Methylocystis hydrogenophila sp. nov.—A Type IIa Methanotrophic Bacterium Able to Utilize Hydrogen as an Alternative Energy Source
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Cultivation of Strain SC2T
2.2. 16S rRNA Gene and Phylogeny
2.3. Genomic Sequencing, Analysis and Annotation
2.4. Physiological and Chemotaxonomic Analysis
2.5. Transmission Electron Microscopy
3. Results and Discussion
3.1. Sequence Identity and Phylogenetic Analysis
3.2. Cellular and Chemotaxonomic Analysis
3.3. Growth on Methane and Other Carbon Compounds
3.4. Physiological Characterization
3.5. Hydrogen Utilization Capability
4. Conclusions
5. Description of Methylocystis hydrogenophila sp. nov.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 2015, 6, 1346. [Google Scholar] [CrossRef]
- Whittenbury, R.; Phillips, K.C.; Wilkinson, J.F. Enrichment, Isolation and Some Properties of Methane-utilizing Bacteria. Microbiology 1970, 61, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Esson, K.; Lin, X.; Kumaresan, D.; Chanton, J.; Murrell, J.; Kostka, J. Alpha and gammaproteobacterial methanotrophs co-dominate the active methane oxidizing communities in an acidic boreal peat bog. Appl. Environ. Microbiol. 2016, 82, 2363–2371. [Google Scholar] [CrossRef]
- Gontijo, J.B.; Paula, F.S.; Venturini, A.M.; Mandro, J.A.; Bodelier, P.L.E.; Tsai, S.M. Insights into the genomic potential of a Methylocystis sp. from amazonian floodplain sediments. Microorganisms 2022, 10, 1747. [Google Scholar] [CrossRef]
- Shen, L.-D.; Geng, C.-Y.; Ren, B.-J.; Jin, J.-H.; Huang, H.-C.; Liu, X.; Yang, W.-T.; Yang, Y.-L.; Liu, J.-Q.; Tian, M.-H. Detection and quantification of candidatus methanoperedens-Like archaea in freshwater wetland soils. Microb. Ecol. 2023, 85, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Trotsenko, Y.; Khmelenina, V. Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol. Ecol. 2005, 53, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Singleton, C.M.; McCalley, C.K.; Woodcroft, B.J.; Boyd, J.A.; Evans, P.N.; Hodgkins, S.B.; Chanton, J.P.; Frolking, S.; Crill, P.M.; Saleska, S.R.; et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 2018, 12, 2544–2558. [Google Scholar] [CrossRef]
- Belova, S.; Baani, M.; Suzina, N.; Bodelier, P.; Liesack, W.; Dedysh, S. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ. Microbiol. Rep. 2011, 3, 36–46. [Google Scholar] [CrossRef]
- Dam, B.; Dam, S.; Kube, M.; Reinhardt, R.; Liesack, W. Complete genome sequence of Methylocystis sp. strain SC2, an aerobic methanotroph with high-affinity methane oxidation potential. J. Bacteriol. 2012, 194, 6008–6009. [Google Scholar] [CrossRef]
- Nguyen, D.T.N.; Lee, O.K.; Nguyen, T.T.; Lee, E.Y. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals. Biotechnol. Adv. 2021, 47, 107700. [Google Scholar] [CrossRef]
- Garner, C.T.; Sankaranarayanan, K.; Abin, C.A.; Garner, R.M.; Cai, H.; Lawson, P.A.; Krumholz, L.R. Methylocystis suflitae sp. nov., a novel type II methanotrophic bacterium isolated from landfill cover soil. Int. J. Syst. Evol. Microbiol. 2024, 74, 006239. [Google Scholar] [CrossRef]
- Lindner, A.S.; Pacheco, A.; Aldrich, H.C.; Staniec, A.C.; Uz, I.; Hodson, D.J. Methylocystis hirsuta sp nov., a novel methanotroph isolated from a groundwater aquifer. Int. J. Syst. Evol. Microbiol. 2007, 57, 1891–1900. [Google Scholar] [CrossRef]
- Tikhonova, E.N.; Grouzdev, D.S.; Avtukh, A.N.; Kravchenko, I.K. Methylocystis silviterrae sp.nov., a high-affinity methanotrophic bacterium isolated from the boreal forest soil. Int. J. Syst. Evol. Microbiol. 2021, 71, 005166. [Google Scholar] [CrossRef]
- Wartiainen, I.; Hestnes, A.G.; McDonald, I.R.; Svenning, M.M. Methylocystis rosea sp nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78 degrees N). Int. J. Syst. Evol. Microbiol. 2006, 56, 541–547. [Google Scholar] [CrossRef]
