Biocide-Containing Facades Alter Culture-Based Bacterial and Fungal Community Composition and Resistance Patterns to Octylisothiazolinone
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Field Trial
2.2. Sampling
2.3. Isolation and Cultivation of Bacterial and Fungal Façade Colonizers
2.4. DNA Extraction and Amplification of Isolates from Façades
2.5. Sanger Sequencing and Taxonomic Assignment
2.6. Susceptibility Testing
2.7. Statistics
3. Results
3.1. Biocide Concentrations in the Façades After 1-Year Field Trail
3.2. Façade Isolate Characterization
3.3. MIC of Isolated Strains
4. Discussion
4.1. Biocide Presence Shaped Microbial Community Compositions
4.2. Microbial Susceptibility of OIT and the Capabilities to Form Biofilms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schoknecht, U.; Sommerfeld, T.; Borho, N.; Bagda, E. Interlaboratory Comparison for a Laboratory Leaching Test Procedure with Façade Coatings. Prog. Org. Coat. 2013, 76, 351–359. [Google Scholar] [CrossRef]
- Moghtadernejad, S.; Chouinard, L.E.; Mirza, M.S. Façade Design Stages: Issues and Considerations. J. Archit. Eng. 2019, 25, 335. [Google Scholar] [CrossRef]
- Hofbauer, W.K.; Gärtner, G. Microbial Life on Façades, 1st ed.; Springer eBook Collection; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-662-54833-2. [Google Scholar]
- Barberousse, H.; Ruot, B.; Yéprémian, C.; Gilbert, B. An Assessment of Façade Coatings against Colonisation by Aerial Algae and Cyanobacteria. Build. Environ. 2007, 42, 2555–2561. [Google Scholar] [CrossRef]
- Grobety, B.; Giere, R.; Dietze, V.; Stille, P. Airborne Particles in the Urban Environment. Elements 2010, 6, 229–234. [Google Scholar] [CrossRef]
- Paiva de Carvalho, H.; Mesquita, N.; Trovão, J.; Fernández Rodríguez, S.; Pinheiro, A.C.; Gomes, V.; Alcoforado, A.; Gil, F.; Portugal, A. Fungal Contamination of Paintings and Wooden Sculptures inside the Storage Room of a Museum: Are Current Norms and Reference Values Adequate? J. Cult. Herit. 2018, 34, 268–276. [Google Scholar] [CrossRef]
- Viegas, C.A.; Borsoi, G.; Moreira, L.M.; Parracha, J.L.; Nunes, L.; Malanho, S.; Veiga, R.; Flores-Colen, I. Diversity and Distribution of Microbial Communities on the Surface of External Thermal Insulation Composite Systems (ETICS) Facades in Residential Buildings. Int. Biodeterior. Biodegrad. 2023, 184, 105658. [Google Scholar] [CrossRef]
- Vester, J.K.; Glaring, M.A.; Stougaard, P. Improved Cultivation and Metagenomics as New Tools for Bioprospecting in Cold Environments. Extremophiles 2015, 19, 17–29. [Google Scholar] [CrossRef]
- Giacomucci, L.; Bertoncello, R.; Salvadori, O.; Martini, I.; Favaro, M.; Villa, F.; Sorlini, C.; Cappitelli, F. Microbial Deterioration of Artistic Tiles from the Façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microb. Ecol. 2011, 62, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Negi, A.; Sarethy, I.P. Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses. Microb. Ecol. 2019, 78, 1014–1029. [Google Scholar] [CrossRef]
- Liu, X.; Koestler, R.J.; Warscheid, T.; Katayama, Y.; Gu, J.-D. Microbial Deterioration and Sustainable Conservation of Stone Monuments and Buildings. Nat. Sustain. 2020, 3, 991–1004. [Google Scholar] [CrossRef]
- Bester, K.; Lamani, X. Determination of Biocides as Well as Some Biocide Metabolites from Facade Run-off Waters by Solid Phase Extraction and High Performance Liquid Chromatographic Separation and Tandem Mass Spectrometry Detection. J. Chromatogr. A 2010, 1217, 5204–5214. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.M.H.; Al-Dawery, S.K. Sustainable Self-Cleaning Treatments for Architectural Façades in Developing Countries. Alex. Eng. J. 2018, 57, 867–873. [Google Scholar] [CrossRef]
- Reiß, F.; Kiefer, N.; Noll, M.; Kalkhof, S. Application, Release, Ecotoxicological Assessment of Biocide in Building Materials and Its Soil Microbial Response. Ecotoxicol. Environ. Saf. 2021, 224, 112707. [Google Scholar] [CrossRef] [PubMed]
- Vega-Garcia, P.; Lok, C.S.C.; Marhoon, A.; Schwerd, R.; Johann, S.; Helmreich, B. Modelling the Environmental Fate and Behavior of Biocides Used in Façades Covered with Mortars and Plasters and Their Transformation Products. Build. Environ. 2022, 216, 108991. [Google Scholar] [CrossRef]
- Vermeirssen, E.L.; Campiche, S.; Dietschweiler, C.; Werner, I.; Burkhardt, M. Ecotoxicological Assessment of Immersion Samples from Facade Render Containing Free or Encapsulated Biocides. Environ. Toxicol. Chem. 2018, 37, 2246–2256. [Google Scholar] [CrossRef]
- European Parliament. Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products; European Parliament: Strasbourg, France, 2012; pp. 1–123.
