HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members
Abstract
:1. Introduction
2. Autism Spectrum Disorder
2.1. Characteristics of ASD, Diagnosis, Signs, Symptoms, and Classification
- The presence or absence of intellectual impairment;
- The presence or absence of language impairment.
2.2. Epidemiology of ASD in Sardinia
2.3. Etiopathogenesis of ASD: The Role of Environmental and Genetic Factors
2.4. Social and Pharmacology Treatments and Interventions
3. HERVs in Autism Spectrum Disorder
3.1. Expression Profile of HERVs and Inflammatory Mediators in Autism Spectrum Disorders
3.2. Human Endogenous Retroviruses: Therapeutic Implications in Autoimmune and Neurological Diseases
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism Spectrum Disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, A.; Van De Water, J. The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 2017, 42, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.; Yip, B.H.K.; Windham, G.C.; Sourander, A.; Francis, R.; Yoffe, R.; Glasson, E.; Mahjani, B.; Suominen, A.; Leonard, H.; et al. Association of Genetic and Environmental Factors with Autism in a 5-Country Cohort. JAMA Psychiatry 2019, 76, 1035. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.R.; Lane, A.L.; Werner, B.A.; McLees, S.E.; Fletcher, T.S.; Frye, R.E. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol. Diagn. Ther. 2022, 26, 483–495. [Google Scholar] [CrossRef]
- Nisar, S.; Haris, M. Correction to: Neuroimaging Genetics Approaches to Identify New Biomarkers for the Early Diagnosis of Autism Spectrum Disorder. Mol. Psychiatry 2023, 28, 4995–5008. [Google Scholar] [CrossRef]
- Iacono, W.G. Endophenotypes in Psychiatric Disease: Prospects and Challenges. Genome Med. 2018, 10, 11. [Google Scholar] [CrossRef]
- Mosconi, M.W.; Stevens, C.J.; Unruh, K.E.; Shafer, R.; Elison, J.T. Correction to: Endophenotype Trait Domains for Advancing Gene Discovery in Autism Spectrum Disorder. J. Neurodev. Disord. 2023, 15, 41. [Google Scholar] [CrossRef]
- Constantino, J.N.; Kennon-McGill, S.; Weichselbaum, C.; Marrus, N.; Haider, A.; Glowinski, A.L.; Gillespie, S.; Klaiman, C.; Klin, A.; Jones, W. Infant Viewing of Social Scenes Is under Genetic Control and Is Atypical in Autism. Nature 2017, 547, 340–344. [Google Scholar] [CrossRef]
- Esposito, D.; Cruciani, G.; Zaccaro, L.; Di Carlo, E.; Spitoni, G.F.; Manti, F.; Carducci, C.; Fiori, E.; Leuzzi, V.; Pascucci, T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci. 2024, 14, 481. [Google Scholar] [CrossRef]
- Kundu, S.; Sair, H.; Sherr, E.H.; Mukherjee, P.; Rohde, G.K. Discovering the Gene-Brain-Behavior Link in Autism via Generative Machine Learning. Sci. Adv. 2024, 10, eadl5307. [Google Scholar] [CrossRef]
- Garcia-Montojo, M.; Fathi, S.; Norato, G.; Smith, B.R.; Rowe, D.B.; Kiernan, M.C.; Vucic, S.; Mathers, S.; van Eijk, R.P.A.; Santamaria, U.; et al. Inhibition of HERV-K (HML-2) in Amyotrophic Lateral Sclerosis Patients on Antiretroviral Therapy. J. Neurol. Sci. 2021, 423, 117358. [Google Scholar] [CrossRef] [PubMed]
- Balestrieri, E.; Matteucci, C.; Cipriani, C.; Grelli, S.; Ricceri, L.; Calamandrei, G.; Vallebona, P.S. Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. Int. J. Mol. Sci. 2019, 20, 6050. [Google Scholar] [CrossRef] [PubMed]
- Küry, P.; Nath, A.; Créange, A.; Dolei, A.; Marche, P.; Gold, J.; Giovannoni, G.; Hartung, H.P.; Perron, H. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol. Med. 2018, 24, 379–394. [Google Scholar] [CrossRef]
- Li, W.; Lee, M.H.; Henderson, L.; Tyagi, R.; Bachani, M.; Steiner, J.; Campanac, E.; Hoffman, D.A.; Von Geldern, G.; Johnson, K.; et al. Human Endogenous Retrovirus-K Contributes to Motor Neuron Disease. Sci. Transl. Med. 2015, 7, 307ra153. [Google Scholar] [CrossRef]
- Padmanabhan Nair, V.; Liu, H.; Ciceri, G.; Jungverdorben, J.; Frishman, G.; Tchieu, J.; Cederquist, G.Y.; Rothenaigner, I.; Schorpp, K.; Klepper, L.; et al. Activation of HERV-K(HML-2) Disrupts Cortical Patterning and Neuronal Differentiation by Increasing NTRK3. Cell Stem Cell 2021, 28, 1566–1581.e8. [Google Scholar] [CrossRef]
- Johansson, E.M.; Bouchet, D.; Tamouza, R.; Ellul, P.; Morr, A.S.; Avignone, E.; Germi, R.; Leboyer, M.; Perron, H.; Groc, L. Human Endogenous Retroviral Protein Triggers Deficit in Glutamate Synapse Maturation and Behaviors Associated with Psychosis. Sci. Adv. 2020, 6, eabc0708. [Google Scholar] [CrossRef]
- Balestrieri, E.; Arpino, C.; Matteucci, C.; Sorrentino, R.; Pica, F.; Alessandrelli, R.; Coniglio, A.; Curatolo, P.; Rezza, G.; Macciardi, F.; et al. HERVs Expression in Autism Spectrum Disorders. PLoS ONE 2012, 7, e48831. [Google Scholar] [CrossRef]
- Carta, A.; Manca, M.A.; Scoppola, C.; Simula, E.R.; Noli, M.; Ruberto, S.; Conti, M.; Zarbo, I.R.; Antonucci, R.; Sechi, L.A.; et al. Antihuman Endogenous Retrovirus Immune Response and Adaptive Dysfunction in Autism. Biomedicines 2022, 10, 1365. [Google Scholar] [CrossRef]
- Pizzioli, E.; Minutolo, A.; Balestrieri, E.; Matteucci, C.; Magiorkinis, G.; Horvat, B. Crosstalk between Human Endogenous Retroviruses and Exogenous Viruses. Microbes Infect. 2024, 105427. [Google Scholar] [CrossRef]