- Kaparullina, E.; Agafonova, N.; Suzina, N.; Grouzdev, D.; Doronina, N. Methylocystis borbori sp.nov., a novel methanotrophic bacterium from the sludge of a freshwater lake and its metabolic properties. Antonie Leeuwenhoek 2024, 118, 29. [Google Scholar] [CrossRef]
- Kaise, H.; Sawadogo, J.B.; Alam, M.S.; Ueno, C.; Dianou, D.; Shinjo, R.; Asakawa, S. Methylocystis iwaonis sp. nov., a type II methane-oxidizing bacterium from surface soil of a rice paddy field in Japan, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int. J. Syst. Evol. Microbiol. 2023, 73, 005925. [Google Scholar] [CrossRef]
- del Cerro, C.; García, J.M.; Rojas, A.; Tortajada, M.; Ramón, D.; Galán, B.; Prieto, M.A.; García, J.L. Genome sequence of the methanotrophic poly-β-hydroxybutyrate producer Methylocystis parvus OBBP. J. Bacteriol. 2012, 194, 5709–5710. [Google Scholar] [CrossRef]
- Bowman, J.P.; Sly, L.I.; Nichols, P.D.; Hayward, A.C. Revised Taxonomy of the Methanotrophs: Description of Methylobacter gen. nov., Emendation of Methylococcus, Validation of Methylosinus and Methylocystis Species, and a Proposal that the Family Methylococcaceae Includes Only the Group I Methanotrophs. Int. J. Syst. Evol. Microbiol. 1993, 43, 735–753. [Google Scholar] [CrossRef]
- Dedysh, S.N.; Belova, S.E.; Bodelier, P.L.E.; Smirnova, K.V.; Khmelenina, V.N.; Chidthaisong, A.; Trotsenko, Y.A.; Liesack, W.; Dunfield, P.F. Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int. J. Syst. Evol. Microbiol. 2007, 57, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Belova, S.E.; Kulichevskaya, I.S.; Bodelier, P.L.E.; Dedysh, S.N. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int. J. Syst. Evol. Microbiol. 2013, 63, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Murrell, J.C.; Gilbert, B.; McDonald, I.R. Molecular biology and regulation of methane monooxygenase. Arch. Microbiol. 2000, 173, 325–332. [Google Scholar] [CrossRef]
- Semrau, J.D.; DiSpirito, A.A.; Yoon, S. Methanotrophs and copper. FEMS Microbiol. Rev. 2010, 34, 496–531. [Google Scholar] [CrossRef]
- Nielsen, A.K.; Gerdes, K.; Murrell, J.C. Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol. Microbiol. 1997, 25, 399–409. [Google Scholar] [CrossRef]
- Chistoserdova, L. Modularity of methylotrophy, revisited. Environ. Microbiol. 2011, 13, 2603–2622. [Google Scholar] [CrossRef] [PubMed]
- Dunfield, P.F.; Yimga, M.T.; Dedysh, S.N.; Berger, U.; Liesack, W.; Heyer, J. Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol. Ecol. 2002, 41, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Tchawa Yimga, M.; Dunfield, P.F.; Ricke, P.; Heyer, J.; Liesack, W. Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl. Environ. Microbiol. 2003, 69, 5593–5602. [Google Scholar] [CrossRef]
- Ricke, P.; Erkel, C.; Kube, M.; Reinhardt, R.; Liesack, W. Comparative analysis of the conventional and novel pmo (particulate methane monooxygenase) operons from Methylocystis strain SC2. Appl. Environ. Microbiol. 2004, 70, 3055–3063. [Google Scholar] [CrossRef] [PubMed]
- Baani, M.; Liesack, W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc. Natl. Acad. Sci. USA 2008, 105, 10203–10208. [Google Scholar] [CrossRef]
- Hakobyan, A.; Zhu, J.; Glatter, T.; Paczia, N.; Liesack, W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab. Eng. 2020, 61, 181–196. [Google Scholar] [CrossRef]
- Heyer, J.; Galchenko, V.F.; Dunfield, P.F. Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 2002, 148, 2831–2846. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular evolutionary eenetic analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 2024, 41, 1–9. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Dam, B.; Dam, S.; Blom, J.; Liesack, W. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp strain SC2. PLoS ONE 2013, 8, e74767. [Google Scholar] [CrossRef]
- Chevreux, B.; Wetter, T.; Suhai, S. Genome sequence assembly using trace signals and additional sequence information. Ger. Conf. Bioinform. 99, 45–56.
