Genomic Characterization of Carbapenem-Resistant Klebsiella pneumoniae ST1440 and Serratia marcescens Isolates from a COVID-19 ICU Outbreak in Ecuador
Abstract
1. Introduction
2. Methodology
2.1. Sample Collection
2.2. Microbiology Techniques
2.3. DNA Extraction and Sequencing
2.4. Data Availability and Bioinformatic Analysis
3. Results
3.1. General Features
3.2. Chromosomal Features
3.3. Plasmid Features
3.4. Clusters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rehman, S. A parallel and silent emerging pandemic: Antimicrobial resistance (AMR) amid COVID-19 pandemic. J. Infect. Public Health 2023, 16, 611–617. [Google Scholar] [CrossRef]
- Hu, S.; You, Y.; Zhang, S.; Tang, J.; Chen, C.; Wen, W.; Wang, C.; Cheng, Y.; Zhou, M.; Feng, Z.; et al. Multidrug-resistant infection in COVID-19 patients: A meta-analysis. J. Infect. 2023, 86, 66–117. Available online: http://www.journalofinfection.com/article/S0163445322006405/fulltext (accessed on 4 June 2024). [CrossRef]
- Abdelaziz Abdelmoneim, S.; Mohamed Ghazy, R.; Anwar Sultan, E.; Hassaan, M.A.; Anwar Mahgoub, M. Antimicrobial resistance burden pre and post-COVID-19 pandemic with mapping the multidrug resistance in Egypt: A comparative cross-sectional study. Sci. Rep. 2024, 14, 7176. Available online: https://www.nature.com/articles/s41598-024-56254-4 (accessed on 4 June 2024). [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol Rev. 2020, 33, e00047-19. Available online: https://pubmed.ncbi.nlm.nih.gov/32102899/ (accessed on 20 July 2025). [CrossRef]
- Naas, T.; Oueslati, S.; Bonnin, R.A.; Dabos, M.L.; Zavala, A.; Dortet, L.; Retailleau, P.; Iorga, B.I. Beta-lactamase database (BLDB)—structure and function. J. Enzym. Inhib. Med. Chem. 2017, 32, 917–919. Available online: https://pubmed.ncbi.nlm.nih.gov/28719998/ (accessed on 20 July 2025). [CrossRef] [PubMed]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. Available online: https://pubmed.ncbi.nlm.nih.gov/19136439/ (accessed on 20 July 2025). [CrossRef]
- Evans, B.A.; Amyes, S.G.B. OXA β-lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. Available online: https://pubmed.ncbi.nlm.nih.gov/24696435/ (accessed on 20 July 2025). [CrossRef] [PubMed]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014, 22, 438–445. Available online: https://research-portal.uea.ac.uk/en/publications/fluoroquinolone-resistance-mechanisms-impact-on-bacteria-and-role (accessed on 20 July 2025). [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat. 2010, 13, 151–171. Available online: https://pubmed.ncbi.nlm.nih.gov/20833577/ (accessed on 20 July 2025). [CrossRef]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. Available online: https://pubmed.ncbi.nlm.nih.gov/27307579/ (accessed on 20 July 2025). [CrossRef] [PubMed]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. Available online: https://www.pnas.org/doi/abs/10.1073/pnas.1501049112 (accessed on 20 July 2025). [CrossRef]
- Wyres, K.L.; Wick, R.R.; Gorrie, C.; Jenney, A.; Follador, R.; Thomson, N.R.; Holt, K.E. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb. Genom. 2016, 2, e000102. Available online: https://pubmed.ncbi.nlm.nih.gov/28348840/ (accessed on 20 July 2025). [CrossRef] [PubMed]
- Bialek-Davenet, S.; Criscuolo, A.; Ailloud, F.; Passet, V.; Jones, L.; Delannoy-Vieillard, A.S.; Garin, B.; Le Hello, S.; Arlet, G.; Nicolas-Chanoine, M.H.; et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg. Infect. Dis. 2014, 20, 1812–1820. Available online: https://pubmed.ncbi.nlm.nih.gov/25341126/ (accessed on 20 July 2025). [CrossRef]
- Khanna, A.; Khanna, M.; Aggarwal, A. Serratia Marcescens- A Rare Opportunistic Nosocomial Pathogen and Measures to Limit its Spread in Hospitalized Patients. J. Clin. Diagn. Res. 2012, 7, 243. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3592283/ (accessed on 20 July 2025).