- Gholami Barzoki, M.; Shatizadeh Malekshahi, S.; Heydarifard, Z.; Mahmodi, M.J.; Soltanghoraee, H. The Important Biological Roles of Syncytin-1 of Human Endogenous Retrovirus W (HERV-W) and Syncytin-2 of HERV-FRD in the Human Placenta Development. Mol. Biol. Rep. 2023, 50, 7901–7907. [Google Scholar] [CrossRef]
- Cossu, D.; Tomizawa, Y.; Sechi, L.A.; Hattori, N. Epstein–Barr Virus and Human Endogenous Retrovirus in Japanese Patients with Autoimmune Demyelinating Disorders. Int. J. Mol. Sci. 2023, 24, 17151. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, S.; Cossu, D.; Sechi, L.A. Correlation between Antibodies against the Pathogenic PHERV-W Envelope Protein and the Inflammatory Phase of Multiple Sclerosis. Immunology 2024, 171, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Noli, M.; Meloni, G.; Manca, P.; Cossu, D.; Palermo, M.; Sechi, L.A. HERV-W and Mycobacterium Avium Subspecies Paratuberculosis Are at Play in Pediatric Patients at Onset of Type 1 Diabetes. Pathogens 2021, 10, 1135. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.T.; Pierce, E.S.; Sechi, L.A. Mycobacterium Paratuberculosis: A HERV Turn-On for Autoimmunity, Neurodegeneration, and Cancer? Microorganisms 2024, 12, 1890. [Google Scholar] [CrossRef] [PubMed]
- Niegowska, M.; Wajda-Cuszlag, M.; Stępień-Ptak, G.; Trojanek, J.; Michałkiewicz, J.; Szalecki, M.; Sechi, L.A. Anti-HERV-WEnv Antibodies Are Correlated with Seroreactivity against Mycobacterium Avium Subsp. Paratuberculosis in Children and Youths at T1D Risk. Sci. Rep. 2019, 9, 6282. [Google Scholar] [CrossRef]
- Jönsson, M.E.; Garza, R.; Johansson, P.A.; Jakobsson, J. Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends Genet. 2020, 36, 610–623. [Google Scholar] [CrossRef]
- Jönsson, M.E.; Garza, R.; Sharma, Y.; Petri, R.; Södersten, E.; Johansson, J.G.; Johansson, P.A.; Atacho, D.A.; Pircs, K.; Madsen, S.; et al. Activation of Endogenous Retroviruses during Brain Development Causes an Inflammatory Response. EMBO J. 2021, 40, e106423. [Google Scholar] [CrossRef]
- Kitsou, K.; Lagiou, P.; Magiorkinis, G. Human Endogenous Retroviruses in Cancer: Oncogenesis Mechanisms and Clinical Implications. J. Med. Virol. 2023, 95, e28350. [Google Scholar] [CrossRef]
- Bo, M.; Manetti, R.; Biggio, M.L.; Sechi, L.A. The Humoral Immune Response against Human Endogenous Retroviruses in Celiac Disease: A Case–Control Study. Biomedicines 2024, 12, 1811. [Google Scholar] [CrossRef]
- Noli, M.; Meloni, G.; Ruberto, S.; Jasemi, S.; Simula, E.R.; Cossu, D.; Bo, M.; Palermo, M.; Sechi, L.A. HERV-K Envelope Protein Induces Long-Lasting Production of Autoantibodies in T1DM Patients at Onset in Comparison to ZNT8 Autoantibodies. Pathogens 2022, 11, 1188. [Google Scholar] [CrossRef]
- Arru, G.; Sechi, E.; Mariotto, S.; Zarbo, I.R.; Ferrari, S.; Gajofatto, A.; Monaco, S.; Deiana, G.A.; Bo, M.; Sechi, L.A.; et al. Antibody Response against HERV-W in Patients with MOG-IgG Associated Disorders, Multiple Sclerosis and NMOSD. J. Neuroimmunol. 2020, 338, 577110. [Google Scholar] [CrossRef] [PubMed]
- Mameli, G.; Erre, G.L.; Caggiu, E.; Mura, S.; Cossu, D.; Bo, M.; Cadoni, M.L.; Piras, A.; Mundula, N.; Colombo, E.; et al. Identification of a HERV-K Env Surface Peptide Highly Recognized in Rheumatoid Arthritis (RA) Patients: A Cross-Sectional Case–Control Study. Clin. Exp. Immunol. 2017, 189, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Arru, G.; Mameli, G.; Deiana, G.A.; Rassu, A.L.; Piredda, R.; Sechi, E.; Caggiu, E.; Bo, M.; Nako, E.; Urso, D.; et al. Humoral Immunity Response to Human Endogenous Retroviruses K/W Differentiates between Amyotrophic Lateral Sclerosis and Other Neurological Diseases. Eur. J. Neurol. 2018, 25, 1076-e84. [Google Scholar] [CrossRef] [PubMed]
- Jasemi, S.; Erre, G.L.; Cadoni, M.L.; Bo, M.; Sechi, L.A. Humoral Response to Microbial Biomarkers in Rheumatoid Arthritis Patients. J. Clin. Med. 2021, 10, 5153. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ren, M.; Yu, J.; Hu, M.; Wang, X.; Ma, W.; Jiang, X.; Cui, J. Single-Cell RNA Sequencing Highlights the Functional Role of Human Endogenous Retroviruses in Gallbladder Cancer. EBioMedicine 2022, 85, 104319. [Google Scholar] [CrossRef]
- La Ferlita, A.; Nigita, G.; Tsyba, L.; Palamarchuk, A.; Alaimo, S.; Pulvirenti, A.; Balatti, V.; Rassenti, L.; Tsichlis, P.N.; Kipps, T.; et al. Expression Signature of Human Endogenous Retroviruses in Chronic Lymphocytic Leukemia. Proc. Natl. Acad. Sci. USA 2023, 120, e2307593120. [Google Scholar] [CrossRef]
- Urru, S.A.M.; Antonelli, A.; Sechi, G.M. Prevalence of Multiple Sclerosis in Sardinia: A Systematic Cross-Sectional Multi-Source Survey. Mult. Scler. J. 2020, 26, 372–380. [Google Scholar] [CrossRef]
- Puthenparampil, M.; Perini, P.; Bergamaschi, R.; Capobianco, M.; Filippi, M.; Gallo, P. Multiple Sclerosis Epidemiological Trends in Italy Highlight the Environmental Risk Factors. J. Neurol. 2022, 269, 1817–1824. [Google Scholar] [CrossRef]
- Sotgiu, S.; Onida, I.; Magli, G.; Castiglia, P.; Conti, M.; Nuvoli, A.; Carta, A.; Festa, S.; Dessì, V.; Doneddu, P.E.; et al. Juvenile Chronic Inflammatory Demyelinating Polyneuropathy Epidemiology in Sardinia, Insular Italy. Neuropediatrics 2021, 52, 56–61. [Google Scholar] [CrossRef]