- Kättström, D.; Beronius, A.; Rudén, C.; Ågerstrand, M. Stricter Regulation Applies to Antimicrobial Substances When Used as Biocides Compared to Cosmetics under Current EU Legislation. Emerg. Contam. 2022, 8, 229–242. [Google Scholar] [CrossRef]
- Kiefer, N.; Nichterlein, M.; Reiß, F.; Runge, M.; Biermann, U.; Wieland, T.; Noll, M.; Kalkhof, S. Eluates from Façades at the Beginning of Their Service Time Affect Aquatic and Sediment Organisms. Sci. Total Environ. 2024, 906, 167531. [Google Scholar] [CrossRef]
- Gtyrt50Kresmann, S.; Arokia, H.R.; Koch, C.; Sures, B. Ecotoxicological Potential of the Biocides Terbutryn, Octhilinone and Methylisothiazolinone: Underestimated Risk from Biocidal Pathways? Sci. Total Environ. 2018, 625, 900–908. [Google Scholar] [CrossRef]
- Schoknecht, U.; Mathies, H.; Lisec, J. Leaching and Transformation of Film Preservatives in Paints Induced by Combined Exposure to Ultraviolet Radiation and Water Contact under Controlled Laboratory Conditions. Water 2021, 13, 2390. [Google Scholar] [CrossRef]
- Bollmann, U.E.; Minelgaite, G.; Schlüsener, M.; Ternes, T.A.; Vollertsen, J.; Bester, K. Photodegradation of Octylisothiazolinone and Semi-Field Emissions from Facade Coatings. Sci. Rep. 2017, 7, 41501. [Google Scholar] [CrossRef]
- European Chemicals Agency (ECHA). Refinement of the Emission Scenario Document for Product Type 6—Preservatives for Products during Storage; European Chemicals Agency: Helsinki, Finland, 2018; Available online: https://data.europa.eu/doi/10.2823/18867 (accessed on 28 September 2025).
