In Vitro Exposure to Vaped Tetrahydrocannabinol Increases Candida albicans (SC5314) Growth, Metabolic Activity, Biofilm Formation, and the Expression of Virulence Genes
Abstract
1. Introduction
2. Materials and Methods
2.1. Candida Strain and Culture Conditions
2.2. E-Cigarettes, E-Liquids, and THC Used in the Experiments
2.3. E-Vapor Generating System
2.4. Effect of E-Cigarette Aerosol with or Without THC on C. albicans Growth Kinetics
2.5. Effect of E-Cigarette Aerosol on Biofilm Formation
Group | Exposure Condition |
---|---|
Control (Ctrl) | Cells not exposed to e-cigarette aerosol |
Nicotine-free (vehicle) | E-cigarette aerosol generated with e-liquid containing PG and VG, only. |
Nicotine-rich | Nicotine (12 mg/mL) rich e-cigarette aerosol. |
Nicotine-free plus 10% THC | E-cigarette aerosol containing 10% THC. |
Nicotine-rich plus 10% THC | E-cigarette aerosol containing nicotine and 10% THC |
Nicotine-free plus 15% THC | E-cigarette aerosol containing 15% THC. |
Nicotine-rich plus 15% THC | E-cigarette aerosol containing nicotine and 15% THC |
2.5.1. Biofilm Structure
2.5.2. Crystal Violet Staining
2.6. Effect of E-Cigarette Aerosol with and Without THC on the Metabolic Activity of C. albicans
2.7. Effect of E-Cigarette Aerosol on C. albicans Gene Expression
RT-qPCR
2.8. Statistical Analyses
3. Results
3.1. Exposure to E-Cigarette Aerosol Increased C. albicans Growth
3.2. Exposure to E-Cigarette Aerosol with or Without THC Increased Biofilm Formation by C. albicans
3.3. Exposure to E-Cigarette Aerosol with or Without Nicotine and/or THC Increased the Metabolic Activity of C. albicans
3.4. Exposure to E-Cigarette Aerosol with or Without Nicotine and/or THC Increased the Expression of Virulence Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, J.M.; Mendelson, B.; Berkes, J.J.; Suleta, K.; Corsi, K.F.; Booth, R.E. Public Health Effects of Medical Marijuana Legalization in Colorado. Am. J. Prev. Med. 2016, 50, 373–379. [Google Scholar] [CrossRef]
- Dutra, L.M.; Parish, W.J.; Gourdet, C.K.; Wylie, S.A.; Wiley, J.L. Medical Cannabis Legalization and State-Level Prevalence of Serious Mental Illness in the National Survey on Drug Use and Health (NSDUH) 2008–2015. Int. Rev. Psychiatry 2018, 30, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Hammond, C.J.; Chaney, A.; Hendrickson, B.; Sharma, P. Cannabis Use among U.S. Adolescents in the Era of Marijuana Legalization: A Review of Changing Use Patterns, Comorbidity, and Health Correlates. Int. Rev. Psychiatry 2020, 32, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020, 10, 3309. [Google Scholar] [CrossRef] [PubMed]
- Pollastro, F.; Minassi, A.; Fresu, L.G. Cannabis Phenolics and Their Bioactivities. Curr. Med. Chem. 2018, 25, 1160–1185. [Google Scholar] [CrossRef]