- Stock, I.; Grueger, T.; Wiedemann, B. Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. Int. J. Antimicrob. Agents 2003, 22, 35–47. Available online: https://pubmed.ncbi.nlm.nih.gov/12842326/ (accessed on 20 July 2025). [CrossRef] [PubMed]
- Overmeyer, A.J.; Prentice, E.; Brink, A.; Lennard, K.; Moodley, C. The genomic characterization of carbapenem-resistant Serratia marcescens at a tertiary hospital in South Africa. JAC Antimicrob. Resist. 2023, 5, dlad089. Available online: https://pubmed.ncbi.nlm.nih.gov/37497336/ (accessed on 20 July 2025). [CrossRef] [PubMed]
- Matteoli, F.P.; Pedrosa-Silva, F.; Dutra-Silva, L.; Giachini, A.J. The global population structure and beta-lactamase repertoire of the opportunistic pathogen Serratia marcescens. Genomics 2021, 113, 3523–3532. Available online: https://pubmed.ncbi.nlm.nih.gov/34400240/ (accessed on 20 July 2025). [CrossRef]
- Das, S.; Bombaywala, S.; Srivastava, S.; Kapley, A.; Dhodapkar, R.; Dafale, N.A. Genome plasticity as a paradigm of antibiotic resistance spread in ESKAPE pathogens. Environ. Sci. Pollut. Res. Int. 2022, 29, 40507–40519. Available online: https://pubmed.ncbi.nlm.nih.gov/35349073/ (accessed on 4 June 2024). [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6148190/ (accessed on 20 July 2025). [CrossRef]
- Hu, Z.; Yang, L.; Liu, Z.; Han, J.; Zhao, Y.; Jin, Y.; Sheng, Y.; Zhu, L.; Hu, B. Excessive disinfection aggravated the environmental prevalence of antimicrobial resistance during COVID-19 pandemic. Sci. Total Environ. 2023, 882, 163598. [Google Scholar] [CrossRef]
- Murray, L.M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W.H.; Murray, A.K. Co-selection for antibiotic resistance by environmental contaminants. Npj Antimicrob. Resist. 2024, 2, 9. Available online: https://www.nature.com/articles/s44259-024-00026-7 (accessed on 9 July 2024). [CrossRef]
- Soria, C.; Nieto, N.; Villacís, J.E.; Lainez, S.; Cartelle, M. Brote por Serratia marcescens en una Unidad de Cuidados Intensivos Neonatales: Guayaquil-Ecuador. Rev. Chil. Infectol. 2016, 33, 703–705. Available online: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182016000600016&lng=es&nrm=iso&tlng=es (accessed on 20 July 2025). [CrossRef] [PubMed]
- Reyes, J.; Cárdenas, P.; Tamayo, R.; Villavicencio, F.; Aguilar, A.; Melano, R.G.; Trueba, G. Characterization of blaKPC-2-Harboring Klebsiella pneumoniae Isolates and Mobile Genetic Elements from Outbreaks in a Hospital in Ecuador. Microb. Drug Resist. 2021, 27, 752–759. Available online: https://www.liebertpub.com/doi/10.1089/mdr.2019.0433 (accessed on 9 July 2024). [CrossRef]
- Rada, A.M.; Cadena, E.D.L.; Orozco, N.; Restrepo, C.A.; Capataz, C.; Perenguez, M.N.; Hernández-Gómez, C.; Pallares, C.; Porras, P.; Ardila, J.; et al. Plasmid Promiscuity Explains High Endemicity of KPC-2 Among Colombian Enterobacteriaceae. Open Forum. Infect. Dis. 2017, 4 (Suppl. S1), S602–S603. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. Available online: https://pubmed.ncbi.nlm.nih.gov/32358954/ (accessed on 20 July 2025). [CrossRef]
- Lee, Y.L.; Liu, C.E.; Tang, H.J.; Huang, Y.T.; Chen, Y.S.; Hsueh, P.R.; SMART Taiwan Group. Epidemiology and antimicrobial susceptibility profiles of Enterobacterales causing bloodstream infections before and during COVID-19 pandemic: Results of the Study for Monitoring Antimicrobial Resistance Trends (SMART) in Taiwan, 2018–2021. J. Microbiol. Immunol. Infect. 2024, 57, 446–456. Available online: https://pubmed.ncbi.nlm.nih.gov/38632023/ (accessed on 10 July 2024). [CrossRef] [PubMed]
- Claudia, S.S.; Carmen, S.S.; Andrés, D.; Marcela, M.A.; Kerly, C.A.; Bryan, B.M.; John, C.J.; José, G.F. Risk factors associated with colistin resistance in carbapenemase-producing Enterobacterales: A multicenter study from a low-income country. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 64. Available online: https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-023-00609-8 (accessed on 9 July 2024). [CrossRef] [PubMed]