- European Commission. Joint Research Centre. EU Ecolabel Criteria for Paints and Varnishes: Assessment of Derogation Requests for Biocide Substances; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Silva, V.; Silva, C.; Soares, P.; Garrido, E.M.; Borges, F.; Garrido, J. Isothiazolinone Biocides: Chemistry, Biological, and Toxicity Profiles. Molecules 2020, 25, 991. [Google Scholar] [CrossRef]
- Junginger, T.; Payraudeau, S.; Imfeld, G. Emissions of the Urban Biocide Terbutryn from Facades: The Contribution of Transformation Products. Environ. Sci. Technol. 2023, 57, 14319–14329. [Google Scholar] [CrossRef]
- Linke, F.; Edun, O.; Junginger, T.; Payraudeau, S.; Preusser, F.; Imfeld, G.; Lange, J. Biocides in Soils of Urban Stormwater Infiltration Systems—Indications of Inputs from Point and Non-Point Sources. Water Air Soil Pollut. 2023, 234, 586. [Google Scholar] [CrossRef]
- Kamtsikakis, A.; Kavetsou, E.; Chronaki, K.; Kiosidou, E.; Pavlatou, E.; Karana, A.; Papaspyrides, C.; Detsi, A.; Karantonis, A.; Vouyiouka, S. Encapsulation of Antifouling Organic Biocides in Poly(Lactic Acid) Nanoparticles. Bioengineering 2017, 4, 81. [Google Scholar] [CrossRef]
- Paijens, C.; Bressy, A.; Frère, B.; Moilleron, R. Biocide Emissions from Building Materials during Wet Weather: Identification of Substances, Mechanism of Release and Transfer to the Aquatic Environment. Environ. Sci. Pollut. Res. Int. 2020, 27, 3768–3791. [Google Scholar] [CrossRef]
- Ramos, J.L.; Gallegos, M.-T.; Marqués, S.; Ramos-González, M.-I.; Espinosa-Urgel, M.; Segura, A. Responses of Gram-Negative Bacteria to Certain Environmental Stressors. Curr. Opin. Microbiol. 2001, 4, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Samyn, P.; Bosmans, J.; Cosemans, P. Current Alternatives for In-Can Preservation of Aqueous Paints: A Review. In Proceedings of the 2nd International Online Conference on Polymer Science, Polymers and Nanotechnology for Industry 4.0, Online, 1–15 November 2021; p. 18. [Google Scholar]
- McDonnell, G.; Russell, A.D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [PubMed]
- Mitova, M.M.; Iliev, M.; Nováková, A.; Gorbushina, A.A.G.; Groudeva, V.I.; Martin-Sanchez, P. Diversity and Biocide Susceptibility of Fungal Assemblages Dwelling in the Art Gallery of Magura Cave, Bulgaria. Int. J. Speleol. 2017, 46, 67–80. [Google Scholar] [CrossRef]
- Nißl, L.; Westhaeuser, F.; Noll, M. Antimycotic Effects of 11 Essential Oil Components and Their Combinations on 13 Food Spoilage Yeasts and Molds. J. Fungi 2021, 7, 872. [Google Scholar] [CrossRef]
- Elumalai, P.; Elumalai, E.; David, E. Fungi Associated with Deteriorations of Painted Wall Surfaces: Isolation and Identification. Eur. J. Acad. Essays 2014, 1, 48–50. [Google Scholar]
- Nizet, V. The Accidental Orthodoxy of Drs. Mueller and Hinton. eBioMedicine 2017, 22, 26–27. [Google Scholar] [CrossRef]
- Buck, J.D. Nonstaining (KOH) Method for Determination of Gram Reactions of Marine Bacteria. Appl. Environ. Microbiol. 1982, 44, 992–993. [Google Scholar] [CrossRef]
- Saginur, R.; Clecner, B.; Portnoy, J.; Mendelson, J. Superoxol(Catalase)Test for Identification of Neisseria Gonorrhoeae. J. Clin. Microbiol. 1982, 15, 475–477. [Google Scholar] [CrossRef]
- Piervandi, Z.; Khodadadi Darban, A.; Mousavi, S.M.; Abdollahi, M.; Asadollahfardi, G.h.R.; Akbari Noghabi, K. A Proposed Biochemical Protocol to Isolate and Characterize Acidophilic Bacteria from Tailings Soil. J. Min. Environ. 2020, 11, 1157–1171. [Google Scholar] [CrossRef]