- Devinsky, O.; Verducci, C.; Thiele, E.A.; Laux, L.C.; Patel, A.D.; Filloux, F.; Szaflarski, J.P.; Wilfong, A.; Clark, G.D.; Park, Y.D.; et al. Open-Label Use of Highly Purified CBD (Epidiolex®) in Patients with CDKL5 Deficiency Disorder and Aicardi, Dup15q, and Doose Syndromes. Epilepsy Behav. 2018, 86, 131–137. [Google Scholar] [CrossRef]
- Singh, J.; Ellingson, C.J.; Shafiq, M.A.; Alcorn, J.; Neary, J.P. Cannabidiol and Cognition: A Literature Review of Human Randomized Controlled Trials. Behav. Pharmacol. 2025, 36, 203. [Google Scholar] [CrossRef]
- Jelínek, P.; Roušarová, J.; Ryšánek, P.; Ježková, M.; Havlůjová, T.; Pozniak, J.; Kozlík, P.; Křížek, T.; Kučera, T.; Šíma, M.; et al. Application of Oil-in-Water Cannabidiol Emulsion for the Treatment of Rheumatoid Arthritis. Cannabis Cannabinoid Res. 2024, 9, 147–159. [Google Scholar] [CrossRef]
- Englund, A.; Morrison, P.D.; Nottage, J.; Hague, D.; Kane, F.; Bonaccorso, S.; Stone, J.M.; Reichenberg, A.; Brenneisen, R.; Holt, D.; et al. Cannabidiol Inhibits THC-Elicited Paranoid Symptoms and Hippocampal-Dependent Memory Impairment. J. Psychopharmacol. Oxf. Engl. 2013, 27, 19–27. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential Cannabis Synergy and Phytocannabinoid-Terpenoid Entourage Effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Mondino, A.; Cavelli, M.; González, J.; Santana, N.; Castro-Zaballa, S.; Mechoso, B.; Bracesco, N.; Fernandez, S.; Garcia-Carnelli, C.; Castro, M.J.; et al. Acute Effect of Vaporized Cannabis on Sleep and Electrocortical Activity. Pharmacol. Biochem. Behav. 2019, 179, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Crane, N.A.; Phan, K.L. Effect of Δ9-Tetrahydrocannabinol on Frontostriatal Resting State Functional Connectivity and Subjective Euphoric Response in Healthy Young Adults. Drug Alcohol Depend. 2021, 221, 108565. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, E.; Craft, S.; Calder, R.; Hammond, D. Prevalence and Use of Cannabis Products and Routes of Administration among Youth and Young Adults in Canada and the United States: A Systematic Review. Addict. Behav. 2022, 129, 107258. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R.D.; Pacek, L.R.; Copeland, J.; Moeller, S.J.; Dierker, L.; Weinberger, A.; Gbedemah, M.; Zvolensky, M.J.; Wall, M.M.; Hasin, D.S. Trends in Daily Cannabis Use Among Cigarette Smokers: United States, 2002–2014. Am. J. Public Health 2018, 108, 137–142. [Google Scholar] [CrossRef]
- Borodovsky, J.T.; Crosier, B.S.; Lee, D.C.; Sargent, J.D.; Budney, A.J. Smoking, Vaping, Eating: Is Legalization Impacting the Way People Use Cannabis? Int. J. Drug Policy 2016, 36, 141–147. [Google Scholar] [CrossRef]
- Meier, M.H.; Caspi, A.; Cerdá, M.; Hancox, R.J.; Harrington, H.; Houts, R.; Poulton, R.; Ramrakha, S.; Thomson, W.M.; Moffitt, T.E. Associations Between Cannabis Use and Physical Health Problems in Early Midlife: A Longitudinal Comparison of Persistent Cannabis vs Tobacco Users. JAMA Psychiatry 2016, 73, 731–740. [Google Scholar] [CrossRef]
