SNARE Protein CfSec22 Mediates Vesicular Trafficking to Regulate Growth, Conidiogenesis, and Pathogenesis of Ceratocystis fimbriata
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Culture Conditions
2.2. Bioinformatics Analysis
2.3. Gene Knockout and Complementation
2.4. Pathogenicity Assays
2.5. Subcellular Localization
2.6. Endocytosis Assay
2.7. Ipomeamarone Detection
2.8. Gene Expression Analysis
2.9. Secretome Analysis
2.10. Statistical Analysis
3. Results
3.1. Characteristic of CfSec22
3.2. CfSec22 Is Involved in Growth and Sporulation
3.3. CfSec22 Is Essential for Full Pathogenicity in C. fimbriata
3.4. CfSec22 Regulates Stress Response
3.5. The Absence of CfSEC22 Affects the Ipomeamarone Production in Sweet Potato
3.6. CfSEC22 Is Located in the ER and Affects Endocytosis
3.7. Proteomic Analysis of Secretory Defects of ΔCfsec22 Mutant
3.8. Functional Validation of Candidate Secretory Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Nie, S.; Zhu, F. Chemical constituents and health effects of sweet potato. Food Res. Int. 2016, 89 Pt 1, 90–116. [Google Scholar] [CrossRef]
- Mohanraj, R.; Sivasankar, S. Sweet potato (Ipomoea batatas [L.] Lam)—A valuable medicinal food: A review. J. Med. Food 2014, 17, 733–741. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Cai, S.; Zhang, Y.; Xu, M.; Zhang, C.; Yuan, B.; Xing, K.; Qin, S. Identification of Rhizospheric Actinomycete Streptomyces lavendulae SPS-33 and the Inhibitory Effect of its Volatile Organic Compounds against Ceratocystis Fimbriata in Postharvest Sweet Potato (Ipomoea batatas (L.) Lam.). Microorganisms 2020, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.V.; Slowinski, S.P.; Kido, A.K.; Bruns, E.L. High temperatures reduce growth, infection, and transmission of a naturally occurring fungal plant pathogen. Ecology 2024, 105, e4373. [Google Scholar] [CrossRef]
- Savov, S.; Marinova, B.; Teofanova, D.; Savov, M.; Odjakova, M.; Zagorchev, L. Parasitic Plants-Potential Vectors of Phytopathogens. Pathogens 2024, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Cong, H.; Li, C.; Wu, J.; Li, L.; Jiang, J.; Cao, X. Cultivable Endophyte Resources in Medicinal Plants and Effects on Hosts. Life 2023, 13, 1695. [Google Scholar] [CrossRef]
- Parada-Rojas, C.H.; Pecota, K.; Almeyda, C.; Yencho, G.C.; Quesada-Ocampo, L.M. Sweetpotato Root Development Influences Susceptibility to Black Rot Caused by the Fungal Pathogen Ceratocystis fimbriata. Phytopathology 2021, 111, 1660–1669. [Google Scholar] [CrossRef]
- Stahr, M.; Quesada-Ocampo, L.M. Assessing the Role of Temperature, Inoculum Density, and Wounding on Disease Progression of the Fungal Pathogen Ceratocystis fimbriata Causing Black Rot in Sweetpotato. Plant Dis. 2020, 104, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Stahr, M.N.; Quesada-Ocampo, L.M. Effects of Water Temperature, Inoculum Concentration and Age, and Sanitizers on Infection of Ceratocystis fimbriata, Causal Agent of Black Rot in Sweetpotato. Plant Dis. 2021, 105, 1365–1372. [Google Scholar] [CrossRef]
