Pediococcus pentosaceus OL77 Enhances Oat (Avena sativa) Silage Fermentation Under Cold Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Oat Silage Feed
2.2. Determination of Chemical and Nutritional Parameters
2.3. Bacterial Community Detection
2.4. Statistical Analysis
3. Results
3.1. Fermentation Parameters of Oat Silage with Microbial Inoculants at Low Temperature
3.2. Effect of Pediococcus pentosaceus on Chemical Composition of Oat Silage at Low Temperature
3.3. Bacterial Community Diversity of Oat Silage Inoculated with Pediococcus pentosaceus at Low Temperature
3.4. Bacterial Community Compositions of Oat Silage Inoculated with Pediococcus pentosaceus at Low Temperature
3.5. Bacterial Community Functions Oat Silage
3.6. Correlation Analysis Between Bacterial Communities and Fermentation Characteristics in Oat Silage
4. Discussion
4.1. Nutritional and Fermentative Quality of Oat Silage Under Low-Temperature Ensiling
4.2. Effect of Pediococcus pentosaceus OL77 on the Microbial Community Structure of Oat Silage Fermentation at Low Temperature
4.3. Effect of Pediococcus pentosaceus OL77 on the Bacterial Functional Profile of Oat Silage Fermented at Low Temperature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Guan, H.; Jia, Z.; Liu, W.; Ma, X.; Liu, Y.; Wang, H.; Zhou, Q. Freeze-Thaw Condition Limits the Fermentation Process and Accelerates the Aerobic Deterioration of Oat (Avena sativa) Silage in the Qinghai-Tibet Plateau. Front. Microbiol. 2022, 13, 944945. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Gong, W.; Bai, J.; Ju, Z.; Zhao, G. Dry Matter Recovery, Ensiling Characteristics and Aerobic Stability of Oat Silage Treated with Microbial Inoculants at Different Temperatures. Arch. Anim. Nutr. 2022, 76, 175–190. [Google Scholar] [CrossRef]
- Bao, Y.; Yangzong, Z.; Yuan, Z.; Shi, R.; Feng, K.; Xin, P.; Song, T. The Microbial Communities and Natural Fermentation Quality of Ensiling Oat (Avena sativa L.) Harvest from Different Elevations on the Qinghai-Tibet Plateau. Front. Microbiol. 2022, 13, 1108890. [Google Scholar] [CrossRef]
- Zhou, J.W.; Jing, X.P.; Degen, A.A.; Liu, H.; Zhang, Y.; Yang, G.; Long, R.J. Effect of Level of Oat Hay Intake on Apparent Digestibility, Rumen Fermentation and Urinary Purine Derivatives in Tibetan and Fine-Wool Sheep. Anim. Feed. Sci. Technol. 2018, 241, 112–120. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, L.; Chen, Y.; Li, P.; Chen, C. Effects of LAB Inoculants on the Fermentation Quality, Chemical Composition, and Bacterial Community of Oat Silage on the Qinghai-Tibetan Plateau. Microorganisms 2022, 10, 787. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Wang, X.; Sun, L.; Guo, L.; Xiong, Y.; Wang, Y.; Zhou, H.; Jia, S.; Yang, F.; et al. Impacts of Low Temperature and Ensiling Period on the Bacterial Community of Oat Silage by SMRT. Microorganisms 2021, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhao, M.; Yan, Y.; Sun, P.; Yan, X.; Liu, M.; Na, R.; Jia, Y.; Cha, S.; Ge, G. Characteristics of Isolated Lactic Acid Bacteria at Low Temperature and Their Effects on the Silage Quality. Microbiol. Spectr. 2025, 13, e03194-24. [Google Scholar] [CrossRef]