- Dell’Avvento, S.; Sotgiu, M.A.; Manca, S.; Sotgiu, G.; Sotgiu, S. Epidemiology of Multiple Sclerosis in the Pediatric Population of Sardinia, Italy. Eur. J. Pediatr. 2016, 175, 19–29. [Google Scholar] [CrossRef]
- Storm, C.S.; Kia, D.A.; Almramhi, M.; Wood, N.W. Using Mendelian Randomization to Understand and Develop Treatments for Neurodegenerative Disease. Brain Commun. 2020, 2, fcaa031. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association (Ed.) Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR); American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Hirota, T.; King, B.H. Autism Spectrum Disorder. JAMA 2023, 329, 157. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR. Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Huda, E.; Hawker, P.; Cibralic, S.; John, J.R.; Hussain, A.; Diaz, A.M.; Eapen, V. Screening Tools for Autism in Culturally and Linguistically Diverse Paediatric Populations: A Systematic Review. BMC Pediatr. 2024, 24, 610. [Google Scholar] [CrossRef]
- Hyman, S.L.; Levy, S.E.; Myers, S.M.; Kuo, D.Z.; Apkon, S.; Davidson, L.F.; Ellerbeck, K.A.; Foster, J.E.A.; Noritz, G.H.; Leppert, M.O.; et al. Identification, Evaluation, and Management of Children with Autism Spectrum Disorder. Pediatrics 2020, 145, e20193447. [Google Scholar] [CrossRef]
- Lord, C.; Charman, T.; Havdahl, A.; Carbone, P.; Anagnostou, E.; Boyd, B.; Carr, T.; de Vries, P.J.; Dissanayake, C.; Divan, G.; et al. The Lancet Commission on the Future of Care and Clinical Research in Autism. Lancet 2022, 399, 271–334. [Google Scholar] [CrossRef]
- Zack, D.S.; Carroll, B.; Magallanes, A.; Bordes Edgar, V. Take a Closer Look: Considerations for Autism Spectrum Disorder Assessment in Female Children and Adolescents. J. Pediatr. Health Care 2024, 39, 107–111. [Google Scholar] [CrossRef]
- Cruz, S.; Zubizarreta, S.C.-P.; Costa, A.D.; Araújo, R.; Martinho, J.; Tubío-Fungueiriño, M.; Sampaio, A.; Cruz, R.; Carracedo, A.; Fernández-Prieto, M. Is There a Bias Towards Males in the Diagnosis of Autism? A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2024. [Google Scholar] [CrossRef]
- Rippon, G. Differently Different?: A Commentary on the Emerging Social Cognitive Neuroscience of Female Autism. Biol. Sex Differ. 2024, 15, 49. [Google Scholar] [CrossRef]
- dos Santos, C.L.; Barreto, I.I.; Floriano, I.; Tristão, L.S.; Silvinato, A.; Bernardo, W.M. Screening and Diagnostic Tools for Autism Spectrum Disorder: Systematic Review and Meta-Analysis. Clinics. 2024, 79, 100323. [Google Scholar] [CrossRef]
- Yu, Y.; Ozonoff, S.; Miller, M. Assessment of Autism Spectrum Disorder. Assessment 2024, 31, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Rutter, M.; Le Couteur, A. Autism Diagnostic Interview-Revised: A Revised Version of a Diagnostic Interview for Caregivers of Individuals with Possible Pervasive Developmental Disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [Google Scholar] [CrossRef] [PubMed]
- Schopler, E.; Reichler, R.J.; DeVellis, R.F.; Daly, K. Childhood Autism Rating Scale. In PsycTESTS Dataset; 2016. [Google Scholar]
- McCrimmon, A.; Rostad, K. Test Review: Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) Manual (Part II): Toddler Module. J. Psychoeduc. Assess. 2014, 32, 88–92. [Google Scholar] [CrossRef]
- Shulman, C.; Esler, A.; Morrier, M.J.; Rice, C.E. Diagnosis of Autism Spectrum Disorder Across the Lifespan. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 253–273. [Google Scholar] [CrossRef]
- Loubersac, J.; Michelon, C.; Ferrando, L.; Picot, M.-C.; Baghdadli, A. Predictors of an Earlier Diagnosis of Autism Spectrum Disorder in Children and Adolescents: A Systematic Review (1987–2017). Eur. Child Adolesc. Psychiatry 2023, 32, 375–393. [Google Scholar] [CrossRef]
- Rosen, N.E.; Lord, C.; Volkmar, F.R. The Diagnosis of Autism: From Kanner to DSM-III to DSM-5 and Beyond. J. Autism Dev. Disord. 2021, 51, 4253–4270. [Google Scholar] [CrossRef]
- Qin, L.; Wang, H.; Ning, W.; Cui, M.; Wang, Q. New Advances in the Diagnosis and Treatment of Autism Spectrum Disorders. Eur. J. Med. Res. 2024, 29, 322. [Google Scholar] [CrossRef]
- Thurm, A.; Powell, E.M.; Neul, J.L.; Wagner, A.; Zwaigenbaum, L. Loss of Skills and Onset Patterns in Neurodevelopmental Disorders: Understanding the Neurobiological Mechanisms. Autism Res. 2018, 11, 212–222. [Google Scholar] [CrossRef]
- Tanner, A.; Dounavi, K. The Emergence of Autism Symptoms Prior to 18 Months of Age: A Systematic Literature Review. J. Autism Dev. Disord. 2021, 51, 973–993. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Allen, J.; Gillberg, C. Can Autism Be Detected at 18 Months? Br. J. Psychiatry 1992, 161, 839–843. [Google Scholar] [CrossRef]
- Hadders-Algra, M. Emerging Signs of Autism Spectrum Disorder in Infancy: Putative Neural Substrate. Dev. Med. Child Neurol. 2022, 64, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Baranek, G.T.; Watson, L.R.; Boyd, B.A.; Poe, M.D.; David, F.J.; McGuire, L. Hyporesponsiveness to Social and Nonsocial Sensory Stimuli in Children with Autism, Children with Developmental Delays, and Typically Developing Children. Dev. Psychopathol. 2013, 25, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Masjedi, N.; Clarke, E.B.; Lord, C. Development of Restricted and Repetitive Behaviors from 2–19: Stability and Change in Repetitive Sensorimotor, Insistence on Sameness, and Verbal Behaviors in a Longitudinal Study of Autism. J. Autism Dev. Disord. 2024. [Google Scholar] [CrossRef]