- Memedovich, K.A.; Dowsett, L.E.; Spackman, E.; Noseworthy, T.; Clement, F. The Adverse Health Effects and Harms Related to Marijuana Use: An Overview Review. CMAJ Open 2018, 6, E339–E346. [Google Scholar] [CrossRef]
- Hasin, D.S.; Saha, T.D.; Kerridge, B.T.; Goldstein, R.B.; Chou, S.P.; Zhang, H.; Jung, J.; Pickering, R.P.; Ruan, W.J.; Smith, S.M.; et al. Prevalence of Marijuana Use Disorders in the United States Between 2001–2002 and 2012–2013. JAMA Psychiatry 2015, 72, 1235–1242. [Google Scholar] [CrossRef]
- Ditmyer, M.; Demopoulos, C.; McClain, M.; Dounis, G.; Mobley, C. The Effect of Tobacco and Marijuana Use on Dental Health Status in Nevada Adolescents: A Trend Analysis. J. Adolesc. Health 2013, 52, 641–648. [Google Scholar] [CrossRef]
- Hazzard, A.A.; McCrorey, M.; Salman, T.; Johnson, D.E.; Luo, Z.; Fu, X.; Keegan, A.P.; Benitez, A.; Fitting, S.; Jiang, W. Cannabis Use, Oral Dysbiosis, and Neurological Disorders. Neuroimmune Pharmacol. Ther. 2024, 3, 183–193. [Google Scholar] [CrossRef]
- Marks, M.A.; Chaturvedi, A.K.; Kelsey, K.; Straif, K.; Berthiller, J.; Schwartz, S.M.; Smith, E.; Wyss, A.; Brennan, P.; Olshan, A.F.; et al. Association of Marijuana Smoking with Oropharyngeal and Oral Tongue Cancers: Pooled Analysis from the INHANCE Consortium. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2014, 23, 160–171. [Google Scholar] [CrossRef]
- Barthwal, M.; Moldovan, N.; Banerji, S.; Kim, J.O. Cannabidiol Vaping-Associated Multifocal NSCLC in a 24-Year-Old Female: A Case Report. JTO Clin. Res. Rep. 2025, 6, 100789. [Google Scholar] [CrossRef]
- Dunbar, M.S.; Setodji, C.M.; Seelam, R.; Tucker, J.S.; Rodriguez, A.; D’Amico, E.J. Exposure to Vaping and Smoking Prohibitions and Nicotine and Cannabis Vaping in a California-Based Sample of Young Adults: An Ecological Momentary Assessment Study. Addict. Behav. 2025, 167, 108357. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Winickoff, J.P.; Hanby, E.; Rees, V.; Emmons, K.M.; Tan, A.S. Prevalence and Correlates of Past 30-Day Dual-Vaping of Nicotine and Cannabis among Adolescents in Five New England States. Drug Alcohol Depend. 2024, 254, 111055. [Google Scholar] [CrossRef] [PubMed]
- Soerianto, W.; Jaspers, I. E-Cigarette, or Vaping, Product Use Associated Lung Injury: Epidemiology, Challenges, and Implications With COVID-19. Pediatr. Pulmonol. 2025, 60, e27448. [Google Scholar] [CrossRef]
- Trigg, J.; Calabro, R.; Anastassiadis, P.; Bowden, J.; Bonevski, B. Association of Anxiety and Depression Symptoms with Perceived Health Risk of Nicotine Vaping Products for Smoking Cessation. Front. Psychiatry 2024, 15, 1277781. [Google Scholar] [CrossRef]
- Blount, B.C.; Karwowski, M.P.; Shields, P.G.; Morel-Espinosa, M.; Valentin-Blasini, L.; Gardner, M.; Braselton, M.; Brosius, C.R.; Caron, K.T.; Chambers, D.; et al. Vitamin E Acetate in Bronchoalveolar-Lavage Fluid Associated with EVALI. N. Engl. J. Med. 2020, 382, 697–705. [Google Scholar] [CrossRef]
