Long-Term Safety of Anti-COVID-19 mRNA Vaccines in Patients with Systemic Lupus Erythematosus and Lupus-like Diseases with a Previous History of Myocarditis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Aim of This Study
2.2. Patients
2.3. Timepoints
2.4. Connective Tissue Disease Clinical Features
2.5. Myocarditis Features
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Variations in Clinical and Laboratory Features over Time
3.2.1. Lupus Activity and Damage Accrual
3.2.2. Clinical and Laboratory Markers of Myocardial Injury
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mok, C.C.; Cheung, C.C.L.; Chan, K.L.; Tse, S.M.; To, C.H. Effect of SARS-CoV2 Infection on Disease Flares in Patients with Systemic Lupus Erythematosus: A Case-Control Study. Rheumatology 2024, 63, 3390–3396. [Google Scholar] [CrossRef] [PubMed]
- Mageau, A.; Géradin, C.; Sallah, K.; Papo, T.; Sacre, K.; Timsit, J.-F. Risk of Systemic Lupus Erythematosus Flare after COVID-19 Hospitalization: A Matched Cohort Study. PLoS ONE 2024, 19, e0309316. [Google Scholar] [CrossRef]
- Liu, Y.; Sawalha, A.H.; Lu, Q. COVID-19 and Autoimmune Diseases. Curr. Opin. Rheumatol. 2021, 33, 155–162. [Google Scholar] [CrossRef]
- El Hadiyen, F.; Tsang-A-Sjoe, M.W.P.; Lissenberg-Witte, B.I.; Voskuyl, A.E.; Bultink, I.E.M. Intercurrent Infection as a Risk Factor for Disease Flares in Patients with Systemic Lupus Erythematosus. Lupus Sci. Med. 2024, 11, e001131. [Google Scholar] [CrossRef]
- Bruera, S.; Lei, X.; Zhao, H.; Yazdany, J.; Chavez-MacGregor, M.; Giordano, S.H.; Suarez-Almazor, M.E. Risks of Mortality and Severe Coronavirus Disease 19 (COVID-19) Outcomes in Patients with or without Systemic Lupus Erythematosus. Lupus Sci. Med. 2023, 10, e000750. [Google Scholar] [CrossRef]
- Furer, V.; Rondaan, C.; Heijstek, M.W.; Agmon-Levin, N.; van Assen, S.; Bijl, M.; Breedveld, F.C.; D’Amelio, R.; Dougados, M.; Kapetanovic, M.C.; et al. 2019 Update of EULAR Recommendations for Vaccination in Adult Patients with Autoimmune Inflammatory Rheumatic Diseases. Ann. Rheum. Dis. 2020, 79, 39–52. [Google Scholar] [CrossRef]
- Machado, P.M.; Lawson-Tovey, S.; Strangfeld, A.; Mateus, E.F.; Hyrich, K.L.; Gossec, L.; Carmona, L.; Rodrigues, A.; Raffeiner, B.; Duarte, C.; et al. Safety of Vaccination Against SARS-CoV-2 in People with Rheumatic and Musculoskeletal Diseases: Results from the EULAR Coronavirus Vaccine (COVAX) Physician-Reported Registry. Ann. Rheum. Dis. 2022, 81, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, P.; Karasu, B.T.; Mak, A. Safety, Efficacy, and Immunogenicity of SARS-CoV-2 mRNA Vaccination in Children and Adult Patients with Rheumatic Diseases: A Comprehensive Literature Review. Rheumatol. Int. 2024, 44, 2757–2794. [Google Scholar] [CrossRef]
- Firinu, D.; Perra, A.; Campagna, M.; Littera, R.; Fenu, G.; Meloni, F.; Cipri, S.; Sedda, F.; Conti, M.; Miglianti, M.; et al. Evaluation of Antibody Response to BNT162b2 mRNA COVID-19 Vaccine in Patients Affected by Immune-Mediated Inflammatory Diseases up to 5 Months after Vaccination. Clin. Exp. Med. 2022, 22, 477–485. [Google Scholar] [CrossRef]
