Strain-Dependent Lactic Acid Fermentation of Capsosiphon fulvescens Hydrolysate by Lactobacillus spp.
Abstract
1. Introduction
2. Materials and Methods
2.1. Proximate Composition Analysis
2.2. Ultimate Elemental Analysis
2.3. Mineral Analysis
2.4. Acid Hydrolysis
2.5. Lactic Acid Fermentation
2.6. Analytical Methods
2.7. Quantification and Calculations
3. Results
3.1. Composition of Capsosiphon fulvescens
3.2. Hydrolysate Sugars and Yields; Comparison to Ulva Pertusa
3.3. Fermentation Performance Across Strains
3.4. Time-Course Profiles and Substrate Preferences
4. Discussion
4.1. Pathway-Based Interpretation of Product Spectra
4.2. Process Implications and Improvement Levers
4.3. Preliminary Energy and Economic Considerations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, S.; Hong, M.E.; Kim, J.; Lee, S.Y. Lactic acid for green chemical industry: Recent advances in metabolic engineering and bioprocessing. Fermentation 2022, 8, 702. [Google Scholar]
- Tsuji, H.; Okabe, T.; Sawai, D.; Noda, I. Stereocomplex polylactide: A review. Polymers 2022, 14, 3567. [Google Scholar]
- Zhang, Y.; Li, H.; Chen, G.; Wang, J. Recent advances in biodegradation of polylactic acid: Challenges and future perspectives. Materials 2024, 17, 1603. [Google Scholar]
- Okano, K.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Biotechnological production of enantiomeric pure lactic acid from renewable resources: Recent achievements, perspectives, and limits. Appl. Microbiol. Biotechnol. 2010, 85, 413–423. [Google Scholar] [CrossRef]
- Pereira, A.; Silva, C.; Mata, T.M.; Martins, A.A. Techno-economic and environmental assessment of polylactic acid production: A review and future perspectives. Sustainability 2023, 15, 6417. [Google Scholar]
- Ramirez, R.; Torres, M.; Singh, A.; Reddy, C.R.K. Seaweed biorefineries: Towards a sustainable and circular economy. Biomass 2025, 5, 182–203. [Google Scholar]
- Cui, F.; Li, Y.; Wan, C. Lactic acid production from corn stover using mixed culture of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour. Technol. 2011, 102, 1831–1836. [Google Scholar] [CrossRef]
- Parajó, J.C.; Alonso, J.L.; Santos, V. Lactic acid from wood. Process. Biochem. 1996, 31, 271–280. [Google Scholar] [CrossRef]
- Tejedor-Sanz, A.; Stevens, E.T.; Li, S.; Finnegan, P.; Nelson, J.; Knoesen, A.; Light, S.H.; Ajo-Franklin, C.M.; Marco, M.L. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism. eLife 2022, 11, e70684. [Google Scholar] [CrossRef] [PubMed]
- Posno, M.; Heuvelmans, P.T.; van Giezen, M.J.; Lokman, B.C.; Leer, R.J.; Pouwels, P.H. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl. Environ. Microbiol. 1991, 57, 2764–2766. [Google Scholar] [CrossRef]
- Bustos, G.; Moldes, A.B.; Cruz, J.M.; Domínguez, J.M. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Biotechnol. Prog. 2005, 21, 793–798. [Google Scholar] [CrossRef]
- Korea Food and Drug Administration. The Korea Food Codes; Korea Food and Drug Administration: Seoul, Korea, 2011; Chapter 10; Volume 2, pp. 1–53. [Google Scholar]
- Miller, L.; Houghton, J.A. The micro-Kjeldahl determination of the nitrogen content of amino acids and proteins. J. Biol. Chem. 1945, 159, 373–383. [Google Scholar] [CrossRef]
- Baba, M.; Pauwels, R.; Balzarini, J.; Arnout, J.; Desmyter, J.; De Clercq, E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc. Natl. Acad. Sci. USA 1988, 85, 6132–6136. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J.; Nam, T.J. A polysaccharide of the marine alga Capsosiphon fulvescens induces apoptosis in AGS gastric cancer cells via an IGF-IR-mediated PI3K/Akt pathway. Cell Biol. Int. 2007, 31, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Chang, J.H.; Lee, S.B. Chemical composition, saccharification yield, and the potential of the green seaweed Ulva pertusa. Biotechnol. Bioprocess Eng. 2014, 19, 1022–1033. [Google Scholar] [CrossRef]
- Hwang, H.J.; Kim, S.M.; Chang, J.H.; Lee, S.B. Lactic acid production from seaweed hydrolysate of Enteromorpha prolifera (Chlorophyta). J. Appl. Phycol. 2011, 24, 935–940. [Google Scholar] [CrossRef]
- Biermann, C.J.; McGinnis, G.D. Analysis of Carbohydrate by GLC and MS; CRC Press: Boca Raton, FL, USA, 1988; pp. 32–33. [Google Scholar]
- Saxena, R.K.; Anand, P.; Saran, S.; Isar, J.; Agarwal, L. Microbial production and applications of 1,2-propanediol. Indian J. Microbiol. 2010, 50, 2–11. [Google Scholar] [CrossRef]