- Xu, Q.; Zheng, B.; Li, K.; Shen, P.; Xiao, Y. A preliminary exploration on the mechanism of the carbapenem-resistance transformation of Serratia marcescens in vivo. BMC Genom. 2024, 25, 2. Available online: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-023-09904-2 (accessed on 20 July 2024). [CrossRef] [PubMed]
- Jia, J.; Huang, L.; Zhang, L.; Sheng, Y.; Chu, W.; Xu, H.; Xu, A. Genomic characterization of two carbapenem-resistant Serratia marcescens isolates causing bacteremia: Emergence of KPC-2-encoding IncR plasmids. Front. Cell. Infect. Microbiol. 2023, 13, 1075255. [Google Scholar] [CrossRef]
- Kurra, N.; Woodard, P.I.; Gandrakota, N.; Gandhi, H.; Polisetty, S.R.; Ang, S.P.; Patel, K.P.; Chitimalla, V.; Ali Baig, M.M.; Samudrala, G. Opportunistic Infections in COVID-19: A Systematic Review and Meta-Analysis. Cureus 2022, 14, e23687. [Google Scholar] [CrossRef]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef]
- Nori, P.; Cowman, K.; Chen, V.; Bartash, R.; Szymczak, W.; Madaline, T.; Punjabi Katiyar, C.; Jain, R.; Aldrich, M.; Weston, G.; et al. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect. Control Hosp. Epidemiol. 2021, 42, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0163445320303236 (accessed on 10 December 2024). [CrossRef]
- Chen, Z.; Zhan, Q.; Huang, L.; Wang, C. Coinfection and superinfection in ICU critically ill patients with severe COVID-19 pneumonia and influenza pneumonia: Are the pictures different? Front. Public Health 2023, 11, 1195048. [Google Scholar] [CrossRef]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020, 26, 1395–1399. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1198743X20303694 (accessed on 10 December 2024). [CrossRef] [PubMed]
- Li, J.; Wang, J.; Yang, Y.; Cai, P.; Cao, J.; Cai, X.; Zhang, Y. Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: A retrospective analysis. Antimicrob. Resist. Infect. Control 2020, 9, 153. [Google Scholar] [CrossRef]
- Harnpicharnchai, P.; Siriarchawatana, P.; Mayteeworakoon, S.; Ingsrisawang, L.; Likhitrattanapisal, S.; Eurwilaichitr, L.; Ingsriswang, S. Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. Environ. Res. 2024, 247, 118269. Available online: https://pubmed.ncbi.nlm.nih.gov/38246293/ (accessed on 12 June 2024). [CrossRef] [PubMed]
- Zhao, S.; Dou, C.; Zhang, J.; Huang, L.; Gao, Y.; Du, B.; Cui, X.; Zhao, H.; Xue, G.; Ke, Y.; et al. Multiple factors trigger the formation and resuscitation of the VBNC state in alcohol-producing Klebsiella pneumoniae. Appl. Environ. Microbiol. 2024, 90, e0055724. Available online: https://pubmed.ncbi.nlm.nih.gov/38953658/ (accessed on 9 July 2024). [CrossRef]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Néron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. Available online: https://pubmed.ncbi.nlm.nih.gov/29790974/ (accessed on 4 June 2024). [CrossRef]
- Wang, G.; Song, G.; Xu, Y. Association of crispr/cas system with the drug resistance in klebsiella pneumoniae. Infect. Drug Resist. 2020, 13, 1929–1935. Available online: https://www.tandfonline.com/action/journalInformation?journalCode=didr20 (accessed on 29 May 2024). [CrossRef]
- Radovcic, M.; Culo, A.; Ivancic-Bace, I. Cas3-stimulated runaway replication of modified ColE1 plasmids in Escherichia coli is temperature dependent. FEMS Microbiol. Lett. 2019, 366, fnz106. Available online: https://pubmed.ncbi.nlm.nih.gov/31095294/ (accessed on 29 May 2024). [CrossRef] [PubMed]
- Kamruzzaman, M.; Iredell, J.R. CRISPR-Cas System in Antibiotic Resistance Plasmids in Klebsiella pneumoniae. Front. Microbiol. 2020, 10, 502402. Available online: https://www.frontiersin.org (accessed on 29 May 2024). [CrossRef] [PubMed]
- O’Neill, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 15 December 2024).