- Heidecker, B.; Dagan, N.; Balicer, R.; Eriksson, U.; Rosano, G.; Coats, A.; Tschöpe, C.; Kelle, S.; Poland, G.A.; Frustaci, A.; et al. Myocarditis Following COVID-19 Vaccine: Incidence, Presentation, Diagnosis, Pathophysiology, Therapy, and Outcomes Put into Perspective. A Clinical Consensus Document Supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases. Eur. J. Heart Fail. 2022, 24, 2000–2018. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, D.; Beetler, D.J.; Di Florio, D.N.; Musigk, N.; Heidecker, B.; Cooper, L.T. COVID-19, Myocarditis and Pericarditis. Circ. Res. 2023, 132, 1302–1319. [Google Scholar] [CrossRef] [PubMed]
- Patone, M.; Mei, X.W.; Handunnetthi, L.; Dixon, S.; Zaccardi, F.; Shankar-Hari, M.; Watkinson, P.; Khunti, K.; Harnden, A.; Coupland, C.A.C.; et al. Risk of Myocarditis After Sequential Doses of COVID-19 Vaccine and SARS-CoV-2 Infection by Age and Sex. Circulation 2022, 146, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, C.C.; Villatore, A.; Heugl, M.; Kvakan, H.; Zweiker, D.; Sala, S.; Mazzone, P.; Huber, K.; Peretto, G. Cardiac Inflammation Associated with COVID-19 mRNA Vaccination in Patients with and without Previous Myocarditis. Minerva Cardiol. Angiol. 2023, 71, 242–248. [Google Scholar] [CrossRef]
- Tanwani, J.; Tselios, K.; Gladman, D.D.; Su, J.; Urowitz, M.B. Lupus Myocarditis: A Single Center Experience and a Comparative Analysis of Observational Cohort Studies. Lupus 2018, 27, 1296–1302. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Baritussio, A.; Giordani, A.S.; Iliceto, S.; Marcolongo, R.; Caforio, A.L.P. Myocarditis in Systemic Immune-Mediated Diseases: Prevalence, Characteristics and Prognosis. A Systematic Review. Autoimmun. Rev. 2022, 21, 103037. [Google Scholar] [CrossRef]
- Apte, M.; McGwin, G.; Vilá, L.M.; Kaslow, R.A.; Alarcón, G.S.; Reveille, J.D.; LUMINA Study Group. Associated Factors and Impact of Myocarditis in Patients with SLE from LUMINA, a Multiethnic US Cohort (LV). Rheumatology 2008, 47, 362–367. [Google Scholar] [CrossRef]
- Ishisaka, Y.; Watanabe, A.; Aikawa, T.; Kanaoka, K.; Takagi, H.; Wiley, J.; Yasuhara, J.; Kuno, T. Overview of SARS-CoV-2 Infection and Vaccine Associated Myocarditis Compared to Non-COVID-19-Associated Myocarditis: A Systematic Review and Meta-Analysis. Int. J. Cardiol. 2024, 395, 131401. [Google Scholar] [CrossRef]
- Ramirez, G.A.; Batani, V.; Moroni, L.; De Luca, G.; Pizzetti, G.; Sala, S.; Peretto, G.; Campochiaro, C.; Della-Torre, E.; Bozzolo, E.P.; et al. Cardiac Safety of mRNA-Based Vaccines in Patients with Systemic Lupus Erythematosus and Lupus-like Disorders with a History of Myocarditis. Pathogens 2022, 11, 1001. [Google Scholar] [CrossRef]
- Abdelahad, M.; Ta, E.; Kesselman, M.M.; Demory Beckler, M. A Review of the Efficacy of Influenza Vaccination in Autoimmune Disease Patients. Cureus 2021, 13, e15016. [Google Scholar] [CrossRef] [PubMed]