- Sun, Y.; Li, M.; Wang, Y.; Li, L.; Wang, M.; Li, X.; Xu, M.; Loake, G.J.; Guo, M.; Jiang, J. Ceratocystis fimbriata Employs a Unique Infection Strategy Targeting Peltate Glandular Trichomes of Sweetpotato (Ipomoea batatas) Plants. Phytopathology 2020, 110, 1923–1933. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, J.Q.; Xu, M.J.; Zhang, C.M.; Gao, J.; Li, C.G.; Xing, K.; Qin, S. Antifungal Volatile Organic Compounds from Streptomyces setonii WY228 Control Black Spot Disease of Sweet Potato. Appl. Environ. Microbiol. 2022, 88, e0231721. [Google Scholar] [CrossRef]
- Oguni, I. Dehydroipomeamarone as an Intermediate in the Biosynthesis of Ipomeamarone, a Phytoalexin from Sweet Potato Root Infected with Ceratocystis fimbriata. Plant Physiol. 1974, 53, 649–652. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, J.; Liu, Z.; Zhang, X.; Lu, X.; Yin, L.; Lu, G.; Pang, L. Identifying Early-Stage Changes in Volatile Organic Compounds of Ceratocystis fimbriata Ellis & Halsted-Infected Sweet Potatoes (Ipomoea batatas L. Lam) Using Headspace Gas Chromatography-Ion Mobility Spectrometry. Foods 2023, 12, 2224. [Google Scholar] [CrossRef]
- Mohsin, S.M.; Hasanuzzaman, M.; Parvin, K.; Morokuma, M.; Fujita, M. Effect of tebuconazole and trifloxystrobin on Ceratocystis fimbriata to control black rot of sweet potato: Processes of reactive oxygen species generation and antioxidant defense responses. World J. Microbiol. Biotechnol. 2021, 37, 148. [Google Scholar] [CrossRef] [PubMed]
- Wamalwa, L.N.; Cheseto, X.; Ouna, E.; Kaplan, F.; Maniania, N.K.; Machuka, J.; Torto, B.; Ghislain, M. Toxic Ipomeamarone accumulation in healthy parts of Sweetpotato (Ipomoea batatas L. Lam) storage roots upon infection by Rhizopus stolonifer. J. Agric. Food Chem. 2015, 63, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, Ç.; Şahin, N.; Edgünlü, T. Vesicle trafficking with snares: A perspective for autism. Mol. Biol. Rep. 2022, 49, 12193–12202. [Google Scholar] [CrossRef]
- Ichino, T.; Yazaki, K. Modes of secretion of plant lipophilic metabolites via ABCG transporter-dependent transport and vesicle-mediated trafficking. Curr. Opin. Plant Biol. 2022, 66, 102184. [Google Scholar] [CrossRef]
- Wang, T.; Li, L.; Hong, W. SNARE proteins in membrane trafficking. Traffic 2017, 18, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.S.; Kwon, C. Vesicle trafficking in plant immunity. Curr. Opin. Plant Biol. 2017, 40, 34–42. [Google Scholar] [CrossRef]
- Yoon, T.Y.; Munson, M. SNARE complex assembly and disassembly. Curr. Biol. 2018, 28, R397–R401. [Google Scholar] [CrossRef]
- Südhof, T.C.; Rothman, J.E. Membrane fusion: Grappling with SNARE and SM proteins. Science 2009, 323, 474–477. [Google Scholar] [CrossRef]
- Khvotchev, M.; Soloviev, M. SNARE Modulators and SNARE Mimetic Peptides. Biomolecules 2022, 12, 1779. [Google Scholar] [CrossRef]
- Kuratsu, M.; Taura, A.; Shoji, J.Y.; Kikuchi, S.; Arioka, M.; Kitamoto, K. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genet. Biol. 2007, 44, 1310–1323. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Y.; So, J.; Lee, J.; Min, K.; Son, H.; Park, C.; Yun, S.H.; Lee, Y.W. Functional analyses of two syntaxin-like SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genet. Biol. 2010, 47, 364–372. [Google Scholar] [CrossRef]