- Liu, J.; Hao, J.; Zhao, M.; Yan, X.; Jia, Y.; Wang, Z.; Ge, G. Effects of Different Temperature and Density on Quality and Microbial Population of Wilted Alfalfa Silage. BMC Microbiol. 2024, 24, 380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Drouin, P.; Lafrenière, C. Effect of Temperature (5–25 °C) on Epiphytic Lactic Acid Bacteria Populations and Fermentation of Whole-Plant Corn Silage. J. Appl. Microbiol. 2016, 121, 657–671. [Google Scholar] [CrossRef]
- Wang, P.; Bai, C.; Liu, L.; Cao, B. Effects of Lactic Acid Bacteria Inoculant on the Fermentation Quality of Reed Grass (Phragmites Australis Cav. Trin. Ex Sterd.) at Low Temperature. Acta Agrestia Sin. 2011, 19, 127. [Google Scholar] [CrossRef]
- Zhao, G.; Ju, Z.; Chai, J. Effects of Altitude and Variety on Nutrient Levels and Epiphytes of Oats. Acta Prataculturae Sin. 2022, 31, 147. [Google Scholar] [CrossRef]
- Ding, Z.; Bai, J.; Xu, D.; Li, F.; Zhang, Y.; Guo, X. Microbial Community Dynamics and Natural Fermentation Profiles of Ensiled Alpine Grass Elymus Nutans Prepared from Different Regions of the Qinghai-Tibetan Plateau. Front. Microbiol. 2020, 11, 855. [Google Scholar] [CrossRef]
- Yang, X.; Bao, Y.; Shao, T.; Wang, W.; Ma, P.; Wang, W.; Gallo, A.; Yuan, X. Altitudinal Distribution Patterns of Phyllosphere Microbial Communities and Their Contribution to Silage Fermentation of Kobresia Pygmaea Along the Elevation Gradient on the Tibetan Plateau. Front. Microbiol. 2022, 13, 874582. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Cui, M.; Wang, Y.; Jiao, Z.; Tan, Z. Ensilage of Oats and Wheatgrass under Natural Alpine Climatic Conditions by Indigenous Lactic Acid Bacteria Species Isolated from High-Cold Areas. PLoS ONE 2018, 13, e0192368. [Google Scholar] [CrossRef]
- Bai, J.; Ding, Z.; Su, R.; Wang, M.; Cheng, M.; Xie, D.; Guo, X. Storage Temperature Is More Effective Than Lactic Acid Bacteria Inoculations in Manipulating Fermentation and Bacterial Community Diversity, Co-Occurrence and Functionality of the Whole-Plant Corn Silage. Microbiol. Spectr. 2022, 10, e0010122. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Ding, W.; Ke, W.; Li, F.; Zhang, P.; Guo, X. Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus Plantarum and Heterofermentative Lactobacillus Buchneri. Front. Microbiol. 2018, 9, 3299. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Liang, Y.; Chen, H.; Sheoran, N.; Ke, W.; Bai, J.; Jia, M.; Zhu, J.; Li, Q.; Liu, Q.; et al. Investigating the Efficacy of an Exopolysaccharide (EPS)-producing Strain Lactiplantibacillus plantarum L75 on Oat Silage Fermentation at Different Temperatures. Microb. Biotechnol. 2024, 17, e14454. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Wei, M.; He, Y.; Wang, Y.; Zhang, Q.; Wei, H.; Tao, X. Antitumor Effect of Exopolysaccharide from Lactiplantibacillus plantarum WLPL09 on Melanoma Mice via Regulating Immunity and Gut Microbiota. Int. J. Biol. Macromol. 2024, 254, 127624. [Google Scholar] [CrossRef]
- Chen, L.; Li, P.; Gou, W.; You, M.; Cheng, Q.; Bai, S.; Cai, Y. Effects of Inoculants on the Fermentation Characteristics and in Vitro Digestibility of Reed Canary Grass (Phalaris arundinacea L.) Silage on the Qinghai-Tibetan Plateau. Anim. Sci. J. 2020, 91, e13364. [Google Scholar] [CrossRef]
- Xu, D.M.; Ke, W.C.; Zhang, P.; Li, F.H.; Guo, X.S. Characteristics of Pediococcus Pentosaceus Q6 Isolated from Elymus Nutans Growing on the Tibetan Plateau and Its Application for Silage Preparation at Low Temperature. J. Appl. Microbiol. 2019, 126, 40–48. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, H.; Tan, Z.; Li, Y.; Wang, Y.; Pang, H.; Li, Z.; Jiao, Z.; Jin, Q. Improving the Fermentation Quality of Wheat Straw Silage Stored at Low Temperature by Psychrotrophic Lactic Acid Bacteria. Anim. Sci. J. 2017, 88, 277–285. [Google Scholar] [CrossRef]
