vaccines Against Riemerella anatipestifer. Microorganisms 2025, 13, 2312. https://doi.org/10.3390/microorganisms13102312
Lan J, Wu S, Zhao L, Li F, Xing D, Li F, Tian H, Yang X, Sun S, Wang M. Research Progress in the Development of Vaccines Against Riemerella anatipestifer. Microorganisms. 2025; 13(10):2312. https://doi.org/10.3390/microorganisms13102312
Chicago/Turabian StyleLan, Junxvan, Shaopeng Wu, Lu Zhao, Fakai Li, Dongyi Xing, Fan Li, Hui Tian, Xiaoxue Yang, Shuhong Sun, and Miaoli Wang. 2025. "Research Progress in the Development of Vaccines Against Riemerella anatipestifer" Microorganisms 13, no. 10: 2312. https://doi.org/10.3390/microorganisms13102312
APA StyleLan, J., Wu, S., Zhao, L., Li, F., Xing, D., Li, F., Tian, H., Yang, X., Sun, S., & Wang, M. (2025). Research Progress in the Development of Vaccines Against Riemerella anatipestifer. Microorganisms, 13(10), 2312. https://doi.org/10.3390/microorganisms13102312