- Sicherman, N.; Charite, J.; Eyal, G.; Janecka, M.; Loewenstein, G.; Law, K.; Lipkin, P.H.; Marvin, A.R.; Buxbaum, J.D. Clinical Signs Associated with Earlier Diagnosis of Children with Autism Spectrum Disorder. BMC Pediatr. 2021, 21, 96. [Google Scholar] [CrossRef]
- Pires, J.F.; Grattão, C.C.; Gomes, R.M.R. The Challenges for Early Intervention and Its Effects on the Prognosis of Autism Spectrum Disorder: A Systematic Review. Dement. Neuropsychol. 2024, 18, e20230034. [Google Scholar] [CrossRef]
- Waizbard-Bartov, E.; Fein, D.; Lord, C.; Amaral, D.G. Autism Severity and Its Relationship to Disability. Autism Res. 2023, 16, 685–696. [Google Scholar] [CrossRef]
- Schaeffer, J.; Abd El-Raziq, M.; Castroviejo, E.; Durrleman, S.; Ferré, S.; Grama, I.; Hendriks, P.; Kissine, M.; Manenti, M.; Marinis, T.; et al. Language in Autism: Domains, Profiles and Co-Occurring Conditions. J. Neural Transm. 2023, 130, 433–457. [Google Scholar] [CrossRef]
- Denisova, K. Neurobiology of Cognitive Abilities in Early Childhood Autism. JCPP Adv. 2024, 4, e12214. [Google Scholar] [CrossRef]
- Carta, A.; Fucà, E.; Guerrera, S.; Napoli, E.; Valeri, G.; Vicari, S. Characterization of Clinical Manifestations in the Co-Occurring Phenotype of Attention Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Front. Psychol. 2020, 11, 861. [Google Scholar] [CrossRef]
- Lai, M.-C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of Co-Occurring Mental Health Diagnoses in the Autism Population: A Systematic Review and Meta-Analysis. Lancet Psychiatry 2019, 6, 819–829. [Google Scholar] [CrossRef]
- Kaye, A.D.; Allen, K.E.; Smith III, V.S.; Tong, V.T.; Mire, V.E.; Nguyen, H.; Lee, Z.; Kouri, M.; Jean Baptiste, C.; Mosieri, C.N.; et al. Emerging Treatments and Therapies for Autism Spectrum Disorder: A Narrative Review. Cureus 2024, 16, e63671. [Google Scholar] [CrossRef] [PubMed]
- Narzisi, A.; Posada, M.; Barbieri, F.; Chericoni, N.; Ciuffolini, D.; Pinzino, M.; Romano, R.; Scattoni, M.L.; Tancredi, R.; Calderoni, S.; et al. Prevalence of Autism Spectrum Disorder in a Large Italian Catchment Area: A School-Based Population Study within the ASDEU Project. Epidemiol. Psychiatr. Sci. 2020, 29, e5. [Google Scholar] [CrossRef] [PubMed]
- Sotgiu, S.; Manca, S.; Gagliano, A.; Minutolo, A.; Melis, M.C.; Pisuttu, G.; Scoppola, C.; Bolognesi, E.; Clerici, M.; Guerini, F.R.; et al. Immune Regulation of Neurodevelopment at the Mother–Foetus Interface: The Case of Autism. Clin. Transl. Immunol. 2020, 9, e1211. [Google Scholar] [CrossRef]
- Schneider, J.S.; Kidd, S.K.; Anderson, D.W. Influence of Developmental Lead Exposure on Expression of DNA Methyltransferases and Methyl Cytosine-Binding Proteins in Hippocampus. Toxicol. Lett. 2013, 217, 75–81. [Google Scholar] [CrossRef]
- Pugsley, K.; Scherer, S.W.; Bellgrove, M.A.; Hawi, Z. Environmental Exposures Associated with Elevated Risk for Autism Spectrum Disorder May Augment the Burden of Deleterious de Novo Mutations among Probands. Mol. Psychiatry 2022, 27, 710–730. [Google Scholar] [CrossRef]
- Kaur, I.; Behl, T.; Aleya, L.; Rahman, M.H.; Kumar, A.; Arora, S.; Akter, R. Role of Metallic Pollutants in Neurodegeneration: Effects of Aluminum, Lead, Mercury, and Arsenic in Mediating Brain Impairment Events and Autism Spectrum Disorder. Environ. Sci. Pollut. Res. 2021, 28, 8989–9001. [Google Scholar] [CrossRef]
- Baj, J.; Flieger, W.; Flieger, M.; Forma, A.; Sitarz, E.; Skórzyńska-Dziduszko, K.; Grochowski, C.; Maciejewski, R.; Karakuła-Juchnowicz, H. Autism Spectrum Disorder: Trace Elements Imbalances and the Pathogenesis and Severity of Autistic Symptoms. Neurosci. Biobehav. Rev. 2021, 129, 117–132. [Google Scholar] [CrossRef]
- Yousefi, B.; Eslami, M.; Ghasemian, A.; Kokhaei, P.; Sadeghnejhad, A. Probiotics Can Really Cure an Autoimmune Disease? Gene Rep. 2019, 15, 100364. [Google Scholar] [CrossRef]
- Eslami, M.; Bahar, A.; Hemati, M.; Rasouli Nejad, Z.; Mehranfar, F.; Karami, S.; Kobyliak, N.M.; Yousefi, B. Dietary Pattern, Colonic Microbiota and Immunometabolism Interaction: New Frontiers for Diabetes Mellitus and Related Disorders. Diabet. Med. 2021, 38, e14415. [Google Scholar] [CrossRef]
- Madra, M.; Ringel, R.; Margolis, K.G. Gastrointestinal Issues and Autism Spectrum Disorder. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 501–513. [Google Scholar] [CrossRef]
- Taniya, M.A.; Chung, H.J.; Al Mamun, A.; Alam, S.; Aziz, M.A.; Emon, N.U.; Islam, M.M.; Hong, S.T.S.; Podder, B.R.; Ara Mimi, A.; et al. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front. Cell. Infect. Microbiol. 2022, 12, 915701. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Fu, P. Gut Microbiota Analysis and In Silico Biomarker Detection of Children with Autism Spectrum Disorder across Cohorts. Microorganisms 2023, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zuo, T.; Xu, Z.; Zhang, F.; Zhan, H.; Chan, D.; Leung, T.F.; Yeoh, Y.K.; Chan, F.K.L.; Chan, R.; et al. Underdevelopment of the Gut Microbiota and Bacteria Species as Non-Invasive Markers of Prediction in Children with Autism Spectrum Disorder. Gut 2022, 71, 910–918. [Google Scholar] [CrossRef]