- Adnan, M.; Islam, W.; Zhang, J.; Zheng, W.; Lu, G.D. Diverse Role of SNARE Protein Sec22 in Vesicle Trafficking, Membrane Fusion, and Autophagy. Cells 2019, 8, 337. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Fang, W.; Sun, P.; Zheng, Y.; Abubakar, Y.S.; Zhang, J.; Lou, Y.; Zheng, W.; Lu, G.D. R-SNARE FgSec22 is essential for growth, pathogenicity and DON production of Fusarium graminearum. Curr. Genet. 2020, 66, 421–435. [Google Scholar] [CrossRef]
- Ballensiefen, W.; Ossipov, D.; Schmitt, H.D. Recycling of the yeast v-SNARE Sec22p involves COPI-proteins and the ER transmembrane proteins Ufe1p and Sec20p. J. Cell Sci. 1998, 111 Pt 11, 1507–1520. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Dou, X.; Qi, Z.; Wang, Q.; Zhang, X.; Zhang, H.; Guo, M.; Dong, S.; Zhang, Z.; Wang, P.; et al. R-SNARE homolog MoSec22 is required for conidiogenesis, cell wall integrity, and pathogenesis of Magnaporthe oryzae. PLoS ONE 2010, 5, e13193. [Google Scholar] [CrossRef]
- Wang, J.; Tian, L.; Zhang, D.D.; Short, D.P.G.; Zhou, L.; Song, S.S.; Liu, Y.; Wang, D.; Kong, Z.Q.; Cui, W.Y.; et al. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. Mol. Plant-Microbe Interact. 2018, 31, 651–664. [Google Scholar] [CrossRef]
- Irieda, H.; Maeda, H.; Akiyama, K.; Hagiwara, A.; Saitoh, H.; Uemura, A.; Terauchi, R.; Takano, Y. Colletotrichum orbiculare Secretes Virulence Effectors to a Biotrophic Interface at the Primary Hyphal Neck via Exocytosis Coupled with SEC22-Mediated Traffic. Plant Cell 2014, 26, 2265–2281. [Google Scholar] [CrossRef]
- Traeger, S.; Nowrousian, M. Functional Analysis of Developmentally Regulated Genes chs7 and sec22 in the Ascomycete Sordaria macrospora. G3 Genes Genomes Genet. 2015, 5, 1233–1245. [Google Scholar] [CrossRef]
- Dräxl, S.; Müller, J.; Li, W.B.; Michalke, B.; Scherb, H.; Hense, B.A.; Tschiersch, J.; Kanter, U.; Schäffner, A.R. Caesium accumulation in yeast and plants is selectively repressed by loss of the SNARE Sec22p/SEC22. Nat. Commun. 2013, 4, 2092. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Chen, C.C.; Lin, K.H.; Chao, P.Y.; Lin, H.H.; Huang, M.Y. Bioactive Compounds, Antioxidants, and Health Benefits of Sweet Potato Leaves. Molecules 2021, 26, 1820. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, J.; Gu, J.; Wu, J.; Zhang, Y.; Liang, T.; Bai, H.; Cao, Q.; Jiang, J.; Li, L.; et al. Genome-Driven Functional Validation of Bacillus amyloliquefaciens Strain MEPW12: A Multifunctional Endophyte for Sustainable Sweet Potato Cultivation. Microorganisms 2025, 13, 1322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, X.; Liu, Q.; Chen, Y.; Wang, Y.; Cong, H.; Li, C.; Li, Y.; Wang, Y.; Jiang, J.; et al. Multi-omics analysis of Streptomyces djakartensis strain MEPS155 reveal a molecular response strategy combating Ceratocystis fimbriata causing sweet potato black rot. Food Microbiol. 2024, 122, 104557. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, Y.Z.; Chu, Z.H.; Wang, P.S.; Liu, B.Y.; Li, B.Y.; Yu, X.L.; Luan, B.H. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.). J. Plant Physiol. 2020, 253, 153260. [Google Scholar] [CrossRef]