- Chaffee, B.W.; Halpern-Felsher, B.; Cheng, J. E-Cigarette, Cannabis and Combustible Tobacco Use: Associations with Xerostomia among California Adolescents. Community Dent. Oral Epidemiol. 2023, 51, 180–186. [Google Scholar] [CrossRef]
- Irusa, K.F.; Vence, B.; Donovan, T. Potential Oral Health Effects of E-Cigarettes and Vaping: A Review and Case Reports. J. Esthet. Restor. Dent. Off. Publ. Am. Acad. Esthet. Dent. Al 2020, 32, 260–264. [Google Scholar] [CrossRef]
- Boyd, C.J.; McCabe, S.E.; Evans-Polce, R.J.; Veliz, P.T. Cannabis, Vaping, and Respiratory Symptoms in a Probability Sample of U.S. Youth. J. Adolesc. Health Off. Publ. Soc. Adolesc. Med. 2021, 69, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Darling, M.R.; Arendorf, T.M.; Coldrey, N.A. Effect of Cannabis Use on Oral Candidal Carriage. J. Oral Pathol. Med. 1990, 19, 319–321. [Google Scholar] [CrossRef]
- Millet, N.; Solis, N.V.; Swidergall, M. Mucosal IgA Prevents Commensal Candida Albicans Dysbiosis in the Oral Cavity. Front. Immunol. 2020, 11, 555363. [Google Scholar] [CrossRef] [PubMed]
- Khalili, P.; Movagharipoor, A.; Sardari, F.; Movaghari Pour, F.; Jamali, Z. Oral Candidiasis and Cigarette, Tobacco, Alcohol, and Opium Consumption in Rafsanjan, a Region in the Southeast of Iran. BMC Oral Health 2023, 23, 262. [Google Scholar] [CrossRef] [PubMed]
- Poulain, D. Candida Albicans, Plasticity and Pathogenesis. Crit. Rev. Microbiol. 2015, 41, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.D.; Chaffin, W.L. Oral Colonization by Candida Albicans. Crit. Rev. Oral Biol. Med. Off. Publ. Am. Assoc. Oral Biol. 1999, 10, 359–383. [Google Scholar] [CrossRef]
- Calderone, R.A.; Fonzi, W.A. Virulence Factors of Candida Albicans. Trends Microbiol. 2001, 9, 327–335. [Google Scholar] [CrossRef]
- Lenarczyk, E.; Oleksiak, D.; Janeczko, M. Antifungal Activity of 5-Fluorouridine Against Candida Albicans and Candida Parapsilosis Based on Virulence Reduction. Molecules 2025, 30, 2735. [Google Scholar] [CrossRef]
- Zhao, H.; Qin, L.; Li, M.; Jiang, M.; Cui, M.; Wang, H.; Hou, B.; Wang, F.; Jia, K. Effects of Ire1 Gene on Virulence and Pathogenicity of Candida Albicans. Open Life Sci. 2025, 20, 20221062. [Google Scholar] [CrossRef]
- Romo, J.A.; Pierce, C.G.; Esqueda, M.; Hung, C.-Y.; Saville, S.P.; Lopez-Ribot, J.L. In Vitro Characterization of a Biaryl Amide Anti-Virulence Compound Targeting Candida Albicans Filamentation and Biofilm Formation. Front. Cell. Infect. Microbiol. 2018, 8, 227. [Google Scholar] [CrossRef]
- Lüttich, A.; Brunke, S.; Hube, B.; Jacobsen, I.D. Serial Passaging of Candida Albicans in Systemic Murine Infection Suggests That the Wild Type Strain SC5314 Is Well Adapted to the Murine Kidney. PLoS ONE 2013, 8, e64482. [Google Scholar] [CrossRef]
- Thewes, S.; Moran, G.P.; Magee, B.B.; Schaller, M.; Sullivan, D.J.; Hube, B. Phenotypic Screening, Transcriptional Profiling, and Comparative Genomic Analysis of an Invasive and Non-Invasive Strain of Candida Albicans. BMC Microbiol. 2008, 8, 187. [Google Scholar] [CrossRef]