- Jacobson, A.; Yang, D.; Vella, M.; Chiu, I.M. The Intestinal Neuro-Immune Axis: Crosstalk between Neurons, Immune Cells, and Microbes. Mucosal Immunol. 2021, 14, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Roman, P.; Rueda-Ruzafa, L.; Cardona, D.; Cortes-Rodríguez, A. Gut-Brain Axis in the Executive Function of Austism Spectrum Disorder. Behav. Pharmacol. 2018, 29, 654–663. [Google Scholar] [CrossRef]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef]
- Goines, P.; Van De Water, J. The Immune System’s Role in the Biology of Autism. Curr. Opin. Neurol. 2010, 23, 111–117. [Google Scholar] [CrossRef]
- Persico, A.M.; Napolioni, V. Urinary P-Cresol in Autism Spectrum Disorder. Neurotoxicol. Teratol. 2013, 36, 82–90. [Google Scholar] [CrossRef]
- Passmore, I.J.; Letertre, M.P.M.; Preston, M.D.; Bianconi, I.; Harrison, M.A.; Nasher, F.; Kaur, H.; Hong, H.A.; Baines, S.D.; Cutting, S.M.; et al. Para-Cresol Production by Clostridium Difficile Affects Microbial Diversity and Membrane Integrity of Gram-Negative Bacteria. PLoS Pathog. 2018, 14, e1007191. [Google Scholar] [CrossRef]
- Williams, B.L.; Hornig, M.; Parekh, T.; Ian Lipkin, W. Application of Novel PCR-Based Methods for Detection, Quantitation, and Phylogenetic Characterization of Sutterella Species in Intestinal Biopsy Samples from Children with Autism and Gastrointestinal Disturbances. mBio 2012, 3, e00261-11. [Google Scholar] [CrossRef]
- Ding, H.T.; Taur, Y.; Walkup, J.T. Gut Microbiota and Autism: Key Concepts and Findings. J. Autism Dev. Disord. 2017, 47, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; LaBaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS ONE 2013, 8, e68322. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, S.; Liu, F.; Dai, N.; Liang, R.; Lv, S.; Bao, L. Gut Microbiota and Autism Spectrum Disorders: A Bidirectional Mendelian Randomization Study. Front. Cell. Infect. Microbiol. 2023, 13, 1267721. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tian, J.; Yang, B. Targeting Gut Microbiome: A Novel and Potential Therapy for Autism. Life Sci. 2018, 194, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.Y.; El Gendy, Y.G.; Mehanna, N.S.; El-Senousy, W.M.; El-Feki, H.S.A.; Saad, K.; El-Asheer, O.M. The Role of Probiotics in Children with Autism Spectrum Disorder: A Prospective, Open-Label Study. Nutr. Neurosci. 2018, 21, 676–681. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Zhang, H.; Yu, J.; Yao, Z. Oral Probiotic Administration during Pregnancy Prevents Autism-Related Behaviors in Offspring Induced by Maternal Immune Activation via Anti-Inflammation in Mice. Autism Res. 2019, 12, 576–588. [Google Scholar] [CrossRef]
- Tioleco, N.; Silberman, A.E.; Stratigos, K.; Banerjee-Basu, S.; Spann, M.N.; Whitaker, A.H.; Turner, J.B. Prenatal Maternal Infection and Risk for Autism in Offspring: A Meta-analysis. Autism Res. 2021, 14, 1296–1316. [Google Scholar] [CrossRef]
- Brynge, M.; Sjöqvist, H.; Gardner, R.M.; Lee, B.K.; Dalman, C.; Karlsson, H. Maternal Infection during Pregnancy and Likelihood of Autism and Intellectual Disability in Children in Sweden: A Negative Control and Sibling Comparison Cohort Study. Lancet Psychiatry 2022, 9, 782–791. [Google Scholar] [CrossRef]
- Christensen, J.; Grønborg, T.K.; Sørensen, M.J.; Schendel, D.; Parner, E.T.; Pedersen, L.H.; Vestergaard, M. Prenatal Valproate Exposure and Risk of Autism Spectrum Disorders and Childhood Autism. JAMA 2013, 309, 1696. [Google Scholar] [CrossRef]
- Sanders, S.J.; He, X.; Willsey, A.J.; Ercan-Sencicek, A.G.; Samocha, K.E.; Cicek, A.E.; Murtha, M.T.; Bal, V.H.; Bishop, S.L.; Dong, S.; et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 2015, 87, 1215–1233. [Google Scholar] [CrossRef]
- Marshall, C.R.; Noor, A.; Vincent, J.B.; Lionel, A.C.; Feuk, L.; Skaug, J.; Shago, M.; Moessner, R.; Pinto, D.; Ren, Y.; et al. Structural Variation of Chromosomes in Autism Spectrum Disorder. Am. J. Hum. Genet. 2008, 82, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Larsson, H.; Hultman, C.M.; Reichenberg, A. The Familial Risk of Autism. JAMA 2014, 311, 1770. [Google Scholar] [CrossRef] [PubMed]
- Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental Risk Factors for Autism: An Evidence-Based Review of Systematic Reviews and Meta-Analyses. Mol. Autism 2017, 8, 13. [Google Scholar] [CrossRef]
- Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al. Identification of Common Genetic Risk Variants for Autism Spectrum Disorder. Nat. Genet. 2019, 51, 431–444. [Google Scholar] [CrossRef]
- Vorstman, J.A.S.; Parr, J.R.; Moreno-De-Luca, D.; Anney, R.J.L.; Nurnberger, J.I., Jr.; Hallmayer, J.F. Autism Genetics: Opportunities and Challenges for Clinical Translation. Nat. Rev. Genet. 2017, 18, 362–376. [Google Scholar] [CrossRef]
- Persico, A.M.; Napolioni, V. Autism Genetics. Behav. Brain Res. 2013, 251, 95–112. [Google Scholar] [CrossRef]