- Cong, H.; Li, C.; Wang, Y.; Zhang, Y.; Ma, D.; Li, L.; Jiang, J. The Mechanism of Transcription Factor Swi6 in Regulating Growth and Pathogenicity of Ceratocystis fimbriata: Insights from Non-Targeted Metabolomics. Microorganisms 2023, 11, 2666. [Google Scholar] [CrossRef]
- Li, C.; Cong, H.; Cao, X.; Sun, Y.; Lu, K.; Li, L.; Wang, Y.; Zhang, Y.; Li, Q.; Jiang, J.; et al. CfErp3 regulates growth, conidiation, inducing ipomeamarone and the pathogenicity of Ceratocystis fimbriata. Fungal Genet. Biol. 2024, 170, 103846. [Google Scholar] [CrossRef]
- Cong, H.; Sun, Y.; Li, C.; Zhang, Y.; Wang, Y.; Ma, D.; Jiang, J.; Li, L.; Li, L. The APSES transcription factor CfSwi6 is required for growth, cell wall integrity, and pathogenicity of Ceratocystis fimbriata. Microbiol. Res. 2024, 281, 127624. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Liu, X.; Yu, R.; Li, X.; Liu, M.; Zhang, H.; Zheng, X.; Wang, P.; Zhang, Z. Magnaporthe oryzae Abp1, a MoArk1 Kinase-Interacting Actin Binding Protein, Links Actin Cytoskeleton Regulation to Growth, Endocytosis, and Pathogenesis. Mol. Plant-Microbe Interact. 2019, 32, 437–451. [Google Scholar] [CrossRef]
- Song, H.H.; Zhou, Z.L.; Zhao, D.L.; Tang, J.; Li, Y.H.; Han, Z.; Chen, X.Y.; Hu, K.D.; Yao, G.F.; Zhang, H. Storage Property Is Positively Correlated With Antioxidant Capacity in Different Sweet Potato Cultivars. Front. Plant Sci. 2021, 12, 696142. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Oguni, I.; Uritani, I. Phytoalexin Induction in Sweet Potato Roots by Amino Acids. Agric. Biol. Chem. 1974, 38, 2567–2568. [Google Scholar] [CrossRef]
- Tian, L.; Xu, R.; Wang, Z.; Liu, N.; Feng, F.; Qu, Z. Vesicular transport protein VdSec22 is involved in secretion of extracellular protein and pathogenicity in Verticillium dahliae. Wei Sheng Wu Xue Bao 2015, 55, 873–881. [Google Scholar] [PubMed]
- Huang, B.; Abedi, M.; Ahn, G.; Coventry, B.; Sappington, I.; Tang, C.; Wang, R.; Schlichthaerle, T.; Zhang, J.Z.; Wang, Y.; et al. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature 2025, 638, 796–804. [Google Scholar] [CrossRef]
- Lantz, C.; Becker, A.; DeBerge, M.; Filipp, M.; Glinton, K.; Ananthakrishnan, A.; Urbanczyk, J.; Cetlin, M.; Alzamroon, A.; Abdel-Latif, A.; et al. Early-age efferocytosis directs macrophage arachidonic acid metabolism for tissue regeneration. Immunity 2025, 58, 344–361.e347. [Google Scholar] [CrossRef]
- Mellman, I. Membranes and sorting. Curr. Opin. Cell Biol. 1996, 8, 497–498. [Google Scholar] [CrossRef]
- Chen, X.; Hu, J.; Zhong, H.; Wu, Q.; Fang, Z.; Cai, Y.; Huang, P.; Abubakar, Y.S.; Zhou, J.; Naqvi, N.I.; et al. Vacuolar recruitment of retromer by a SNARE complex enables infection-related trafficking in rice blast. New Phytol. 2024, 244, 997–1012. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Liu, M.; Dong, Y.; Zhu, Q.; Li, L.; Li, B.; Yang, J.; Li, Y.; Ru, Y.; Zhang, H.; et al. The syntaxin protein (MoSyn8) mediates intracellular trafficking to regulate conidiogenesis and pathogenicity of rice blast fungus. New Phytol. 2016, 209, 1655–1667. [Google Scholar] [CrossRef] [PubMed]