- Holvast, A.; Huckriede, A.; Wilschut, J.; Horst, G.; De Vries, J.J.C.; Benne, C.A.; Kallenberg, C.G.M.; Bijl, M. Safety and Efficacy of Influenza Vaccination in Systemic Lupus Erythematosus Patients with Quiescent Disease. Ann. Rheum. Dis. 2006, 65, 913–918. [Google Scholar] [CrossRef]
- Adawi, M.; Bragazzi, N.L.; McGonagle, D.; Watad, S.; Mahroum, N.; Damiani, G.; Conic, R.; Bridgewood, C.; Mahagna, H.; Giacomelli, L.; et al. Immunogenicity, Safety and Tolerability of Anti-Pneumococcal Vaccination in Systemic Lupus Erythematosus Patients: An Evidence-Informed and PRISMA Compliant Systematic Review and Meta-Analysis. Autoimmun. Rev. 2019, 18, 73–92. [Google Scholar] [CrossRef]
- Sim, J.J.L.; Lim, C.C. Influenza Vaccination in Systemic Lupus Erythematosus: Efficacy, Effectiveness, Safety, Utilization, and Barriers. Am. J. Med. 2022, 135, 286–296.e9. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef]
- Mosca, M.; Neri, R.; Bombardieri, S. Undifferentiated Connective Tissue Diseases (UCTD): A Review of the Literature and a Proposal for Preliminary Classification Criteria. Clin. Exp. Rheumatol. 1999, 17, 615–620. [Google Scholar] [PubMed]
- Tanaka, Y.; Kuwana, M.; Fujii, T.; Kameda, H.; Muro, Y.; Fujio, K.; Itoh, Y.; Yasuoka, H.; Fukaya, S.; Ashihara, K.; et al. 2019 Diagnostic Criteria for Mixed Connective Tissue Disease (MCTD): From the Japan Research Committee of the Ministry of Health, Labor, and Welfare for Systemic Autoimmune Diseases. Mod. Rheumatol. 2021, 31, 29–33. [Google Scholar] [CrossRef]
- Circolare Min. Salute n. 0059207 Del 24 Dicembre 2021. Available online: https://www.certifico.com/index.php?option=com_content&view=article&id=15262&catid=274 (accessed on 6 September 2025).
- Zawadowski, G.M.; Klarich, K.W.; Moder, K.G.; Edwards, W.D.; Cooper, L.T. A Contemporary Case Series of Lupus Myocarditis. Lupus 2012, 21, 1378–1384. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Ben-Shlomo, Y.; Kepten, E.; Waxman, J.; Ohana, R.; Hernán, M.A.; Lipsitch, M.; Kohane, I.; Netzer, D.; et al. Safety of the BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Setting. N. Engl. J. Med. 2021, 385, 1078–1090. [Google Scholar] [CrossRef] [PubMed]
- Oster, M.E.; Shay, D.K.; Su, J.R.; Gee, J.; Creech, C.B.; Broder, K.R.; Edwards, K.; Soslow, J.H.; Dendy, J.M.; Schlaudecker, E.; et al. Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021. JAMA 2022, 327, 331–340. [Google Scholar] [CrossRef]
- Isenberg, D.A.; Rahman, A.; Allen, E.; Farewell, V.; Akil, M.; Bruce, I.N.; D’Cruz, D.; Griffiths, B.; Khamashta, M.; Maddison, P.; et al. BILAG 2004. Development and Initial Validation of an Updated Version of the British Isles Lupus Assessment Group’s Disease Activity Index for Patients with Systemic Lupus Erythematosus. Rheumatology 2005, 44, 902–906. [Google Scholar] [CrossRef]
- Gladman, D.D.; Goldsmith, C.H.; Urowitz, M.B.; Bacon, P.; Fortin, P.; Ginzler, E.; Gordon, C.; Hanly, J.G.; Isenberg, D.A.; Petri, M.; et al. The Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for Systemic Lupus Erythematosus International Comparison. J. Rheumatol. 2000, 27, 373–376. [Google Scholar]