- Kim, J.Y.; Son, M.J.; Son, C.Y.; Radua, J.; Eisenhut, M.; Gressier, F.; Koyanagi, A.; Carvalho, A.F.; Stubbs, B.; Solmi, M.; et al. Environmental Risk Factors and Biomarkers for Autism Spectrum Disorder: An Umbrella Review of the Evidence. Lancet Psychiatry 2019, 6, 590–600. [Google Scholar] [CrossRef]
- Abrahams, B.S.; Geschwind, D.H. Advances in Autism Genetics: On the Threshold of a New Neurobiology. Nat. Rev. Genet. 2008, 9, 341–355. [Google Scholar] [CrossRef]
- Loke, Y.J.; Hannan, A.J.; Craig, J.M. The Role of Epigenetic Change in Autism Spectrum Disorders. Front. Neurol. 2015, 6, 107. [Google Scholar] [CrossRef]
- Guerini, F.R.; Bolognesi, E.; Manca, S.; Sotgiu, S.; Zanzottera, M.; Agliardi, C.; Usai, S.; Clerici, M. Family-Based Transmission Analysis of HLA Genetic Markers in Sardinian Children with Autistic Spectrum Disorders. Hum. Immunol. 2009, 70, 184–190. [Google Scholar] [CrossRef]
- Guerini, F.R.; Bolognesi, E.; Chiappedi, M.; De Silvestri, A.; Ghezzo, A.; Zanette, M.; Rusconi, B.; Manca, S.; Sotgiu, S.; Agliardi, C. HLA Polymorphisms in Italian Children with Autism Spectrum Disorders: Results of a Family Based Linkage Study. J. Neuroimmunol. 2011, 230, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Zhou, Y.; Ni, X.; Tong, X.; Xu, X.; Dong, Z.; Sun, R.; Tian, Z.; Wei, H. Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors. Immunity 2017, 47, 1100–1113.e6. [Google Scholar] [CrossRef] [PubMed]
- Cook, K.D.; Waggoner, S.N.; Whitmire, J.K. NK Cells and Their Ability to Modulate T Cells during Virus Infections. Crit. Rev. Immunol. 2014, 34, 359–388. [Google Scholar] [CrossRef]
- Guerini, F.R.; Bolognesi, E.; Chiappedi, M.; Manca, S.; Ghezzo, A.; Agliardi, C.; Zanette, M.; Littera, R.; Carcassi, C.; Sotgiu, S.; et al. Activating KIR Molecules and Their Cognate Ligands Prevail in Children with a Diagnosis of ASD and in Their Mothers. Brain Behav. Immun. 2014, 36, 54–60. [Google Scholar] [CrossRef]
- Guerini, F.R.; Bolognesi, E.; Chiappedi, M.; Ripamonti, E.; Ghezzo, A.; Zanette, M.; Sotgiu, S.; Mensi, M.M.; Carta, A.; Canevini, M.P.; et al. HLA-G Coding Region Polymorphism Is Skewed in Autistic Spectrum Disorders. Brain Behav. Immun. 2018, 67, 308–313. [Google Scholar] [CrossRef]
- Guerini, F.R.; Bolognesi, E.; Chiappedi, M.; Ghezzo, A.; Manca, S.; Zanette, M.; Sotgiu, S.; Mensi, M.M.; Zanzottera, M.; Agliardi, C.; et al. HLA-G∗14bp Insertion and the KIR2DS1-HLAC2 Complex Impact on Behavioral Impairment in Children with Autism Spectrum Disorders. Neuroscience 2018, 370, 163–169. [Google Scholar] [CrossRef]
- Desoky, T.; Hassan, M.H.; Fayed, H.; Sakhr, H.M. Biochemical Assessments of Thyroid Profile, Serum 25-Hydroxycholecalciferol and Cluster of Differentiation 5 Expression Levels among Children with Autism. Neuropsychiatr. Dis. Treat. 2017, 13, 2397–2403. [Google Scholar] [CrossRef]
- Guerini, F.R.; Bolognesi, E.; Chiappedi, M.; Mensi, M.M.; Fumagalli, O.; Rogantini, C.; Zanzottera, M.; Ghezzo, A.; Zanette, M.; Agliardi, C.; et al. Vitamin D Receptor Polymorphisms Associated with Autism Spectrum Disorder. Autism Res. 2020, 13, 680–690. [Google Scholar] [CrossRef]
- Bolognesi, E.; Guerini, F.R.; Sotgiu, S.; Chiappedi, M.; Carta, A.; Mensi, M.M.; Agliardi, C.; Zanzottera, M.; Clerici, M. GC1f Vitamin D Binding Protein Isoform as a Marker of Severity in Autism Spectrum Disorders. Nutrients 2022, 14, 5153. [Google Scholar] [CrossRef]
- Nudel, R.; Thompson, W.K.; Børglum, A.D.; Hougaard, D.M.; Mortensen, P.B.; Werge, T.; Nordentoft, M.; Benros, M.E. Maternal Pregnancy-Related Infections and Autism Spectrum Disorder—The Genetic Perspective. Transl. Psychiatry 2022, 12, 334. [Google Scholar] [CrossRef]
- Howlin, P.; Magiati, I.; Charman, T. Systematic Review of Early Intensive Behavioral Interventions for Children with Autism. Am. J. Intellect. Dev. Disabil. 2009, 114, 23. [Google Scholar] [CrossRef] [PubMed]
- Schreibman, L.; Dawson, G.; Stahmer, A.C.; Landa, R.; Rogers, S.J.; McGee, G.G.; Kasari, C.; Ingersoll, B.; Kaiser, A.P.; Bruinsma, Y.; et al. Naturalistic Developmental Behavioral Interventions: Empirically Validated Treatments for Autism Spectrum Disorder. J. Autism Dev. Disord. 2015, 45, 2411–2428. [Google Scholar] [CrossRef] [PubMed]
- Mesibov, G.B.; Shea, V. The TEACCH Program in the Era of Evidence-Based Practice. J. Autism Dev. Disord. 2010, 40, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Prizant, B.M.; Wetherby, A.M.; Rubin, E.; Laurent, A.C.; Rydell, P.J. The SCERTS Model: A Comprehensive Educational Approach for Children with Autism Spectrum Disorders; Brookes Publishing: Baltimore, MA, USA, 2006; Volumes I and II, ISBN 978-1-55766-818-9. [Google Scholar]
- Kasari, C.; Gulsrud, A.; Paparella, T.; Hellemann, G.; Berry, K. Randomized Comparative Efficacy Study of Parent-Mediated Interventions for Toddlers with Autism. J. Consult. Clin. Psychol. 2015, 83, 554–563. [Google Scholar] [CrossRef]
- Valeri, G.; Casula, L.; Menghini, D.; Amendola, F.A.; Napoli, E.; Pasqualetti, P.; Vicari, S. Cooperative Parent-Mediated Therapy for Italian Preschool Children with Autism Spectrum Disorder: A Randomized Controlled Trial. Eur. Child Adolesc. Psychiatry 2020, 29, 935–946. [Google Scholar] [CrossRef]