- Ke, W.; Ding, Z.; Li, F.; Xu, D.; Bai, J.; Muhammad, I.; Zhang, Y.; Zhao, L.; Guo, X. Effects of Malic or Citric Acid on the Fermentation Quality, Proteolysis and Lipolysis of Alfalfa Silage Ensiled at Two Dry Matter Contents. J. Anim. Physiol. Anim. Nutr. 2022, 106, 988–994. [Google Scholar] [CrossRef]
- Kilstrup, M.; Hammer, K.; Ruhdal Jensen, P.; Martinussen, J. Nucleotide Metabolism and Its Control in Lactic Acid Bacteria. FEMS Microbiol. Rev. 2005, 29, 555–590. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Method 934.01: Moisture in Animal Feed; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- He, Q.; Zhou, W.; Chen, X.; Zhang, Q. Chemical and Bacterial Composition of Broussonetia Papyrifera Leaves Ensiled at Two Ensiling Densities with or without Lactobacillus Plantarum. J. Clean. Prod. 2021, 329, 129792. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mu, L.; Wang, Q.; Cao, X.; Zhang, Z. Effects of Fatty Acid Salts on Fermentation Characteristics, Bacterial Diversity and Aerobic Stability of Mixed Silage Prepared with Alfalfa, Rice Straw and Wheat Bran. J. Sci. Food Agric. 2022, 102, 1475–1487. [Google Scholar] [CrossRef]
- Zhu, X.-M.; Jiang, D.-D.; Yuan, B.-J.; Ni, K.-K. Effect of Low-Temperature-Tolerant Lactic Acid Bacteria on the Fermentation Quality and Bacterial Community of Oat Silage at 5 °C vs. 15 °C. Fermentation 2022, 8, 158. [Google Scholar] [CrossRef]
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T.; McAllister, T.A.; Drouin, P.; Nussio, L.G.; Huhtanen, P.; Tremblay, G.F.; Bélanger, G.; Cai, Y. Silage Review: Unique Challenges of Silages Made in Hot and Cold Regions. J. Dairy Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef]
- Liu, B.; Huan, H.; Gu, H.; Xu, N.; Shen, Q.; Ding, C. Dynamics of a Microbial Community during Ensiling and upon Aerobic Exposure in Lactic Acid Bacteria Inoculation-Treated and Untreated Barley Silages. Bioresour. Technol. 2019, 273, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bao, J.; Zhuo, X.; Li, Y.; Zhan, W.; Xie, Y.; Wu, Z.; Yu, Z. Effects of Lentilactobacillus buchneri and Chemical Additives on Fermentation Profile, Chemical Composition, and Nutrient Digestibility of High-Moisture Corn Silage. Front. Vet. Sci. 2023, 10, 1296392. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Benno, Y.; Ogawa, M.; Kumai, S. Effect of Applying Lactic Acid Bacteria Isolated from Forage Crops on Fermentation Characteristics and Aerobic Deterioration of Silage. J. Dairy Sci. 1999, 82, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.S.; Ke, W.C.; Ding, W.R.; Ding, L.M.; Xu, D.M.; Wang, W.W.; Zhang, P.; Yang, F.Y. Profiling of Metabolome and Bacterial Community Dynamics in Ensiled Medicago Sativa Inoculated without or with Lactobacillus Plantarum or Lactobacillus Buchneri. Sci. Rep. 2018, 8, 357. [Google Scholar] [CrossRef]
- Chen, L.; Bai, S.; You, M.; Xiao, B.; Li, P.; Cai, Y. Effect of a Low Temperature Tolerant Lactic Acid Bacteria Inoculant on the Fermentation Quality and Bacterial Community of Oat Round Bale Silage. Anim. Feed Sci. Technol. 2020, 269, 114669. [Google Scholar] [CrossRef]