- Gong, J.; Chen, X.-F.; Fan, X.; Xu, J.; Zhang, H.; Li, R.-Y.; Chen, S.C.-A.; Kong, F.; Zhang, S.; Sun, Z.-Y.; et al. Emergence of Antifungal Resistant Subclades in the Global Predominant Phylogenetic Population of Candida Albicans. Microbiol. Spectr. 2023, 11, e03807-22. [Google Scholar] [CrossRef]
- Hoyer, L.L.; Freeman, B.A.; Hogan, E.K.; Hernandez, A.G. Use of a Candida Albicans SC5314 PacBio HiFi Reads Dataset to Close Gaps in the Reference Genome Assembly, Reveal a Subtelomeric Gene Family, and Produce Accurate Phased Allelic Sequences. Front. Cell. Infect. Microbiol. 2024, 14, 1329438. [Google Scholar] [CrossRef]
- Spindle, T.R.; Cone, E.J.; Schlienz, N.J.; Mitchell, J.M.; Bigelow, G.E.; Flegel, R.; Hayes, E.; Vandrey, R. Acute Effects of Smoked and Vaporized Cannabis in Healthy Adults Who Infrequently Use Cannabis: A Crossover Trial. JAMA Netw. Open 2018, 1, e184841, Erratum in: JAMA Netw. Open 2018, 1, e187241. [Google Scholar] [CrossRef]
- Alanazi, H.; Semlali, A.; Chmielewski, W.; Rouabhia, M. E-Cigarettes Increase Candida Albicans Growth and Modulate Its Interaction with Gingival Epithelial Cells. Int. J. Environ. Res. Public Health 2019, 16, 294. [Google Scholar] [CrossRef] [PubMed]
- Rouabhia, M.; Park, H.J.; Semlali, A.; Zakrzewski, A.; Chmielewski, W.; Chakir, J. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells Through the Caspase-3 Pathway. J. Cell. Physiol. 2017, 232, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Bahraminia, M.; Cui, S.; Zhang, Z.; Semlali, A.; Le Roux, É.; Giroux, K.-A.; Lajoie, C.; Béland, F.; Rouabhia, M. Effect of Cannabidiol (CBD), a Cannabis Plant Derivative, against Candida albicans Growth and Biofilm Formation. Can. J. Microbiol. 2025, 71, 1–13. [Google Scholar] [CrossRef]
- Semlali, A.; Killer, K.; Alanazi, H.; Chmielewski, W.; Rouabhia, M. Cigarette Smoke Condensate Increases C. Albicans Adhesion, Growth, Biofilm Formation, and EAP1, HWP1 and SAP2 Gene Expression. BMC Microbiol. 2014, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, M.S.; Binkley, J.; Binkley, G.; Miyasato, S.R.; Simison, M.; Sherlock, G. The Candida Genome Database (CGD): Incorporation of Assembly 22, Systematic Identifiers and Visualization of High Throughput Sequencing Data. Nucleic Acids Res. 2017, 45, D592–D596. [Google Scholar] [CrossRef] [PubMed]
- Ogata, K.; Matsuda, K.; Tsuji, H.; Nomoto, K. Sensitive and Rapid RT-qPCR Quantification of Pathogenic Candida Species in Human Blood. J. Microbiol. Methods 2015, 117, 128–135. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San. Diego. Calif. 