- Conrad, C.E.; Rimestad, M.L.; Rohde, J.F.; Petersen, B.H.; Korfitsen, C.B.; Tarp, S.; Cantio, C.; Lauritsen, M.B.; Händel, M.N. Parent-Mediated Interventions for Children and Adolescents with Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Front. Psychiatry 2021, 12, 773604. [Google Scholar] [CrossRef]
- McPheeters, M.L.; Warren, Z.; Sathe, N.; Bruzek, J.L.; Krishnaswami, S.; Jerome, R.N.; Veenstra-VanderWeele, J. A Systematic Review of Medical Treatments for Children with Autism Spectrum Disorders. Pediatrics 2011, 127, e1312–e1321. [Google Scholar] [CrossRef]
- Hollander, E.; Phillips, A.T.; Yeh, C.-C. Targeted Treatments for Symptom Domains in Child and Adolescent Autism. Lancet 2003, 362, 732–734. [Google Scholar] [CrossRef]
- Kolevzon, A.; Mathewson, K.A.; Hollander, E. Selective Serotonin Reuptake Inhibitors in Autism. J. Clin. Psychiatry 2006, 67, 407–414. [Google Scholar] [CrossRef]
- Handen, B.L.; Johnson, C.R.; Lubetsky, M. Efficacy of Methylphenidate among Children with Autism and Symptoms of Attention-Deficit Hyperactivity Disorder. J. Autism Dev. Disord. 2000, 30, 245–255. [Google Scholar] [CrossRef]
- Sturman, N.; Deckx, L.; van Driel, M.L. Methylphenidate for Children and Adolescents with Autism Spectrum Disorder. Cochrane Database Syst. Rev. 2017, 2017, CD011144. [Google Scholar] [CrossRef] [PubMed]
- Ecker, C.; Schmeisser, M.J.; Loth, E.; Murphy, D.G. Neuroanatomy and Neuropathology of Autism Spectrum Disorder in Humans. Adv. Anat. Embryol. Cell Biol. 2017, 224, 27–48. [Google Scholar] [PubMed]
- Loth, E.; Charman, T.; Mason, L.; Tillmann, J.; Jones, E.J.H.; Wooldridge, C.; Ahmad, J.; Auyeung, B.; Brogna, C.; Ambrosino, S.; et al. The EU-AIMS Longitudinal European Autism Project (LEAP): Design and Methodologies to Identify and Validate Stratification Biomarkers for Autism Spectrum Disorders. Mol. Autism 2017, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Salpekar, J.A.; Scahill, L. Psychopharmacology Management in Autism Spectrum Disorder. Pediatr. Clin. N. Am. 2024, 71, 283–299. [Google Scholar] [CrossRef]
- Balestrieri, E.; Cipriani, C.; Matteucci, C.; Capodicasa, N.; Pilika, A.; Korca, I.; Sorrentino, R.; Argaw-Denboba, A.; Bucci, I.; Miele, M.T.; et al. Transcriptional Activity of Human Endogenous Retrovirus in Albanian Children with Autism Spectrum Disorders. New Microbiol. 2016, 39, 228–231. [Google Scholar]
- Heidmann, O.; Béguin, A.; Paternina, J.; Berthier, R.; Deloger, M.; Bawa, O.; Heidmann, T. HEMO, an Ancestral Endogenous Retroviral Envelope Protein Shed in the Blood of Pregnant Women and Expressed in Pluripotent Stem Cells and Tumors. Proc. Natl. Acad. Sci. USA 2017, 114, E6642–E6651. [Google Scholar] [CrossRef]
- Balestrieri, E.; Cipriani, C.; Matteucci, C.; Benvenuto, A.; Coniglio, A.; Argaw-Denboba, A.; Toschi, N.; Bucci, I.; Miele, M.T.; Grelli, S.; et al. Children with Autism Spectrum Disorder and Their Mothers Share Abnormal Expression of Selected Endogenous Retroviruses Families and Cytokines. Front. Immunol. 2019, 10, 2244. [Google Scholar] [CrossRef]
- Tovo, P.-A.; Davico, C.; Marcotulli, D.; Vitiello, B.; Daprà, V.; Calvi, C.; Montanari, P.; Carpino, A.; Galliano, I.; Bergallo, M. Enhanced Expression of Human Endogenous Retroviruses, TRIM28 and SETDB1 in Autism Spectrum Disorder. Int. J. Mol. Sci. 2022, 23, 5964. [Google Scholar] [CrossRef]
- Cipriani, C.; Ricceri, L.; Matteucci, C.; De Felice, A.; Tartaglione, A.M.; Argaw-Denboba, A.; Pica, F.; Grelli, S.; Calamandrei, G.; Sinibaldi Vallebona, P.; et al. High Expression of Endogenous Retroviruses from Intrauterine Life to Adulthood in Two Mouse Models of Autism Spectrum Disorders. Sci. Rep. 2018, 8, 629. [Google Scholar] [CrossRef]
- Tartaglione, A.M.; Cipriani, C.; Chiarotti, F.; Perrone, B.; Balestrieri, E.; Matteucci, C.; Sinibaldi-Vallebona, P.; Calamandrei, G.; Ricceri, L. Early Behavioral Alterations and Increased Expression of Endogenous Retroviruses Are Inherited Across Generations in Mice Prenatally Exposed to Valproic Acid. Mol. Neurobiol. 2019, 56, 3736–3750. [Google Scholar] [CrossRef]
- Meyza, K.Z.; Blanchard, D.C. The BTBR Mouse Model of Idiopathic Autism—Current View on Mechanisms. Neurosci. Biobehav. Rev. 2017, 76, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Meyza, K.Z.; Defensor, E.B.; Jensen, A.L.; Corley, M.J.; Pearson, B.L.; Pobbe, R.L.H.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J. The BTBR T+tf/J Mouse Model for Autism Spectrum Disorders-in Search of Biomarkers. Behav. Brain Res. 2013, 251, 25–34. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, H.G.; Kusek, G.K.; Yang, M.; Phoenix, J.L.; Bolivar, V.J.; Crawley, J.N. Autism-like Behavioral Phenotypes in BTBR T+tf/J Mice. Genes Brain Behav. 2008, 7, 152–163. [Google Scholar] [CrossRef]
- Scattoni, M.L.; Ricceri, L.; Crawley, J.N. Unusual Repertoire of Vocalizations in Adult BTBR T+tf/J Mice during Three Types of Social Encounters. Genes Brain Behav. 2011, 10, 44–56. [Google Scholar] [CrossRef]
- Ellegood, J.; Crawley, J.N. Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism. Neurotherapeutics 2015, 12, 521–533. [Google Scholar] [CrossRef]