- Sun, L.; Xue, Y.; Xiao, Y.; Te, R.; Wu, X.; Na, N.; Wu, N.; Qili, M.; Zhao, Y.; Cai, Y. Community Synergy of Lactic Acid Bacteria and Cleaner Fermentation of Oat Silage Prepared with a Multispecies Microbial Inoculant. Microbiol. Spectr. 2023, 11, e00705-23. [Google Scholar] [CrossRef]
- Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J. Effects of Lactic Acid Bacteria Silage Inoculation on Methane Emission and Productivity of Holstein Friesian Dairy Cattle. J. Dairy Sci. 2016, 99, 7159–7174. [Google Scholar] [CrossRef]
- Jia, T.; Yu, Z. Effect of Temperature and Fermentation Time on Fermentation Characteristics and Biogenic Amine Formation of Oat Silage. Fermentation 2022, 8, 352. [Google Scholar] [CrossRef]
- Bai, J.; Ding, Z.; Ke, W.; Xu, D.; Wang, M.; Huang, W.; Zhang, Y.; Liu, F.; Guo, X. Different Lactic Acid Bacteria and Their Combinations Regulated the Fermentation Process of Ensiled Alfalfa: Ensiling Characteristics, Dynamics of Bacterial Community and Their Functional Shifts. Microb. Biotechnol. 2021, 14, 1171–1182. [Google Scholar] [CrossRef]
- Adhimi, R.; Tayh, G.; Ghariani, S.; Chairat, S.; Chaouachi, A.; Boudabous, A.; Slama, K.B. Distribution, Diversity and Antibiotic Resistance of Pseudomonas Spp. Isolated from the Water Dams in the North of Tunisia. Curr. Microbiol. 2022, 79, 188. [Google Scholar] [CrossRef]
- Yuan, X.; Li, J.; Dong, Z.; Shao, T. The Reconstitution Mechanism of Napier Grass Microiota during the Ensiling of Alfalfa and Their Contributions to Fermentation Quality of Silage. Bioresour. Technol. 2020, 297, 122391. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zeng, T.; Du, Z.; Dong, X.; Xin, Y.; Wu, Y.; Huang, L.; Liu, L.; Kang, B.; Jiang, D.; et al. Assessment on the Fermentation Quality and Bacterial Community of Mixed Silage of Faba Bean with Forage Wheat or Oat. Front. Microbiol. 2022, 13, 875819. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xu, D.; Li, F.; Bai, J.; Su, R. Current Approaches on the Roles of Lactic Acid Bacteria in Crop Silage. Microb. Biotechnol. 2023, 16, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Sun, L.; Hou, M.; Hao, J.; Lu, Q.; Liu, T.; Ren, X.; Jia, Y.; Wang, Z.; Ge, G. Effects of Different Harvest Frequencies on Microbial Community and Metabolomic Properties of Annual Ryegrass Silage. Front. Microbiol. 2022, 13, 971449. [Google Scholar] [CrossRef] [PubMed]
- Keshri, J.; Chen, Y.; Pinto, R.; Kroupitski, Y.; Weinberg, Z.G.; Saldinger, S.S. Microbiome Dynamics during Ensiling of Corn with and without Lactobacillus Plantarum Inoculant. Appl. Microbiol. Biotechnol. 2018, 102, 4025–4037. [Google Scholar] [CrossRef] [PubMed]
Items a | Treatments | Ensiling Days b | SEM c | p-Value d | ||||||
---|---|---|---|---|---|---|---|---|---|---|
3 | 7 | 14 | 60 | 90 | D | T | D × T | |||
pH | CK | 6.23Aa | 6.05Ab | 5.71Ac | 4.66Ad | 4.43Ae | 0.203 | <0.001 | <0.001 | <0.001 |
OL77 | 5.84Ca | 5.17Cb | 4.42Cc | 3.92Cd | 3.88Cd | 0.209 | ||||
TCP | 6.18Aa | 5.68Bb | 5.03Bc | 4.47Bd | 4.13Be | 0.209 | ||||
Lactic acid (g/kg DM) | CK | 2.54Ce | 4.65Cd | 8.87Cc | 19.29Cb | 30.51Ba | 2.881 | <0.001 | <0.001 | <0.001 |
OL77 | 9.96Ae | 14.44Ad | 24.18Ac | 40.27Ab | 45.83Aa | 3.888 | ||||
TCP | 4.51Be | 7.85Bd | 12.23Bc | 33.83Bb | 41.23Aa | 4.090 | ||||
Acetic acid (g/kg DM) | CK | 1.37Ce | 2.39Cd | 4.69Bc | 10.72Cb | 17.32Aa | 1.653 | <0.001 | <0.001 | <0.001 |
OL77 | 2.93Ae | 3.54Ad | 5.77Ac | 12.07Bb | 13.85Ca | 1.243 | ||||