- Fatima, M.; Anuradha, K. Isolation, Characterization, and Optimization Studies of Bacterial Pigments. J. Pure Appl. Microbiol. 2022, 16, 1039–1048. [Google Scholar] [CrossRef]
- Noll, M.; Matthies, D.; Frenzel, P.; Derakshani, M.; Liesack, W. Succession of Bacterial Community Structure and Diversity in a Paddy Soil Oxygen Gradient. Environ. Microbiol. 2005, 7, 382–395. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.P. Staphylococcal Infections: Host and Pathogenic Factors. Microorganisms 2021, 9, 1080. [Google Scholar] [CrossRef] [PubMed]
- Pepe, O.; Sannino, L.; Palomba, S.; Anastasio, M.; Blaiotta, G.; Villani, F.; Moschetti, G. Heterotrophic Microorganisms in Deteriorated Medieval Wall Paintings in Southern Italian Churches. Microbiol. Res. 2010, 165, 21–32. [Google Scholar] [CrossRef]
- Gorbushina, A.A.; Heyrman, J.; Dornieden, T.; Gonzalez-Delvalle, M.; Krumbein, W.E.; Laiz, L.; Petersen, K.; Saiz-Jimenez, C.; Swings, J. Bacterial and Fungal Diversity and Biodeterioration Problems in Mural Painting Environments of St. Martins Church (Greene–Kreiensen, Germany). Int. Biodeterior. Biodegrad. 2004, 53, 13–24. [Google Scholar] [CrossRef]
- Qian, J.; Hospodsky, D.; Yamamoto, N.; Nazaroff, W.W.; Peccia, J. Size-resolved Emission Rates of Airborne Bacteria and Fungi in an Occupied Classroom. Indoor Air 2012, 22, 339–351. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Guinea, J.; Cuenca-Estrella, M.; Meletiadis, J.; Mouton, J.W.; Lagrou, K.; Howard, S.J. EUCAST Definitive Document E. Def 9.3: Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds; European Committee on Antimicrobial Susceptibility Testing (EUCAST): Amsterdam, The Netherlands, 2015. [Google Scholar]
- Shakeri, H.; Volkova, V.; Wen, X.; Deters, A.; Cull, C.; Drouillard, J.; Müller, C.; Moradijamei, B.; Jaberi-Douraki, M. Establishing Statistical Equivalence of Data from Different Sampling Approaches for Assessment of Bacterial Phenotypic Antimicrobial Resistance. Appl. Environ. Microbiol. 2018, 84, e02724-17. [Google Scholar] [CrossRef] [PubMed]
- West, R.M. Best Practice in Statistics: Use the Welch t -Test When Testing the Difference between Two Groups. Ann. Clin. Biochem. 2021, 58, 267–269. [Google Scholar] [CrossRef]
- Ortega-Morales, O.; Montero-Muñoz, J.L.; Baptista Neto, J.A.; Beech, I.B.; Sunner, J.; Gaylarde, C. Deterioration and Microbial Colonization of Cultural Heritage Stone Buildings in Polluted and Unpolluted Tropical and Subtropical Climates: A Meta-Analysis. Int. Biodeterior. Biodegrad. 2019, 143, 104734. [Google Scholar] [CrossRef]
- Saubenova, M.; Rapoport, A.; Venkatachalam, M.; Dufossé, L.; Yermekbay, Z.; Oleinikova, Y. Production of Carotenoids by Microorganisms. Fermentation 2024, 10, 502. [Google Scholar] [CrossRef]
- Pascoe, M.J.; Maillard, J.-Y. The Role of Melanin in Aspergillus Tolerance to Biocides and Photosensitizers. Lett. Appl. Microbiol. 2021, 72, 375–381. [Google Scholar] [CrossRef]
- Toreno, G.; Isola, D.; Meloni, P.; Carcangiu, G.; Selbmann, L.; Onofri, S.; Caneva, G.; Zucconi, L. Biological Colonization on Stone Monuments: A New Low Impact Cleaning Method. J. Cult. Herit. 2018, 30, 100–109. [Google Scholar] [CrossRef]
- Bastian, F.; Alabouvette, C.; Jurado, V.; Saiz-Jimenez, C. Impact of Biocide Treatments on the Bacterial Communities of the Lascaux Cave. Naturwissenschaften 2009, 96, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.R.; Carrillo, Y.; Dijkstra, F.A. Biocides Provide a Source of Carbon and Nitrogen Directly to Surviving Microbes and Indirectly through a Pulse in Microbial Necromass. Appl. Soil Ecol. 2021, 160, 103862. [Google Scholar] [CrossRef]