- Franklyn, K.; Lau, C.S.; Navarra, S.V.; Louthrenoo, W.; Lateef, A.; Hamijoyo, L.; Wahono, C.S.; Chen, S.L.; Jin, O.; Morton, S.; et al. Definition and Initial Validation of a Lupus Low Disease Activity State (LLDAS). Ann. Rheum. Dis. 2016, 75, 1615–1621. [Google Scholar] [CrossRef]
- van Vollenhoven, R.F.; Bertsias, G.; Doria, A.; Isenberg, D.; Morand, E.; Petri, M.A.; Pons-Estel, B.A.; Rahman, A.; Ugarte-Gil, M.F.; Voskuyl, A.; et al. 2021 DORIS Definition of Remission in SLE: Final Recommendations from an International Task Force. Lupus Sci. Med. 2021, 8, e000538. [Google Scholar] [CrossRef]
- Ramirez, G.A.; Canti, V.; Moiola, L.; Magnoni, M.; Rovere-Querini, P.; Coletto, L.A.; Dagna, L.; Manfredi, A.A.; Bozzolo, E.P. Performance of SLE Responder index and Lupus Low Disease Activity State in Real Life: A Prospective Cohort Study. Int. J. Rheum. Dis. 2019, 22, 1752–1761. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Update: Cardiac-Related Events during the Civilian Smallpox Vaccination Program—United States, 2003. MMWR Morb. Mortal. Wkly. Rep. 2003, 52, 492–496. [Google Scholar]
- Benanti, G.; Ramirez, G.A.; Schioppo, T.; Argolini, L.M.; Moroni, G.; Bonelli, G.; Sinico, R.A.; Alberici, F.; Mescia, F.; Moroni, L.; et al. Long Term Outcomes of Anti-COVID-19 Vaccines in Patients with Systemic Lupus Erythematosus: A Multicentre Study. Vaccines 2025, 13, 735. [Google Scholar] [CrossRef]
- Tani, C.; Cardelli, C.; Depascale, R.; Gamba, A.; Iaccarino, L.; Doria, A.; Bandeira, M.; Dinis, S.P.; Romão, V.C.; Gotelli, E.; et al. Long-Term Outcomes of COVID-19 Vaccination in Patients with Rare and Complex Connective Tissue Diseases: The ERN-ReCONNET VACCINATE Study. J. Transl. Autoimmun. 2023, 7, 100221. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Figueroa-Parra, G.; Zhou, X.; Li, Y.; Jaquith, J.; McCarthy-Fruin, K.; Sletten, J.; Warrington, K.J.; Weyand, C.; Crowson, C.S.; et al. Immune Responses and Disease Biomarker Long-Term Changes Following COVID-19 mRNA Vaccination in a Cohort of Rheumatic Disease Patients. Front. Immunol. 2023, 14, 1224702. [Google Scholar] [CrossRef]
- Carvalho, J.D.; Torres, E.; Kakehasi, A.; Ribeiro, S.; Studart, S.; Martins, F.; Santo, R.E.; Ranzolin, A.; Fernandino, D.; Dinis, V.; et al. COVID-19 Is Associated with Lupus Flare and Persistent Disease Activity: Longitudinal Data from the Reumacov-Brazil Register. J. Rheumatol. 2025, 52, 168. [Google Scholar] [CrossRef]
- Shabani, M.; Shobeiri, P.; Nouri, S.; Moradi, Z.; Amenu, R.A.; Mehrabi Nejad, M.-M.; Rezaei, N. Risk of Flare or Relapse in Patients with Immune-Mediated Diseases Following SARS-CoV-2 Vaccination: A Systematic Review and Meta-Analysis. Eur. J. Med. Res. 2024, 29, 55. [Google Scholar] [CrossRef]
- Hileman, C.O.; Malakooti, S.K.; Patil, N.; Singer, N.G.; McComsey, G.A. New-Onset Autoimmune Disease after COVID-19. Front. Immunol. 2024, 15, 1337406. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, G.A.; Calabrese, C.; Secci, M.; Moroni, L.; Gallina, G.D.; Benanti, G.; Bozzolo, E.P.; Matucci-Cerinic, M.; Dagna, L. Infection-Associated Flares in Systemic Lupus Erythematosus. Pathogens 2024, 13, 934. [Google Scholar] [CrossRef]