TCP | 1.68Be | 2.95Bd | 5.82Ac | 13.70Ab | 15.44Ba | 1.556 | ||||
Propionic acid (g/kg DM) | CK | 0.08Ce | 0.35Cd | 0.90Cc | 2.32Cb | 2.98Ca | 0.313 | <0.001 | <0.001 | <0.001 |
OL77 | 0.25Ad | 0.79Ac | 2.51Ab | 4.03Aa | 4.06Aa | 0.440 | ||||
TCP | 0.12Be | 0.46Bd | 1.30Bc | 3.09Bb | 3.73Ba | 0.396 | ||||
Butyric acid (g/kg DM) | CK | ND | ND | 0.06c | 0.13Ab | 0.35Aa | 0.036 | <0.001 | <0.001 | <0.001 |
OL77 | ND | ND | ND | ND | ND | 0.000 | ||||
TCP | ND | ND | ND | 0.08Bb | 0.14Ba | 0.016 | ||||
LA/AA | CK | 1.85Cab | 1.95Ca | 1.89Bab | 1.80Cab | 1.76Cb | 0.025 | <0.001 | <0.001 | <0.001 |
OL77 | 3.40Ab | 4.09Aa | 4.19Aa | 3.34Ab | 3.31Ab | 0.116 | ||||
TCP | 2.68Ba | 2.67Ba | 2.10Bb | 2.47Bab | 2.67Ba | 0.070 |
Items a | Treatments | Ensiling Days b | SEM c | p-Value d | ||||||
---|---|---|---|---|---|---|---|---|---|---|
3 | 7 | 14 | 60 | 90 | D | T | D × T | |||
DM (g/kg FM) | CK | 344.41a | 342.26a | 330.42b | 312.44c | 304.87Bd | 4.424 | <0.001 | 0.013 | 0.208 |
OL77 | 344.09a | 341.33a | 333.92b | 319.28c | 313.75Ad | 3.381 | ||||
TCP | 343.70a | 341.08a | 332.34b | 316.15c | 309.77Ad | 3.810 | ||||
WSC (g/kg DM) | CK | 138.87Aa | 134.31Ab | 120.58Ac | 63.36Bd | 47.60Ce | 10.497 | <0.001 | 0.098 | <0.001 |
OL77 | 134.35Ba | 128.66Bb | 109.56Bc | 66.19Ad | 64.68Ad | 8.286 | ||||
TCP | 136.21Ba | 133.20Ab | 116.91Ac | 67.33Ad | 53.91Be | 9.489 | ||||
CP (g/kg DM) | CK | 102.88a | 96.75Bab | 94.31Bb | 79.74Cc | 65.52Cd | 2.511 | <0.001 | <0.001 | <0.001 |
OL77 | 102.83a | 99.50Aab | 97.47Ab | 92.92Ac | 89.26Ad | 1.390 | ||||
TCP | 103.32a | 97.38Bab | 95.35Bb | 86.03Bc | 76.18Bd | 2.139 | ||||
NDF (g/kg DM) | CK | 527.40Aa | 524.74Ab | 515.26Ac | 486.47Ad | 458.28Ae | 7.313 | <0.001 | <0.001 | <0.001 |
OL77 | 523.22Ba | 515.36Bb | 496.52Bc | 442.80Cd | 437.01Ce | 10.039 | ||||
TCP | 527.74Aa | 522.17Ab | 513.37Ac | 470.38Bd | 446.16Be | 8.872 | ||||
ADF (g/kg DM) | CK | 329.83a | 327.08Aa | 320.96Ab | 291.76Ac | 284.22Ad | 5.251 | <0.001 | <0.001 | <0.001 |
OL77 | 327.56a | 322.51Bb | 303.34Cc | 263.35Cd | 258.28Ce | 8.061 | ||||
TCP | 329.37a | 326.43Aa | 317.63Bb | 284.72Bc | 270.46Bd | 6.577 | ||||
NH3-N (g/kg DM) | CK | 4.29e | 15.41Ad | 49.56Ac | 116.87Ab | 145.17Aa | 15.404 | <0.001 | <0.001 | <0.001 |
OL77 | 4.17e | 8.38Bd | 27.50Cc | 73.12Cb | 78.20Ca | 8.737 | ||||
TCP | 4.36e | 12.32Ad | 37.90Bc | 93.54Bb | 109.84Ba | 11.846 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhao, G.; Bai, J.; Qu, X.; Chai, J.; Lin, D. Pediococcus pentosaceus OL77 Enhances Oat (Avena sativa) Silage Fermentation Under Cold Conditions. Microorganisms 2025, 13, 2248. https://doi.org/10.3390/microorganisms13102248
Liu X, Zhao G, Bai J, Qu X, Chai J, Lin D. Pediococcus pentosaceus OL77 Enhances Oat (Avena sativa) Silage Fermentation Under Cold Conditions. Microorganisms. 2025; 13(10):2248. https://doi.org/10.3390/microorganisms13102248
Chicago/Turabian StyleLiu, Xin, Guiqin Zhao, Jie Bai, Xinyi Qu, Jikuan Chai, and Doudou Lin. 2025. "Pediococcus pentosaceus OL77 Enhances Oat (Avena sativa) Silage Fermentation Under Cold Conditions" Microorganisms 13, no. 10: 2248. https://doi.org/10.3390/microorganisms13102248
APA StyleLiu, X., Zhao, G., Bai, J., Qu, X., Chai, J., & Lin, D. (2025). Pediococcus pentosaceus OL77 Enhances Oat (Avena sativa) Silage Fermentation Under Cold Conditions. Microorganisms, 13(10), 2248. https://doi.org/10.3390/microorganisms13102248