General Features | ||||
---|---|---|---|---|
Patient | (1) | (2) | (2) | (3) |
SRA accession | SRX22858523 | SRX22858524 | SRX22858526 | SRX22858525 |
Isolate ID | 2684096 | 27026351 | 27026352 | 2729958 |
Species | K. pneumoniae | K. pneumoniae | S. marcescens | S. marcescens |
MLST | ST1440 | ST1440 | - | - |
Fitness assay (min ± SD) | 208.3 ± 19.9 | 200.0 ± 10.4 | 231.0 ± 35.5 | 206.3 ± 16.7 |
Assembly quality | ||||
Overall length (bp) | 5,381,579 | 5,386,326 | 5,334,682 | 5,352,178 |
Contigs count | 61 | 61 | 42 | 45 |
GC content (%) | 57.46 | 57.46 | 59.72 | 59.7 |
Largest contig (bp) | 631,437 | 631,437 | 1,802,735 | 2,510,374 |
N50 (bp) | 292,952 | 311,324 | 466,601 | 356,805 |
N90 (bp) | 56,091 | 58,962 | 119,513 | 119,513 |
auN (bp) | 295,859.8 | 321,543.1 | 841,142 | 1,298,789.8 |
L50 | 7 | 7 | 3 | 2 |
L90 | 22 | 20 | 11 | 11 |
Chromosome | ||||
Contigs counts | 36 | 35 | 39 | 37 |
Length (bp) | 5,089,345 | 5,094,805 | 5,233,506 | 5,233,507 |
GC content (%) | 57.67 | 57.67 | 59.83 | 59.83 |
Complete BUSCO (%) | 98.65 | 98.65 | 99.32 | 99.32 |
Features | ||||
Coding sequences (CDS) | 4940 | 4942 | 5063 | 5065 |
Hypothetical | 541 | 541 | 833 | 836 |
tRNA | 71 | 74 | 76 | 75 |
tmRNA | 1 | 1 | 1 | 1 |
rRNA | 3 | 3 | 2 | 2 |
ncRNA | 67 | 67 | 45 | 45 |
ncRNA Regions | 48 | 53 | 50 | 50 |
sORF | 2 | 2 | 4 | 4 |
oriC | 2 | 2 | 2 | 2 |
Prophage regions | 3 | 3 | 6 | 6 |
HGT regions | 123 | 121 | 93 | 87 |
Genes related to: | ||||
IE | 23 | 25 | 22 | 21 |
RRR | 121 | 121 | 94 | 94 |
P | 73 | 73 | 110 | 109 |
STD | 32 | 31 | 38 | 38 |
T | 51 | 52 | 52 | 51 |
Plasmid | ||||
Plasmid contigs | 25 | 26 | 3 | 8 |
Combined length (bp) | 292,234 | 291,521 | 101,176 | 118,671 |
Recovered plasmids | 7 | 7 | 1 | 4 |
Type | ||||
Conjugative | 2 | 2 | 1 | 1 |
Mobilizable | 2 | 2 | 0 | 2 |
Non-mobilizable | 2 | 2 | 0 | 1 |
Discarded (AD092) | 1 | 1 | 0 | 0 |
Feature | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plasmid type | Conjugative | Nonmobilizable | Mobilizable | ||||||||||||||
Plasmid name | AA275 | AA002 | AB595 | AA119 | AA531 | AB042 | |||||||||||
Specie | CrKp | CrKp | CrSm | CrSm | CrKp | CrKp | CrKp | CrSm | CrKp | CrKp | CrKp | CrSm | CrKp | CrKp | CrKp | CrKp | CrSm |
Patient | (2) | (1) | (2) | (3) | (2) | (1) | (1) | (3) | (2) | (1) | (2) | (3) | (1) | (2) | (1) | (2) | (3) |
Replicon | IncFIB(K), IncFII(K) | IncM1 | Col(pHAD28) | Col(pHAD28), Col440I | Col(pHAD28) | ||||||||||||
Contigs count | 15 | 14 | 3 | 4 | 5 | 5 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Length (bp) | 186,124 | 183,738 | 101,176 | 96,842 | 81,542 | 80,929 | 16,523 | 15,638 | 12,811 | 3674 | 3674 | 3115 | 3106 | 3106 | 3085 | 3085 | 3076 |