- Baxevanis, A.D. Current Protocols in Bioinformatics; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef] [PubMed]
- Carver, T.; Thomson, N.; Bleasby, A.; Berriman, M.; Parkhill, J. DNAPlotter: Circular and linear interactive genome visualization. Bioinformatics 2009, 25, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019, 36, 1925–1927. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534, Erratum in Mol. Biol. Evol. 2020 , 37, 1530–1534. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez, R.L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl. 1990, 20, 1–6. [Google Scholar]
- Schlaberg, R.; Simmon, K.E.; Fisher, M.A. A systematic approach for discovering novel, clinically relevant bacteria. Emerg. Infect. Dis. 2012, 18, 422–430. [Google Scholar] [CrossRef]
- Kunduracılar, H. Identification of mycobacteria species by molecular methods. Int. Wound J. 2020, 17, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Colston, S.M.; Fullmer, M.S.; Beka, L.; Lamy, B.; Gogarten, J.P.; Graf, J. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 2014, 5, e02136. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.M.; Machado, I.; Nicolau, A.; Pereira, M.O. Improvements on colony morphology identification towards bacterial profiling. J. Microbiol. Methods 2013, 95, 327–335. [Google Scholar] [CrossRef]
- Bordel, S.; Rodríguez, Y.; Hakobyan, A.; Rodríguez, E.; Lebrero, R.; Muñoz, R. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis. Metab. Eng. 2019, 54, 191–199. [Google Scholar] [CrossRef]
- Guo, K.; Glatter, T.; Paczia, N.; Liesack, W. Asparagine uptake: A cellular strategy of Methylocystis to combat severe salt stress. Appl. Environ. Microbiol. 2023, 89, e0011323. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Hakobyan, A.; Glatter, T.; Paczia, N.; Liesack, W. Methylocystis sp. strain SC2 acclimatizes to increasing NH4+ levels by a precise rebalancing of enzymes and osmolyte composition. mSystems 2022, 7, e0040322. [Google Scholar] [CrossRef] [PubMed]
- Pieja, A.J.; Rostkowski, K.H.; Criddle, C.S. Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microb. Ecol. 2011, 62, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Jung, G.-Y.; Rhee, S.-K.; Han, Y.-S.; Kim, S.-J. Genomic and physiological properties of a facultative methane-oxidizing bacterial strain of Methylocystis sp. from a wetland. Microorganisms 2020, 8, 1719. [Google Scholar] [CrossRef] [PubMed]




| Organism Name | ANI | AAI | dDDH |
|---|---|---|---|
| Methylocystis silviterrae FST (GCF_013350005.1) | 92.90 | 93.44 | 63.7 |
| Methylocystis hirsuta CSC1T (GCF_003722355.1) | 92.79 | 93.4 | 62.5 |
| Methylocystis suflitae NLS-7T (GCF_024448135.1) | 92.55 | 93.36 | 64.5 |
| Methylocystis rosea SV97T (GCF_000372845.1) | 91.71 | 92.62 | 60.2 |
| Methylocystis borbori 9NT (GCF_036576025.1) | 82.50 | 80.64 | 27.4 |