- Izawa, S.; Ikeda, K.; Miki, T.; Wakai, Y.; Inoue, Y. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Appl. Microbiol. Biotechnol. 2010, 88, 277–282. [Google Scholar] [CrossRef]
- Li, S.C.; Kane, P.M. The yeast lysosome-like vacuole: Endpoint and crossroads. Biochim. Biophys. Acta 2009, 1793, 650–663. [Google Scholar] [CrossRef]
- Zieger, M.; Mayer, A. Yeast vacuoles fragment in an asymmetrical two-phase process with distinct protein requirements. Mol. Biol. Cell 2012, 23, 3438–3449. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Fang, Q.; Li, Y.; Zheng, X.; Zhang, Z. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. Mol. Plant Pathol. 2016, 17, 108–119. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, A.; Zheng, W.; Xu, H.; Shang, W.; Zheng, H.; Zhang, D.; Zhou, J.; Lu, G.; Li, G.; et al. Endosomal sorting complexes required for transport-0 is essential for fungal development and pathogenicity in Fusarium graminearum. Environ. Microbiol. 2016, 18, 3742–3757. [Google Scholar] [CrossRef]
- Sun, L.X.; Qian, H.; Liu, M.Y.; Wu, M.H.; Wei, Y.Y.; Zhu, X.M.; Lu, J.P.; Lin, F.C.; Liu, X.H. Endosomal sorting complexes required for transport-0 (ESCRT-0) are essential for fungal development, pathogenicity, autophagy and ER-phagy in Magnaporthe oryzae. Environ. Microbiol. 2022, 24, 1076–1092. [Google Scholar] [CrossRef] [PubMed]
- Dagdas, Y.F.; Yoshino, K.; Dagdas, G.; Ryder, L.S.; Bielska, E.; Steinberg, G.; Talbot, N.J. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 2012, 336, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.J.; Wang, Z.Y.; Jones, M.A.; Smirnoff, N.; Talbot, N.J. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. USA 2007, 104, 11772–11777. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Q.; Guo, Z.; Liu, P.; Shen, L.; Chai, N.; Qian, B.; Cai, Y.; Wang, W.; Yin, Z.; et al. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae. Elife 2020, 9, e61605. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z. A double-edged sword: Reactive oxygen species (ROS) during the rice blast fungus and host interaction. FEBS J. 2022, 289, 5505–5515. [Google Scholar] [CrossRef]
- Dou, X.; Wang, Q.; Qi, Z.; Song, W.; Wang, W.; Guo, M.; Zhang, H.; Zhang, Z.; Wang, P.; Zheng, X. MoVam7, a conserved SNARE involved in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis of Magnaporthe oryzae. PLoS ONE 2011, 6, e16439. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, X.M.; Zhang, Y.R.; Cai, Y.Y.; Wang, J.Y.; Liu, M.Y.; Wang, J.Y.; Bao, J.D.; Lin, F.C. Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. Int. J. Mol. Sci. 2022, 23, 4658. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Liu, X.; Wang, N.; Mo, P.; Shen, J.; Liu, M.; Zhang, H.; Wang, P.; Zhang, Z. Membrane component ergosterol builds a platform for promoting effector secretion and virulence in Magnaporthe oryzae. New Phytol. 2023, 237, 930–943. [Google Scholar] [CrossRef]