GC (%) | 53.76 | 53.72 | 53.98 | 53.76 | 53.68 | 54.16 | 54.19 | 56.82 | 57.09 | 46.43 | 46.43 | 56.28 | 56.12 | 56.12 | 47.29 | 47.29 | 47.11 |
CDS | 245 | 241 | 139 | 133 | 105 | 108 | 22 | 26 | 15 | 9 | 10 | 4 | 5 | 5 | 6 | 6 | 4 |
Hypothetical | 97 | 95 | 89 | 87 | 73 | 77 | 7 | 12 | 4 | 7 | 8 | 3 | 4 | 4 | 4 | 4 | 2 |
HGT regions | 5 | 5 | 3 | 3 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | |
Prophage regions | 1 | 1 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | |
Prophage genes | 4 | 4 | 5 | 5 | 5 | - | - | - | - | - | - | - | - | - | - | - | |
Genes related to: | |||||||||||||||||
IE | 45 | 43 | 22 | 20 | 11 | 11 | 4 | 5 | 2 | - | - | - | - | - | - | - | - |
RRR | 9 | 9 | 9 | 7 | 7 | 7 | - | 2 | - | 1 | 1 | - | - | - | - | - | - |
P | 1 | 1 | 2 | 2 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - |
STD | 5 | 5 | 5 | 5 | 5 | 5 | 1 | 1 | 1 | 2 | 2 | - | - | - | - | - | - |
T | 12 | 12 | 18 | 18 | 18 | 1 | 1 | 1 | 1 | - | - | 2 | 2 | 2 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tisalema-Guanopatín, E.; Cabezas-Mera, F.; Pérez-Meza, Á.A.; Palacios, V.; Espinosa, F.; Ligña, E.; Cristina Aguilar, A.; Reyes-Chacón, J.; Grunauer, M.; Garzón-Chavez, D. Genomic Characterization of Carbapenem-Resistant Klebsiella pneumoniae ST1440 and Serratia marcescens Isolates from a COVID-19 ICU Outbreak in Ecuador. Microorganisms 2025, 13, 2286. https://doi.org/10.3390/microorganisms13102286
Tisalema-Guanopatín E, Cabezas-Mera F, Pérez-Meza ÁA, Palacios V, Espinosa F, Ligña E, Cristina Aguilar A, Reyes-Chacón J, Grunauer M, Garzón-Chavez D. Genomic Characterization of Carbapenem-Resistant Klebsiella pneumoniae ST1440 and Serratia marcescens Isolates from a COVID-19 ICU Outbreak in Ecuador. Microorganisms. 2025; 13(10):2286. https://doi.org/10.3390/microorganisms13102286
Chicago/Turabian StyleTisalema-Guanopatín, Estefanía, Fausto Cabezas-Mera, Álvaro A. Pérez-Meza, Veronica Palacios, Franklin Espinosa, Edison Ligña, Ana Cristina Aguilar, Jorge Reyes-Chacón, Michelle Grunauer, and Daniel Garzón-Chavez. 2025. "Genomic Characterization of Carbapenem-Resistant Klebsiella pneumoniae ST1440 and Serratia marcescens Isolates from a COVID-19 ICU Outbreak in Ecuador" Microorganisms 13, no. 10: 2286. https://doi.org/10.3390/microorganisms13102286
APA StyleTisalema-Guanopatín, E., Cabezas-Mera, F., Pérez-Meza, Á. A., Palacios, V., Espinosa, F., Ligña, E., Cristina Aguilar, A., Reyes-Chacón, J., Grunauer, M., & Garzón-Chavez, D. (2025). Genomic Characterization of Carbapenem-Resistant Klebsiella pneumoniae ST1440 and Serratia marcescens Isolates from a COVID-19 ICU Outbreak in Ecuador. Microorganisms, 13(10), 2286. https://doi.org/10.3390/microorganisms13102286