- Oude Elferink, S.J.W.H.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 2001, 67, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Ammar, E.M.; Philippidis, G.P. Fermentative production of propionic acid: Prospects and challenges. Front. Microbiol. 2021, 12, 686585. [Google Scholar]
- Crognale, S.; Massimi, A.; Sbicego, M.; Braguglia, C.M.; Gallipoli, A.; Gazzola, G.; Gianico, A.; Tonanzi, B.; Di Pippo, F.; Rossetti, S. Ecology of chain-elongating and lactate-producing microbiomes for medium-chain carboxylates. Front. Microbiol. 2023, 14, 1164701. [Google Scholar]
- Gu, S.; Zhang, J.; Li, L.; Zhong, J. Repurposing endogenous type II CRISPR–Cas for genome editing in Lacticaseibacillus paracasei. ACS Synth. Biol. 2022, 11, 4031–4042. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Zhang, C.; Li, T.; Jin, F.-J.; Sung, Y.-J.; Oh, H.-M.; Lee, H.-G.; Jin, L. Development and Applications of CRISPR/Cas9-Based Genome Editing in Lactobacillus. Int. J. Mol. Sci. 2022, 23, 12852. [Google Scholar] [CrossRef] [PubMed]
- López-García, E.; Benítez-Cabello, A.; Tronchoni, J.; Arroyo-López, F.N. Transcriptomic response of Lactiplantibacillus pentosus LPG1 during table olive fermentation. Front. Microbiol. 2023, 14, 1264341. [Google Scholar] [CrossRef] [PubMed]
- Shaposhnikov, L.A.; Rozanov, A.S.; Sazonov, A.E. Genome-Editing Tools for Lactic Acid Bacteria: Past Achievements, Current Platforms, and Future Directions. Int. J. Mol. Sci. 2025, 26, 7483. [Google Scholar] [CrossRef]
- Brandão, M.; Marques, D.J.; Sousa, S.; Mateus, M.; Pinheiro, H.M.; da Fonseca, M.M.R.; Pires, C.; Nunes, M.L.; Marques, A.; Cesário, M.T. Lactic acid bacteria and yeast fermentation to improve the nutritional value of Ulva rigida. Mar. Drugs 2025, 23, 106. [Google Scholar] [CrossRef]
- Tabacof, A.; Calado, V.; Pereira, J.N. Third generation lactic acid production by Lactobacillus pentosus from the macroalgae Kappaphycus alvarezii hydrolysates. Fermentation 2023, 9, 319. [Google Scholar] [CrossRef]
- Nagarajan, D.; Oktarina, N.; Chen, P.-T.; Chen, C.-Y.; Lee, D.-J.; Chang, J.-S. Fermentative lactic acid production from seaweed hydrolysate using Lactobacillus sp. and Weissella sp. Bioresour. Technol. 2022, 344, 126166. [Google Scholar]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
Proximate Composition (g/100 g Dry Weight) | Ultimate Analysis (g/100 g Dry Weight) | Mineral Analysis (μg/g Dry Weight) | Sugar Composition of Acid Hydrolysate (g/100 g Dry Weight) | ||||
---|---|---|---|---|---|---|---|
Carbohydrate | 53.4 | C | 34.81 | K | 36,310 | D-xylose | 15.0 |
Protein | 24.2 | H | 5.28 | Na | 27,220 | L-rhamnose | 8.7 |
Lipid | 0.3 | O | 43.85 | Mg | 7810 | D-mannose | 3.6 |
Ash | 22.0 | N | 3.57 | Ca | 4810 | D-glucose | 1.8 |
S | 2.82 | Al | 1390 | D-glucuronolactone | 1.0 | ||
P | 0.32 | Fe | 1270 | D-glucuronic acid | 0.3 | ||
others | 9.35 | Sr | 50 | ||||
Cu | 10 | ||||||
Total | 100 | 100 | 78,870 | 30.4 |
Parameter | L. rhamnosus | L. casei | L. brevis |
---|---|---|---|
Cell density (OD600) a | 3.29 | 3.28 | 3.74 |
Initial pH | 6.5 | 6.5 | 6.5 |
Final pH | 4.8 | 5.0 | 4.5 |
Total product (g L−1) a | 3.9 | 4.6 | 5.0 |
Lactic acid (g L−1) | 2.0 | 2.3 | 2.8 |
Acetic acid (g L−1) | 0.3 | 0.5 | 1.4 |
Succinic acid (g L−1) | 1.1 | 1.3 | 0 |
1,2-propanediol (g L−1) | 0 | 0.2 | 0.2 |
Acetaldehyde (g L−1) | 0.5 | 0.3 | 0.6 |
Total sugar consumed (g −1) a | 4.0 | 7.8 | 11.9 |
L-rhamnose | 1.6 | 3.2 | 3.2 |
D-xylose | 0 | 1.1 | 5.5 |
D-mannose | 1.2 | 1.6 | 1.7 |
D-glucose | 1.2 | 1.3 | 1.3 |
D-glucuronic acid | 0.1 | 0.6 | 0.2 |
D-glucuronolactone | 0 | 0 | 0 |
Lactic acid yield (g/g) a | 0.49 | 0.30 | 0.23 |
Acetic acid yield (g/g) a | 0.07 | 0.07 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, H. Strain-Dependent Lactic Acid Fermentation of Capsosiphon fulvescens Hydrolysate by Lactobacillus spp. Microorganisms 2025, 13, 2295. https://doi.org/10.3390/microorganisms13102295
Hwang H. Strain-Dependent Lactic Acid Fermentation of Capsosiphon fulvescens Hydrolysate by Lactobacillus spp. Microorganisms. 2025; 13(10):2295. https://doi.org/10.3390/microorganisms13102295
Chicago/Turabian StyleHwang, Hyeongjin. 2025. "Strain-Dependent Lactic Acid Fermentation of Capsosiphon fulvescens Hydrolysate by Lactobacillus spp." Microorganisms 13, no. 10: 2295. https://doi.org/10.3390/microorganisms13102295
APA StyleHwang, H. (2025). Strain-Dependent Lactic Acid Fermentation of Capsosiphon fulvescens Hydrolysate by Lactobacillus spp. Microorganisms, 13(10), 2295. https://doi.org/10.3390/microorganisms13102295