| Methylocystis iwanois SS37A-ReT (GCF_027925385.1) | 80.09 | 74.9 | 17.6 |
| Methylocystis parvus OBBPT (GCF_000283235.1) | 80.01 | 74.68 | 17.7 |
| Methylocystis echinoides LMG27198 = IMET 10491T (GCF_027923385.1) | 80.30 | 74.2 | 17.3 |
| Methylocystis heyeri H2T (GCF_004802635.2) | 78.66 | 70.04 | 14.9 |
| Methylocystis bryophila H2sT (GCF_002117405.1) | 78.40 | 68.26 | 14.5 |
| Characteristic | 1 SC2T | 2 NLS-7T | 3 CSC1T | 4 FST | 5 SV97T |
|---|---|---|---|---|---|
| Isolation source | Polluted river | Landfill cover soil | Ground water | Forest soil | Arctic wetland soil |
| Cell shape | Rods | Rods, dumbbells | Dumbbell | Small curved coccoids/rods | Rods |
| Color of colonies | White | Yellow | Cream | Cream | Pink-red |
| Cell width (μm) | 1.0–1.5 | 0.8 | 0.3–0.6 | 0.5–0.7 | 0.8–1.1 |
| Cell length (μm) | 1.2–3.5 | 1.33 | 0.7–1.0 | 1.7–3.4 | 1.1–2.5 |
| Temperature range for growth (optimum), °C | 4–37 (25–27) | 10–35 (30) | 4–35 (25–30) | 4–37 (25–30) | 5–37 (27) |
| pH range for growth (optimum) | 5.5–8 (7.0–7.2) | 5.5–8.5 (6.5–7.0) | 5.8–8.5 (6.5–7.0) | 4.5–7.5 (6.0–6.5) | 5.0–9.0 |
| NaCl (w/v, %) | 0–0.75% | ND | ND | ND | ND |
| Growth on acetate (%) | w | − | w | − | − |
| sMMO | − | − | − | − | − |
| pMMO2 | + | − | − | + | − |
| DNA G+C content (mol%) | 63.4 | 62.5 | 62.4 | 62.6 | 62 |
| Fatty Acid | SC2T | NLS-7T | CSC1T | FST | SV97T |
|---|---|---|---|---|---|
| 16:1ω7c | ND | ND | ND | ND | 6.1 |
| 16:1ω6c | ND | ND | ND | ND | ND |
| C16:1ω9c | ND | ND | ND | ND | ND |
| C16:1ω9t | ND | ND | 2.3 | ND | ND |
| C16:0 | ND | ND | 0.3 | ND | ND |
| C18:1ω8c | 63.8 | 69.2 | 71.1 | 74.5 | 74.8 |
| C18:1ω7c | 35.1 | 28.3 | 26.1 | 24.7 | 23.7 |
| C18:0 | ND | ND | 0.3 | 0.8 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, K.; Heimerl, T.; Hakobyan, A.; Han, D.; Liesack, W. Methylocystis hydrogenophila sp. nov.—A Type IIa Methanotrophic Bacterium Able to Utilize Hydrogen as an Alternative Energy Source. Microorganisms 2025, 13, 2309. https://doi.org/10.3390/microorganisms13102309
Guo K, Heimerl T, Hakobyan A, Han D, Liesack W. Methylocystis hydrogenophila sp. nov.—A Type IIa Methanotrophic Bacterium Able to Utilize Hydrogen as an Alternative Energy Source. Microorganisms. 2025; 13(10):2309. https://doi.org/10.3390/microorganisms13102309
Chicago/Turabian StyleGuo, Kangli, Thomas Heimerl, Anna Hakobyan, Dongfei Han, and Werner Liesack. 2025. "Methylocystis hydrogenophila sp. nov.—A Type IIa Methanotrophic Bacterium Able to Utilize Hydrogen as an Alternative Energy Source" Microorganisms 13, no. 10: 2309. https://doi.org/10.3390/microorganisms13102309
APA StyleGuo, K., Heimerl, T., Hakobyan, A., Han, D., & Liesack, W. (2025). Methylocystis hydrogenophila sp. nov.—A Type IIa Methanotrophic Bacterium Able to Utilize Hydrogen as an Alternative Energy Source. Microorganisms, 13(10), 2309. https://doi.org/10.3390/microorganisms13102309