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Qi, X.; Yang, D.; Neely, A.; Zhou, Z. The Effects of Cannabis Use on Oral Health. Oral Dis. 2020, 26, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Mokeem, S.A.; Abduljabbar, T.; Al-Kheraif, A.A.; Alasqah, M.N.; Michelogiannakis, D.; Samaranayake, L.P.; Javed, F. Oral Candida Carriage among Cigarette- and Waterpipe-Smokers, and Electronic Cigarette Users. Oral Dis. 2019, 25, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Alicea, S.; Tejada, N.; Restrepo, J.; Mandalia, A. A Case of Vaping-Associated Candida and Herpes Simplex Virus (HSV) Co-Infection Causing Esophagitis in an Immunocompetent Patient. Cureus 2024, 16, e60710. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, F.; Andriasian, L.; Tran, N.C.; Lux, R. Effect of Cigarette and E-Cigarette Smoke Condensates on Candida Albicans Biofilm Formation and Gene Expression. Int. J. Environ. Res. Public Health 2022, 19, 4626. [Google Scholar] [CrossRef]
- Catala-Valentin, A.; Bernard, J.N.; Caldwell, M.; Maxson, J.; Moore, S.D.; Andl, C.D. E-Cigarette Aerosol Exposure Favors the Growth and Colonization of Oral Streptococcus Mutans Compared to Commensal Streptococci. Microbiol. Spectr. 2022, 10, e0242121. [Google Scholar] [CrossRef]
- Rouabhia, M.; Semlali, A. Electronic Cigarette Vapor Increases Streptococcus Mutans Growth, Adhesion, Biofilm Formation, and Expression of the Biofilm-Associated Genes. Oral Dis. 2021, 27, 639–647. [Google Scholar] [CrossRef]
- Keboa, M.T.; Enriquez, N.; Martel, M.; Nicolau, B.; Macdonald, M.E. Oral Health Implications of Cannabis Smoking: A Rapid Evidence Review. J. Can. Dent. Assoc. 2020, 86, k2. [Google Scholar]
- Samman, M.; Scott, T.; Sohn, W. The Effect of Marijuana-Smoking on Dental Caries Experience. Int. Dent. J. 2024, 74, 862–867. [Google Scholar] [CrossRef]
- Faustino, I.S.P.; González-Arriagada, W.A.; Cordero-Torres, K.; Lopes, M.A. Candidiasis of the Tongue in Cannabis Users: A Report of 2 Cases. Gen. Dent. 2020, 68, 66–68. [Google Scholar]
- Tazi, N.; Pigeon, X.; Mbuyi-Boisvert, J.M.; Giret, S.; Béland, F.; Rouabhia, M. Effect of Cannabis Smoke Condensate on C. Albicans Growth and Biofilm Formation. Microorganisms 2021, 9, 2348. [Google Scholar] [CrossRef]
- Munger, K.R.; Anreise, K.M.; Strongin, R.M. Cannabis Concentrate Vaping Chemistry. Front. Toxicol. 2025, 7, 1568207. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; May, A.; Sherry, L.; Kean, R.; Williams, C.; Jones, B.L.; Burgess, K.V.; Heringa, J.; Abeln, S.; Brandt, B.W.; et al. Integrating Candida Albicans Metabolism with Biofilm Heterogeneity by Transcriptome Mapping. Sci. Rep. 2016, 6, 35436. [Google Scholar] [CrossRef]
- Bachtiar, B.M.; Gani, B.A.; Deviana, A.; Utami, N.R.; Andriyani, A.D.; Bachtiar, E.W. The Discrepancy between Clove and Non-Clove Cigarette Smoke-Promoted Candida Albicans Biofilm Formation with Precoating RNA-Aptamer. F1000Research 2021, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Nobile, C.J. Candida Albicans Biofilms: Development, Regulation, and Molecular Mechanisms. Microbes Infect. 2016, 18, 310–321. [Google Scholar] [CrossRef]