- Xie, C.; Shang, Q.; Mo, C.; Xiao, Y.; Wang, G.; Xie, J.; Jiang, D.; Xiao, X. Early Secretory Pathway-Associated Proteins SsEmp24 and SsErv25 Are Involved in Morphogenesis and Pathogenicity in a Filamentous Phytopathogenic Fungus. mBio 2021, 12, e0317321. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, H.; Fujisawa, S.; Ito, A.; Mitsuoka, C.; Berberich, T.; Tosa, Y.; Asakura, M.; Takano, Y.; Terauchi, R. SPM1 encoding a vacuole-localized protease is required for infection-related autophagy of the rice blast fungus Magnaporthe oryzae. FEMS Microbiol. Lett. 2009, 300, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Lara-Márquez, A.; Zavala-Páramo, M.G.; López-Romero, E.; Calderón-Cortés, N.; López-Gómez, R.; Conejo-Saucedo, U.; Cano-Camacho, H. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms. BMC Microbiol. 2011, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Pócsi, I.; Prade, R.A.; Penninckx, M.J. Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 2004, 49, 1–76. [Google Scholar] [CrossRef]
Protein Locus | Description | Unique Peptides | Signal Peptide | COVERAGE (%) | Mutant/Wild-Type | Subcellular Loc |
---|---|---|---|---|---|---|
PHH53199.1 | Glucan 1,3-beta-glucosidase | 17 | Y | 24.7 | 0.02938 *** | extracellular |
PHH54118.1 | Subtilisin-like proteinase Spm1 | 11 | Y | 23.9 | 0.4911 *** | extracellular |
PHH50969.1 | Endoglucanase EG-II | 9 | Y | 24.1 | 0.3528 ** | extracellular |
PHH54020.1 | Kre9_KNH domain-containing protein | 4 | Y | 17.8 | 0.2825 ** | extracellular |
PHH51195.1 | Lysophospholipase | 8 | Y | 18.6 | 0.4424 *** | extracellular |
PHH54561.1 | Glucan 1,3-beta-glucosidase | 11 | Y | 17.6 | 0.02668 *** | extracellular |
PHH55093.1 | Putative pectin lyase A | 5 | Y | 16 | 0.2716 ** | extracellular |
PHH55903.1 | Glutathione hydrolase | 7 | Y | 18.7 | 0.6418 * | extracellular |
PHH54624.1 | alpha-amylase | 7 | N | 16.5 | 0.4479 ** | extracellular |
PHH54693.1 | Putative endo-beta-1,4-glucanase B | 3 | Y | 8.9 | 0.3617 * | extracellular |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, Y.; Cao, X.; Lu, K.; Li, L.; Jiang, J. SNARE Protein CfSec22 Mediates Vesicular Trafficking to Regulate Growth, Conidiogenesis, and Pathogenesis of Ceratocystis fimbriata. Microorganisms 2025, 13, 2305. https://doi.org/10.3390/microorganisms13102305
Li C, Wang Y, Cao X, Lu K, Li L, Jiang J. SNARE Protein CfSec22 Mediates Vesicular Trafficking to Regulate Growth, Conidiogenesis, and Pathogenesis of Ceratocystis fimbriata. Microorganisms. 2025; 13(10):2305. https://doi.org/10.3390/microorganisms13102305
Chicago/Turabian StyleLi, Changgen, Yiming Wang, Xiaoying Cao, Kailun Lu, Lianwei Li, and Jihong Jiang. 2025. "SNARE Protein CfSec22 Mediates Vesicular Trafficking to Regulate Growth, Conidiogenesis, and Pathogenesis of Ceratocystis fimbriata" Microorganisms 13, no. 10: 2305. https://doi.org/10.3390/microorganisms13102305
APA StyleLi, C., Wang, Y., Cao, X., Lu, K., Li, L., & Jiang, J. (2025). SNARE Protein CfSec22 Mediates Vesicular Trafficking to Regulate Growth, Conidiogenesis, and Pathogenesis of Ceratocystis fimbriata. Microorganisms, 13(10), 2305. https://doi.org/10.3390/microorganisms13102305