- Joo, Y.B.; Kim, K.-J.; Park, K.-S.; Park, Y.-J. Influenza Infection as a Trigger for Systemic Lupus Erythematosus Flares Resulting in Hospitalization. Sci. Rep. 2021, 11, 4630. [Google Scholar] [CrossRef]
- Talarico, R.; Ramirez, G.A.; Barreira, S.C.; Cardamone, C.; Triggianese, P.; Aguilera, S.; Andersen, J.; Avcin, T.; Benistan, K.; Bertsias, G.; et al. ERN ReCONNET Points to Consider for Treating Patients Living with Autoimmune Rheumatic Diseases with Antiviral Therapies and Anti-SARS-CoV-2 Antibody Products. Clin. Exp. Rheumatol. 2023, 41, 543–553. [Google Scholar] [CrossRef]
- Ramirez, G.A.; Argolini, L.M.; Schioppo, T.; Sciascia, S.; Moroni, L.; Moroni, G.; Sinico, R.A.; Bonelli, G.; Alberici, F.; Mescia, F.; et al. Chronic Glucocorticoid Maintenance Treatment is Associated with the Risk of SARS-CoV-2 Infection in Patients with Systemic Lupus Erythematosus Who Received Vaccination. Ann. Rheum. Dis. 2022, 81, 1476–1477. [Google Scholar] [CrossRef]
- Kamar, N.; Abravanel, F.; Marion, O.; Couat, C.; Izopet, J.; Bello, A.D. Three Doses of an mRNA COVID-19 Vaccine in Solid-Organ Transplant Recipients. N. Engl. J. Med. 2021, 385, 661–662. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, N.; Medeiros-Ribeiro, A.; Pasoto, S.; Kupa, L.; Seguro, L.P.C.; Assad, A.P.; Borba, E.F.; Saad, C.; Yuki, E.F.N.; Andrade, D.; et al. Recombinant Herpes Zoster Vaccine (rzv) in a Large Cohort of Autoimmune Rheumatic Diseases Patients: A Prospective Double-Blind Randomized Placebo-Controlled Phase 4 Study. J. Rheumatol. 2025, 52, 67. [Google Scholar] [CrossRef]
- Venerito, V.; Stefanizzi, P.; Cantarini, L.; Lavista, M.; Galeone, M.G.; Di Lorenzo, A.; Iannone, F.; Tafuri, S.; Lopalco, G. Immunogenicity and Safety of Adjuvanted Recombinant Zoster Vaccine in Rheumatoid Arthritis Patients on Anti-Cellular Biologic Agents or JAK Inhibitors: A Prospective Observational Study. Int. J. Mol. Sci. 2023, 24, 6967. [Google Scholar] [CrossRef] [PubMed]
- Sieiro Santos, C.; Herrero, J.G.; Ordas Martínez, J.; Álvarez Castro, C.; López Robles, A.; Colindres, R.; Martín, E.R.; Sahagun, A.M.; Ruiz de Morales, J.G. Immunogenicity to Herpes Zoster Recombinant Subunit Vaccine in Immune-Mediated Rheumatic Patients under Treatment with JAK Inhibitors. Rheumatology 2025, 64, 2442–2450. [Google Scholar] [CrossRef]
- Neusser, S.; Neumann, A.; Zur Nieden, P.; Speckemeier, C.; Schlierenkamp, S.; Walendzik, A.; Karbach, U.; Andreica, I.; Vaupel, K.; Baraliakos, X.; et al. Facilitators and Barriers of Vaccine Uptake in Patients with Autoimune Inflammatory Rheumatic Disease: A Scoping Review. RMD Open 2022, 8, e002562. [Google Scholar] [CrossRef]
- Qendro, T.; de la Torre, M.L.; Panopalis, P.; Hazel, E.; Ward, B.J.; Colmegna, I.; Hudson, M. Suboptimal Immunization Coverage among Canadian Rheumatology Patients in Routine Clinical Care. J. Rheumatol. 2020, 47, 770–778. [Google Scholar] [CrossRef]
- Sen, P.; Lilleker, J.B.; Agarwal, V.; Kardes, S.; Milchert, M.; Gheita, T.; Salim, B.; Velikova, T.; Ramos, A.E.G.; Parodis, I.; et al. Vaccine Hesitancy in Patients with Autoimmune Diseases: Data from the Coronavirus Disease-2019 Vaccination in Autoimmune Diseases Study. Indian J. Rheumatol. 2022, 17, 188–191. [Google Scholar] [CrossRef]