- Villa, F.; Gulotta, D.; Toniolo, L.; Borruso, L.; Cattò, C.; Cappitelli, F. Aesthetic Alteration of Marble Surfaces Caused by Biofilm Formation: Effects of Chemical Cleaning. Coatings 2020, 10, 122. [Google Scholar] [CrossRef]
- Naloka, K.; Kuntaveesuk, A.; Muangchinda, C.; Chavanich, S.; Viyakarn, V.; Chen, B.; Pinyakong, O. Pseudomonas and Pseudarthrobacter Are the Key Players in Synergistic Phenanthrene Biodegradation at Low Temperatures. Sci. Rep. 2024, 14, 11976. [Google Scholar] [CrossRef]
- Asimakoula, S.; Marinakos, O.; Tsagogiannis, E.; Koukkou, A.I. Phenol Degradation by Pseudarthrobacter Phenanthrenivorans Sphe3. Microorganisms 2023, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-Y.; Li, S.-W.; Leng, Y.; Kang, X.-H. Structural and Functional Responses of Bacterial and Fungal Communities to Multiple Heavy Metal Exposure in Arid Loess. Sci. Total Environ. 2020, 723, 138081. [Google Scholar] [CrossRef]
- Seffernick, J.L.; Johnson, G.; Sadowsky, M.J.; Wackett, L. Substrate Specificity of Atrazine Chlorohydrolase and Atrazine-Catabolizing Bacteria. Appl. Environ. Microbiol. 2000, 66, 4247–4252. [Google Scholar] [CrossRef] [PubMed]
- Aislabie, J.; Bej, A.K.; Ryburn, J.; Lloyd, N.; Wilkins, A. Characterization of Arthrobacter Nicotinovorans HIM, an Atrazine-Degrading Bacterium, from Agricultural Soil New Zealand. FEMS Microbiol. Ecol. 2005, 52, 279–286. [Google Scholar] [CrossRef]
- Harada, N.; Takagi, K.; Fujii, K.; Iwasaki, A. Transformation of Methylthio-s-Triazines via Sulfur Oxidation. Soil Biol. Biochem. 2006, 38, 2952–2957. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, B.; He, Z.; Yang, X. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing. PLoS ONE 2016, 11, e0163287. [Google Scholar] [CrossRef]
- Romani, M.; Carrion, C.; Fernandez, F.; Intertaglia, L.; Pecqueur, D.; Lebaron, P.; Lami, R. High Bacterial Diversity in Pioneer Biofilms Colonizing Ceramic Roof Tiles. Int. Biodeterior. Biodegrad. 2019, 144, 104745. [Google Scholar] [CrossRef]
- Mihajlovski, A.; Gabarre, A.; Seyer, D.; Bousta, F.; Di Martino, P. Bacterial Diversity on Rock Surface of the Ruined Part of a French Historic Monument: The Chaalis Abbey. Int. Biodeterior. Biodegrad. 2017, 120, 161–169. [Google Scholar] [CrossRef]
- Sterflinger, K.; Piñar, G. Microbial Deterioration of Cultural Heritage and Works of Art—Tilting at Windmills? Appl. Microbiol. Biotechnol. 2013, 97, 9637–9646. [Google Scholar] [CrossRef]
- Urzì, C.; Realini, M. Colour Changes of Notos Calcareous Sandstone as Related to Its Colonisation by Microorganisms. Int. Biodeterior. Biodegrad. 1998, 42, 45–54. [Google Scholar] [CrossRef]
- Khatoon, H.; Rai, J.N.; Asima, J. (Eds.) Role of Fungi in Bioremediation of Contaminated Soil. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology; Academic Press: Cambridge, MA, USA, 2021; pp. 121–156. ISBN 978-0-12-821925-6. [Google Scholar]
- Chanda, A.; Gummadidala, P.M.; Gomaa, O.M. Mycoremediation with Mycotoxin Producers: A Critical Perspective. Appl. Microbiol. Biotechnol. 2016, 100, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Kodama, T.; Ding, L.; Yoshida, M.; Yajima, M. Biodegradation of an S-Triazine Herbicide, Simazine. J. Mol. Catal. B: Enzym. 2001, 11, 1073–1078. [Google Scholar] [CrossRef]