- Puri, S.; Kumar, R.; Chadha, S.; Tati, S.; Conti, H.R.; Hube, B.; Cullen, P.J.; Edgerton, M. Secreted Aspartic Protease Cleavage of Candida Albicans Msb2 Activates Cek1 MAPK Signaling Affecting Biofilm Formation and Oropharyngeal Candidiasis. PLoS ONE 2012, 7, e46020. [Google Scholar] [CrossRef]
- Ko, B.S.; Park, S.G.; Rhee, M.S. Synergistic Antifungal Effect of Naturally-Derived Antimicrobials with Penetration Enhancer against Candida Albicans Biofilm at 5 °C and 22 °C. J. Infect. Public Health 2025, 18, 102882. [Google Scholar] [CrossRef]
- Zeise, K.D.; Erb-Downward, J.R.; Huffnagle, G.B. Transcriptomic Insights into Candida Albicans Adaptation to an Anaerobic Environment. Microbiol. Spectr. 2025, 13, e03024-24. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, H.; Semlali, A.; Perraud, L.; Chmielewski, W.; Zakrzewski, A.; Rouabhia, M. Cigarette Smoke-Exposed Candida Albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses. BioMed Res. Int. 2014, 2014, 963156. [Google Scholar] [CrossRef]
- Li, F.; Svarovsky, M.J.; Karlsson, A.J.; Wagner, J.P.; Marchillo, K.; Oshel, P.; Andes, D.; Palecek, S.P. Eap1p, an Adhesin That Mediates Candida Albicans Biofilm Formation in Vitro and in Vivo. Eukaryot. Cell 2007, 6, 931–939. [Google Scholar] [CrossRef]
- Rodrigues, C.F.; Henriques, M. Oral Mucositis Caused by Candida Glabrata Biofilms: Failure of the Concomitant Use of Fluconazole and Ascorbic Acid. Ther. Adv. Infect. Dis. 2017, 4, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.C.; da Silva, T.A.; da Silva, J.J.; Steiner-Oliveira, C.; Höfling, J.F.; de Souza, A.C.; Boriollo, M.F.G. Genotyping of Oral Candida Albicans and Candida Tropicalis Strains in Patients with Orofacial Clefts Undergoing Surgical Rehabilitation by MALDI-TOF MS: Case-Series Study. Microb. Pathog. 2024, 196, 106948. [Google Scholar] [CrossRef] [PubMed]
- Tosrisawatkasem, O.; Thairat, S.; Tonput, P.; Tantivitayakul, P. Variations in Virulence Factors, Antifungal Susceptibility and Extracellular Polymeric Substance Compositions of Cryptic and Uncommon Candida Species from Oral Candidiasis. BMC Oral Health 2025, 25, 1029. [Google Scholar] [CrossRef] [PubMed]
Gene | Name | Primer Sequence 5′ to 3′ | Size (bp) |
---|---|---|---|
s-Calb | Noncoding gene | F: ATGTGGCACGGCTTCTGCTG R: TAGGCTGGCAGTATCGTCAGAGG | 53 |
SAP2 | Secreted Aspartyl Proteinase 2 | F: TCCTGATGTTAATGTTGATTGTCAAG R: TGGATCATATGTCCCCTTTTGTT | 82 |
SAP4 | Secreted Aspartyl Proteinase 4 | F: CAATTTAACTGCAACAGGTCCTCTT R: AGATATTGAGCCCACAGAAATTCC | 82 |
SAP9 | Secreted Aspartyl Proteinase 9 | F: ATTTACTCCACAGTTTATCACTGAAGGT R: CCACAAGAACCACCCTCAGTT | 86 |
EAP1 | Enhanced Adhesion Protein 1 | F: CTGCTCACTCAACTTCAATTGTCG R: GAACACATCCACCTTCGGGA | 51 |
Exposure Time to E-Cigarette Aerosol | ||||
---|---|---|---|---|
Ctrl | 5 min | 10 min | 20 min | |
Exposure to nicotine-free aerosol | ||||
SAP2 | 1 ± 0.00 | 11.9 ± 0.2 *** | 1.5 ± 0.2 *** | 1.7 ± 0.1 *** |
SAP4 | 1 ± 0.00 | 1.6 ± 0.2 *** | 1.4 ± 0.3 ** | 1.6 ± 0.2 *** |
SAP9 | 1 ± 0.00 | 2.3 ± 0.1 *** | 2.1 ± 0.1 *** | 2 ± 0.1 *** |