- Gianfredi, V.; Berti, A.; Stefanizzi, P.; D’Amico, M.; De Lorenzo, V.; Moscara, L.; Di Lorenzo, A.; Venerito, V.; Castaldi, S. COVID-19 Vaccine Knowledge, Attitude, Acceptance and Hesitancy among Pregnancy and Breastfeeding: Systematic Review of Hospital-Based Studies. Vaccines 2023, 11, 1697. [Google Scholar] [CrossRef]
- Solomon, D.H.; Bucala, R.; Kaplan, M.J.; Nigrovic, P.A. The “Infodemic” of COVID-19. Arthritis Rheumatol. 2020, 72, 1806–1808. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, T.; Kishida, D.; Shimojima, Y.; Yajima, N.; Oguro, N.; Yoshimi, R.; Sakurai, N.; Hidekawa, C.; Sada, K.-E.; Miyawaki, Y.; et al. Trust in Health Information Sources Among Patients With Systemic Lupus Erythematosus in the Social Networking Era: The TRUMP2-SLE Study. J. Rheumatol. 2025, jrheum.2024-1088. [Google Scholar] [CrossRef]
- Peretto, G.; Sala, S.; De Luca, G.; Campochiaro, C.; Sartorelli, S.; Cappelletti, A.M.; Rizzo, S.; Palmisano, A.; Esposito, A.; Margonato, A.; et al. Impact of Systemic Immune-Mediated Diseases on Clinical Features and Prognosis of Patients with Biopsy-Proved Myocarditis. Int. J. Cardiol. 2019, 280, 110–116. [Google Scholar] [CrossRef]
- Caforio, A.L.P.; Adler, Y.; Agostini, C.; Allanore, Y.; Anastasakis, A.; Arad, M.; Böhm, M.; Charron, P.; Elliott, P.M.; Eriksson, U.; et al. Diagnosis and Management of Myocardial Involvement in Systemic Immune-Mediated Diseases: A Position Statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Disease. Eur. Heart J. 2017, 38, 2649–2662. [Google Scholar] [CrossRef]
- Du Toit, R.; Herbst, P.G.; van Rensburg, A.; du Plessis, L.M.; Reuter, H.; Doubell, A.F. Clinical Features and Outcome of Lupus Myocarditis in the Western Cape, South Africa. Lupus 2017, 26, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, M.; Ciabatti, M.; Saletti, E.; D’Aniello, E.; Bolognese, L.; on-behalf-of-the-COVID-Vaccine-in-Myocarditis-Study-Group. COVID-19 mRNA Vaccination in Patients with Previous Myocarditis. Eur. J. Intern. Med. 2022, 104, 116–117. [Google Scholar] [CrossRef]
- Shahid, R.; Tang, W.H.W.; Klein, A.L.; Kwon, D.; Amdani, S. Is the mRNA COVID-19 Vaccine Safe in Patients With a Prior History of Myocarditis? J. Card. Fail. 2023, 29, 108–111. [Google Scholar] [CrossRef]
- Semenzato, L.; Le Vu, S.; Botton, J.; Bertrand, M.; Jabagi, M.-J.; Drouin, J.; Cuenot, F.; Zores, F.; Dray-Spira, R.; Weill, A.; et al. Long-Term Prognosis of Patients With Myocarditis Attributed to COVID-19 mRNA Vaccination, SARS-CoV-2 Infection, or Conventional Etiologies. JAMA 2024, 332, 1367–1377. [Google Scholar] [CrossRef]
- Imazio, M.; Basso, C.; Brucato, A.; Klingel, K.; Kuchynka, P.; Lazaros, G.; Merlo, M.; Sinagra, G.; Adler, Y.; Bucciarelli Ducci, C.; et al. Myopericardial Complications Following COVID-19 Disease and Vaccination: A Clinical Consensus Statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2025, 46, ehaf222. [Google Scholar] [CrossRef]