- Guo, X.; Xie, C.; Wang, L.; Li, Q.; Wang, Y. Biodegradation of Persistent Environmental Pollutants by Arthrobacter Sp. Environ. Sci. Pollut. Res. Int. 2019, 26, 8429–8443. [Google Scholar] [CrossRef]
- Kumar, M.; Yadav, A.N.; Saxena, R.; Paul, D.; Tomar, R.S. Biodiversity of Pesticides Degrading Microbial Communities and Their Environmental Impact. Biocatal. Agric. Biotechnol. 2021, 31, 101883. [Google Scholar] [CrossRef]
- Nowak, M.; Zawadzka, K.; Lisowska, K. Occurrence of Methylisothiazolinone in Water and Soil Samples in Poland and Its Biodegradation by Phanerochaete Chrysosporium. Chemosphere 2020, 254, 126723. [Google Scholar] [CrossRef]
- La Pous de la, F.; Peña, M.J.H.; Mazadiego, L.F.; Mazadiego, M.; Carlos, L.; Bernardo, L. In Situ Bioremediation of Hydrocarbons Contaminated Soils: Case of an Oil Pipeline in Malaga (Spain). DYNA II 2021, 96, 67–72. [Google Scholar] [CrossRef]
- Pileggi, M.; Pileggi, S.A.V.; Sadowsky, M.J. Herbicide Bioremediation: From Strains to Bacterial Communities. Heliyon 2020, 6, 05767. [Google Scholar] [CrossRef] [PubMed]
- Barberousse, H.; Tell, G.; Yéprémian, C.; Couté, A. Diversity of Algae and Cyanobacteria Growing on Building Facades in France. Algol. Stud. 2006, 120, 81–105. [Google Scholar] [CrossRef]
- Samad, L.K.; Adhikary, S.P. Diversity of Micro-Algae and Cyanobacteria on Building Facades and Monuments in India. Algae 2008, 23, 91–114. [Google Scholar] [CrossRef]
- Tran, T.-H.; Hoang, N.-D. Estimation of Algal Colonization Growth on Mortar Surface Using a Hybridization of Machine Learning and Metaheuristic Optimization. Sādhanā 2017, 42, 929–939. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Rousk, J.; Bååth, E.; Bollmann, U.E.; Bester, K.; Brandt, K.K. Short-Term Toxicity Assessment of a Triazine Herbicide (Terbutryn) Underestimates the Sensitivity of Soil Microorganisms. Soil Biol. Biochem. 2021, 154, 108130. [Google Scholar] [CrossRef]
- Broser, M.; Glöckner, C.; Gabdulkhakov, A.; Guskov, A.; Buchta, J.; Kern, J.; Müh, F.; Dau, H.; Saenger, W.; Zouni, A. Structural Basis of Cyanobacterial Photosystem II Inhibition by the Herbicide Terbutryn. J. Biol. Chem. 2011, 286, 15964–15972. [Google Scholar] [CrossRef]
- Thomas, M.C.; Flores, F.; Kaserzon, S.; Fisher, R.; Negri, A.P. Toxicity of Ten Herbicides to the Tropical Marine Microalgae Rhodomonas Salina. Sci. Rep. 2020, 10, 7612. [Google Scholar] [CrossRef]
- Pereira, G.F.; Pilz-Junior, H.L.; Corção, G. The Impact of Bacterial Diversity on Resistance to Biocides in Oilfields. Sci. Rep. 2021, 11, 23027. [Google Scholar] [CrossRef]
- Pereira, B.M.P.; Wang, X.; Tagkopoulos, I. Biocide-Induced Emergence of Antibiotic Resistance in Escherichia Coli. Front. Microbiol. 2021, 12, 640923. [Google Scholar] [CrossRef]
- Alhajjar, R.K.; Ghannam, R.B.; Chen See, J.R.; Wright, O.G.; Campa, M.F.; Hazen, T.C.; Lamendella, R.; Techtmann, S.M. Comparative Study of the Effects of Biocides and Metal Oxide Nanoparticles on Microbial Community Structure in a Stream Impacted by Hydraulic Fracturing. Chemosphere 2021, 284, 131255. [Google Scholar] [CrossRef]
- Shi, X.; Oliveira, D.A.F.; Holsten, L.; Steinhauer, K.; de Rezende, J.R. Long-Term Biocide Efficacy and Its Effect on a Souring Microbial Community. Appl. Environ. Microbiol. 2021, 87, e00842-21. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Han, J.; Dai, H.; Jia, P. Biocide-Tolerance and Antibiotic-Resistance in Community Environments and Risk of Direct Transfers to Humans: Unintended Consequences of Community-Wide Surface Disinfecting during COVID-19? Environ. Pollut. 2021, 283, 117074. [Google Scholar] [CrossRef] [PubMed]