EAP1 | 1 ± 0.00 | 1.4 ± 0.1 *** | 1.57 ± 0.07 *** | 1.8 ± 0.05 *** |
Exposure to nicotine-rich aerosol | ||||
SAP2 | 1 ± 0.00 | 1.23 ± 0.05 *** | 1.19 ± 0.1 *** | 1.3 ± 0.1 *** |
SAP4 | 1 ± 0.00 | 1.0 ± 0.03 | 1.08 ± 0.04 | 1.2 ± 0.09 * |
SAP9 | 1 ± 0.00 | 1.4 ± 0.03 *** | 1.3 ± 0.05 *** | 1.6 ± 0.1 *** |
EAP1 | 1 ± 0.00 | 1.5 ± 0.02 *** | 1.5 ± 0.05 *** | 1.47 ± 0.1 *** |
Exposure to 10% THC-rich aerosol without nicotine | ||||
SAP2 | 1 ± 0.00 | 1.6 ± 0.011 *** | 1.35 ± 0.02 *** | 1.08 ± 0.05 * |
SAP4 | 1 ± 0.00 | 1.7 ± 0.02 *** | 1.6 ± 0.08 *** | 1.7 ± 0.09 *** |
SAP9 | 1 ± 0.00 | 1.6 ± 0.1 *** | 1.3 ± 0.09 *** | 1.2 ± 0.01 *** |
EAP1 | 1 ± 0.00 | 1.8 ± 0.05 *** | 1.6 ± 0.06 *** | 1.6 ± 0.09 *** |
Exposure to 10% THC and nicotine-rich aerosol | ||||
SAP2 | 1 ± 0.00 | 1.1 ± 0.02 | 1 ± 0.05 | 1.3 ± 0.03 *** |
SAP4 | 1 ± 0.00 | 1 ± 0.01 | 1.4 ± 0.05 *** | 2 ± 0.07 *** |
SAP9 | 1 ± 0.00 | 1.7 ± 0.1 *** | 1.6 ± 0.09 *** | 1.3 ± 0.09 *** |
EAP1 | 1 ± 0.00 | 1.4 ± 0.1 *** | 1.3 ± 0.1 *** | 1.2 ± 0.03 *** |
Exposure to 15% THC-rich aerosol without nicotine | ||||
SAP2 | 1 ± 0.00 | 1.08 ± 0.001 | 1.1 ± 0.02 * | 1.15 ± 0.04 *** |
SAP4 | 1 ± 0.00 | 1.3 ± 0.02 *** | 1.4 ±0.07 *** | 1.7 ± 0.08 *** |
SAP9 | 1 ± 0.00 | 1.3 ± 0.07 *** | 1.4 ± 0.06 *** | 1.4 ± 0.09 *** |
EAP1 | 1 ± 0.00 | 1.7 ± 0.06 *** | 1.6 ± 0.05 *** | 1.52 ± 0.098 ** |
Exposure to 15% THC and nicotine-rich aerosol | ||||
SAP2 | 1 ± 0.00 | 1.3 ± 0.07 *** | 1.2 ± 0.07 *** | 0.8 ± 0.3 |
SAP4 | 1 ± 0.00 | 1.45 ± 0.05 *** | 1.5 ± 0.08 *** | 2 ± 0.09 *** |
SAP9 | 1 ± 0.00 | 2.5 ± 0.1 *** | 2 ± 0.09 *** | 3.1 ± 0.1 *** |
EAP1 | 1 ± 0.00 | 2.3 ± 0.1 *** | 2.5 ± 0.06 *** | 4.6 ± 0.2 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laaboudi, F.-Z.; Amri, O.; Rouabhia, M. In Vitro Exposure to Vaped Tetrahydrocannabinol Increases Candida albicans (SC5314) Growth, Metabolic Activity, Biofilm Formation, and the Expression of Virulence Genes. Microorganisms 2025, 13, 2278. https://doi.org/10.3390/microorganisms13102278
Laaboudi F-Z, Amri O, Rouabhia M. In Vitro Exposure to Vaped Tetrahydrocannabinol Increases Candida albicans (SC5314) Growth, Metabolic Activity, Biofilm Formation, and the Expression of Virulence Genes. Microorganisms. 2025; 13(10):2278. https://doi.org/10.3390/microorganisms13102278
Chicago/Turabian StyleLaaboudi, Fatima-Zahrae, Omayma Amri, and Mahmoud Rouabhia. 2025. "In Vitro Exposure to Vaped Tetrahydrocannabinol Increases Candida albicans (SC5314) Growth, Metabolic Activity, Biofilm Formation, and the Expression of Virulence Genes" Microorganisms 13, no. 10: 2278. https://doi.org/10.3390/microorganisms13102278
APA StyleLaaboudi, F.-Z., Amri, O., & Rouabhia, M. (2025). In Vitro Exposure to Vaped Tetrahydrocannabinol Increases Candida albicans (SC5314) Growth, Metabolic Activity, Biofilm Formation, and the Expression of Virulence Genes. Microorganisms, 13(10), 2278. https://doi.org/10.3390/microorganisms13102278