- Peretto, G.; Villatore, A.; Rizzo, S.; Esposito, A.; De Luca, G.; Palmisano, A.; Vignale, D.; Cappelletti, A.M.; Tresoldi, M.; Campochiaro, C.; et al. The Spectrum of COVID-19-Associated Myocarditis: A Patient-Tailored Multidisciplinary Approach. J. Clin. Med. 2021, 10, 1974. [Google Scholar] [CrossRef]
- Mansanguan, S.; Charunwatthana, P.; Piyaphanee, W.; Dechkhajorn, W.; Poolcharoen, A.; Mansanguan, C. Cardiovascular Manifestation of the BNT162b2 mRNA COVID-19 Vaccine in Adolescents. Trop. Med. Infect. Dis. 2022, 7, 196. [Google Scholar] [CrossRef]
- Buergin, N.; Lopez-Ayala, P.; Hirsiger, J.R.; Mueller, P.; Median, D.; Glarner, N.; Rumora, K.; Herrmann, T.; Koechlin, L.; Haaf, P.; et al. Sex-Specific Differences in Myocardial Injury Incidence after COVID-19 mRNA-1273 Booster Vaccination. Eur. J. Heart Fail. 2023, 25, 1871–1881. [Google Scholar] [CrossRef]
- Levi, N.; Moravsky, G.; Weitsman, T.; Amsalem, I.; Bar-Sheshet Itach, S.; Algur, N.; Lapidus, I.; Mitz, O.; Glikson, M.; Wiener-Well, Y.; et al. A Prospective Study on Myocardial Injury after BNT162b2 mRNA COVID-19 Fourth Dose Vaccination in Healthy Persons. Eur. J. Heart Fail. 2023, 25, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Pudasaini, S.; Le, N.H.; Huscher, D.; Holert, F.; Hillus, D.; Tober-Lau, P.; Kurth, F.; Sander, L.E.; Möckel, M. Levels of High-Sensitive Troponin T and Mid-Regional pro-Adrenomedullin after COVID-19 Vaccination in Vulnerable Groups: Monitoring Cardiovascular Safety of COVID-19 Vaccination. Front. Cardiovasc. Med. 2024, 11, 1435038. [Google Scholar] [CrossRef] [PubMed]
- Maatz, H.; Lindberg, E.L.; Adami, E.; López-Anguita, N.; Perdomo-Sabogal, A.; Cocera Ortega, L.; Patone, G.; Reichart, D.; Myronova, A.; Schmidt, S.; et al. The Cellular and Molecular Cardiac Tissue Responses in Human Inflammatory Cardiomyopathies after SARS-CoV-2 Infection and COVID-19 Vaccination. Nat. Cardiovasc. Res. 2025, 4, 330–345. [Google Scholar] [CrossRef]
- Dursun, A.D.; Saricam, E.; Sariyildiz, G.T.; Iscanli, M.D.; Cantekin, Ö.F. The Evaluation of Oxidative Stress in the Young Adults with COVID-19 mRNA Vaccines Induced Acute Pericarditis- Myopericarditis. Int. J. Gen. Med. 2022, 15, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Tani, C.; Elefante, E.; Arnaud, L.; Barreira, S.C.; Bulina, I.; Cavagna, L.; Costedoat-Chalumeau, N.; Doria, A.; Fonseca, J.E.; Franceschini, F.; et al. Rare Clinical Manifestations in Systemic Lupus Erythematosus: A Review on Frequency and Clinical Presentation. Clin. Exp. Rheumatol. 2022, 40 (Suppl. S134), 93–102. [Google Scholar] [CrossRef]
Feature | Value |
---|---|
SLE|UCTD|MCTD, N (%) | 10 (83)|1 (8)|1 (8) |
Sex (female), N (%) | 7 (58) |
Age (years), median (IQR) | 48 (44–52) |
Disease Duration (year), median (IQR) | 17 (4–22) |
Constitutional, N (%) | 11 (92) |
Mucocutaneous, N (%) | 8 (67) |
Neuropsychiatric, N (%) | 3 (25) |
Musculoskeletal, N (%) | 9 (75) |
Cardiological, N (%) | 12 (100) |
Gastroenterological, N (%) | 3 (25) |
Ophthalmologic, N (%) | 1 (8) |
Renal, N (%) | 5 (42) |
Haematologic, N (%) | 8 (67) |