- Collier, P.J.; Ramsey, A.J.; Austin, P.; Gilbert, P. Growth Inhibitory and Biocidal Activity of Some Isothiazolone Biocides. J. Appl. Bacteriol. 1990, 69, 569–577. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L. Mechanisms of Biodeterioration of Structural Materials by Streptomyces Spp.: A Review. In Proceedings of the 3rd International Electronic Conference on Processes, Online, 29–31 May 2024; p. 12. [Google Scholar]
- Veeger, M.; Prieto, A.; Ottelé, M. Exploring the Possibility of Using Bioreceptive Concrete in Building Façades. J. Facade Des. Eng. 2021, 12, 73–86. [Google Scholar] [CrossRef]
- Mulla, S.I.; Bharagava, R.N. Application of Microbial Biofilms in Biocatalysis and Biodegradation. In Enzymes for Pollutant Degradation (part of Microorganisms for Sustainability, Vol. 3; Khan, M.F., Murphy, C.D., Eds.; Microorganisms for Sustainability; Springer Nature: Singapore, 2022; Volume 30, pp. 93–118. ISBN 978-981-16-4573-0. [Google Scholar]
- Charron, R.; Boulanger, M.; Briandet, R.; Bridier, A. Biofilms as Protective Cocoons against Biocides: From Bacterial Adaptation to One Health Issues. Microbiology 2023, 169, 001340. [Google Scholar] [CrossRef]
- Otter, J.A.; Vickery, K.; Walker, J.T.; deLancey Pulcini, E.; Stoodley, P.; Goldenberg, S.D.; Salkeld, J.A.G.; Chewins, J.; Yezli, S.; Edgeworth, J.D. Surface-Attached Cells, Biofilms and Biocide Susceptibility: Implications for Hospital Cleaning and Disinfection. J. Hosp. Infect. 2015, 89, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, A.; Stepczyńska, M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. J. Polym. Environ. 2022, 30, 1683–1708. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Xiong, K.; Lin, J.; Tang, B.; Ao, Z.; Chen, Y.; Xu, Z. Evaluation of Ten Plant-Derived Biocides for the Inhibition of Photosynthetic Organisms on the Karst Surfaces of Heritage Buildings. Herit. Sci. 2024, 12, 344. [Google Scholar] [CrossRef]
- Lee, L.-F.; Huang, Y.-J.; Chen, C.W. Repressed Multidrug Resistance Genes in Streptomyces Lividans. Arch. Microbiol. 2003, 180, 176–184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciok, M.; Diener, J.; Otte, F.; Feimer, J.; Nichterlein, M.; Kalkhof, S.; Noll, M. Biocide-Containing Facades Alter Culture-Based Bacterial and Fungal Community Composition and Resistance Patterns to Octylisothiazolinone. Microorganisms 2025, 13, 2284. https://doi.org/10.3390/microorganisms13102284
Ciok M, Diener J, Otte F, Feimer J, Nichterlein M, Kalkhof S, Noll M. Biocide-Containing Facades Alter Culture-Based Bacterial and Fungal Community Composition and Resistance Patterns to Octylisothiazolinone. Microorganisms. 2025; 13(10):2284. https://doi.org/10.3390/microorganisms13102284
Chicago/Turabian StyleCiok, Michał, Julia Diener, Franziska Otte, Julie Feimer, Moritz Nichterlein, Stefan Kalkhof, and Matthias Noll. 2025. "Biocide-Containing Facades Alter Culture-Based Bacterial and Fungal Community Composition and Resistance Patterns to Octylisothiazolinone" Microorganisms 13, no. 10: 2284. https://doi.org/10.3390/microorganisms13102284
APA StyleCiok, M., Diener, J., Otte, F., Feimer, J., Nichterlein, M., Kalkhof, S., & Noll, M. (2025). Biocide-Containing Facades Alter Culture-Based Bacterial and Fungal Community Composition and Resistance Patterns to Octylisothiazolinone. Microorganisms, 13(10), 2284. https://doi.org/10.3390/microorganisms13102284