Anti DNA | 8 (67) |
Anti-Sm | 4 (33) |
Anti-Ro | 2 (17) |
Anti-La | 1 (8) |
Anti-RNP | 2 (17) |
Anti-Cardiolipine | 5 (42) |
Anti-β2GPI | 4 (33) |
Lupus anticoagulant | 2 (17) |
Anti-PS/PT | 2 (17) |
SLE Patients (10) | Before Vaccination | After Vaccination | ||
---|---|---|---|---|
Short-Term | Medium-Term | Long-Term | ||
Patients in LLDAS: n (%) | 8 (80) | 8 (80) | 8 (80) | 10 (100) |
Patients in DORIS: n (%) | 7 (70) | 7 (70) | 8 (80) | 9 (90) |
SLEDAI-2k: median (IQR) | 2 (0–3) | 2 (0–4) | 1 (0–2) | 0 (0–2) * |
BILAG Constitutional: median (IQR) | 0 (0–0) | 0 (0–1) # | 0 (0–0) | 0 (0–0) |
BILAG Mucocutaneous: median (IQR) | 0 (0–1) | 0 (0–0.75) | 0 (0–0) | 0 (0–0) |
BILAG Neuropsychiatric: median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) |
BILAG Musculoskeletal: median (IQR) | 0 (0–0) | 0 (0–1) | 0 (0–0) | 0 (0–0) |
BILAG Cardiological: median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) |
BILAG Gastroenterological: median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) |
BILAG Ophthalmologic: median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) |
BILAG RENAL: median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) |
BILAG Haematologic: median (IQR) | 0 (0–1) | 1 (0–1) | 1 (0–1) | 0 (0–1) |
SLICC Damage Index: median (IQR) | 1 (1–3) | 2 (1–3) | 2 (1–3) | 2 (1–3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benanti, G.; Secci, M.; Villatore, A.; Angiulli, S.; Calabrese, C.; Gallina, G.D.; Batani, V.; De Luca, G.; Campochiaro, C.; Pizzetti, G.; et al. Long-Term Safety of Anti-COVID-19 mRNA Vaccines in Patients with Systemic Lupus Erythematosus and Lupus-like Diseases with a Previous History of Myocarditis. Microorganisms 2025, 13, 2266. https://doi.org/10.3390/microorganisms13102266
Benanti G, Secci M, Villatore A, Angiulli S, Calabrese C, Gallina GD, Batani V, De Luca G, Campochiaro C, Pizzetti G, et al. Long-Term Safety of Anti-COVID-19 mRNA Vaccines in Patients with Systemic Lupus Erythematosus and Lupus-like Diseases with a Previous History of Myocarditis. Microorganisms. 2025; 13(10):2266. https://doi.org/10.3390/microorganisms13102266
Chicago/Turabian StyleBenanti, Giovanni, Marta Secci, Andrea Villatore, Sara Angiulli, Chiara Calabrese, Gabriele Domenico Gallina, Veronica Batani, Giacomo De Luca, Corrado Campochiaro, Giuseppe Pizzetti, and et al. 2025. "Long-Term Safety of Anti-COVID-19 mRNA Vaccines in Patients with Systemic Lupus Erythematosus and Lupus-like Diseases with a Previous History of Myocarditis" Microorganisms 13, no. 10: 2266. https://doi.org/10.3390/microorganisms13102266
APA StyleBenanti, G., Secci, M., Villatore, A., Angiulli, S., Calabrese, C., Gallina, G. D., Batani, V., De Luca, G., Campochiaro, C., Pizzetti, G., Peretto, G., Sala, S., Bozzolo, E. P., Moroni, L., Matucci-Cerinic, M., Ramirez, G. A., & Dagna, L. (2025). Long-Term Safety of Anti-COVID-19 mRNA Vaccines in Patients with Systemic Lupus Erythematosus and Lupus-like Diseases with a Previous History of Myocarditis. Microorganisms, 13(10), 2266. https://doi.org/10.3390/microorganisms13102266