- Kataoka, S.; Takuma, K.; Hara, Y.; Maeda, Y.; Ago, Y.; Matsuda, T. Autism-like Behaviours with Transient Histone Hyperacetylation in Mice Treated Prenatally with Valproic Acid. Int. J. Neuropsychopharmacol. 2013, 16, 91–103. [Google Scholar] [CrossRef]
- Lin, C.W.; Ellegood, J.; Tamada, K.; Miura, I.; Konda, M.; Takeshita, K.; Atarashi, K.; Lerch, J.P.; Wakana, S.; McHugh, T.J.; et al. An Old Model with New Insights: Endogenous Retroviruses Drive the Evolvement toward ASD Susceptibility and Hijack Transcription Machinery during Development. Mol. Psychiatry 2023, 28, 1932–1945. [Google Scholar] [CrossRef]
- Cipriani, C.; Tartaglione, A.M.; Giudice, M.; D’Avorio, E.; Petrone, V.; Toschi, N.; Chiarotti, F.; Miele, M.T.; Calamandrei, G.; Garaci, E.; et al. Differential Expression of Endogenous Retroviruses and Inflammatory Mediators in Female and Male Offspring in a Mouse Model of Maternal Immune Activation. Int. J. Mol. Sci. 2022, 23, 13930. [Google Scholar] [CrossRef]
- Holt, A.C.; Medzhitov, R.; Flavell, R.A.; Alexopoulou, L. Recognition of Double-Stranded RNA and Activation of NF-KappaB by Toll-like Receptor 3. Nature 2001, 413, 732–738. [Google Scholar]
- Herrero, F.; Mueller, F.S.; Gruchot, J.; Küry, P.; Weber-Stadlbauer, U.; Meyer, U. Susceptibility and Resilience to Maternal Immune Activation Are Associated with Differential Expression of Endogenous Retroviral Elements. Brain Behav. Immun. 2023, 107, 201–214. [Google Scholar] [CrossRef]
- Balestrieri, E.; Pitzianti, M.; Matteucci, C.; D’Agati, E.; Sorrentino, R.; Baratta, A.; Caterina, R.; Zenobi, R.; Curatolo, P.; Garaci, E.; et al. Human Endogenous Retroviruses and ADHD. World J. Biol. Psychiatry 2014, 15, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Chiara, C.; Bernanda, P.M.; Claudia, M.; Elisa, D.; Tony, M.M.; Valentina, R.; Sandro, G.; Paolo, C.; Paola, S.-V.; Augusto, P.; et al. The Decrease in Human Endogenous Retrovirus-H Activity Runs in Parallel with Improvement in ADHD Symptoms in Patients Undergoing Methylphenidate Therapy. Int. J. Mol. Sci. 2018, 19, 3286. [Google Scholar] [CrossRef] [PubMed]
- Gruchot, J.; Herrero, F.; Weber-Stadlbauer, U.; Meyer, U.; Küry, P. Interplay between Activation of Endogenous Retroviruses and Inflammation as Common Pathogenic Mechanism in Neurological and Psychiatric Disorders. Brain Behav. Immun. 2023, 107, 242–252. [Google Scholar] [CrossRef]
- Perron, H.; Lazarini, F.; Ruprecht, K.; Péchoux-Longin, C.; Seilhean, D.; Sazdovitch, V.; Créange, A.; Battail-Poirot, N.; Sibai, G.; Santoro, L.; et al. Human Endogenous Retrovirus (HERV)-W ENV and GAG Proteins: Physiological Expression in Human Brain and Pathophysiological Modulation in Multiple Sclerosis Lesions. J. Neurovirol. 2005, 11, 23–33. [Google Scholar] [CrossRef]
- Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial Activation and Neuroinflammation in the Brain of Patients with Autism. Ann. Neurol. 2005, 57, 67–81. [Google Scholar] [CrossRef]
- Bergallo, M.; Galliano, I.; Montanari, P.; Zaniol, E.; Graziano, E.; Calvi, C.; Alliaudi, C.; Daprà, V.; Savino, F. Modulation of Human Endogenous Retroviruses –H, -W and -K Transcription by Microbes. Microbes Infect. 2020, 22, 366–370. [Google Scholar] [CrossRef]
- Römer, C. Viruses and Endogenous Retroviruses as Roots for Neuroinflammation and Neurodegenerative Diseases. Front. Neurosci. 2021, 15, 648629. [Google Scholar] [CrossRef]
- Canli, T. A Model of Human Endogenous Retrovirus (HERV) Activation in Mental Health and Illness. Med. Hypotheses 2019, 133, 109404. [Google Scholar] [CrossRef]
- Curtin, F.; Perron, H.; Kromminga, A.; Porchet, H.; Lang, A.B. Preclinical and Early Clinical Development of GNbAC1, a Humanized IgG4 Monoclonal Antibody Targeting Endogenous Retroviral MSRV-Env Protein. MAbs 2015, 7, 265–275. [Google Scholar] [CrossRef]
- Levet, S.; Medina, J.; Joanou, J.; Demolder, A.; Queruel, N.; Réant, K.; Normand, M.; Seffals, M.; Dimier, J.; Germi, R.; et al. An Ancestral Retroviral Protein Identified as a Therapeutic Target in Type-1 Diabetes. JCI Insight 2017, 2, e94387. [Google Scholar] [CrossRef]
- Curtin, F.; Vidal, V.; Bernard, C.; Kromminga, A.; Lang, A.B.; Porchet, H. Serum Pharmacokinetics and Cerebrospinal Fluid Concentration Analysis of the New IgG4 Monoclonal Antibody GNbAC1 to Treat Multiple Sclerosis: A Phase 1 Study. MAbs 2016, 8, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Irfan, S.A.; Murtaza, M.; Ahmed, A.; Altaf, H.; Ali, A.A.; Shabbir, N.; Baig, M.M.A. Promising Role of Temelimab in Multiple Sclerosis Treatment. Mult. Scler. Relat. Disord. 2022, 61, 103743. [Google Scholar] [CrossRef] [PubMed]
- Curtin, F.; Bernard, C.; Levet, S.; Perron, H.; Porchet, H.; Médina, J.; Malpass, S.; Lloyd, D.; Simpson, R. A New Therapeutic Approach for Type 1 Diabetes: Rationale for GNbAC1, an Anti-HERV-W-Env Monoclonal Antibody. Diabetes Obes. Metab. 2018, 20, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
- Curtin, F.; Champion, B.; Davoren, P.; Duke, S.; Ekinci, E.I.; Gilfillan, C.; Morbey, C.; Nathow, T.; O’Moore-Sullivan, T.; O’Neal, D.; et al. A Safety and Pharmacodynamics Study of Temelimab, an Antipathogenic Human Endogenous Retrovirus Type W Envelope Monoclonal Antibody, in Patients with Type 1 Diabetes. Diabetes Obes. Metab. 2020, 22, 1111–1121. [Google Scholar] [CrossRef]
- Morandi, E.; Tanasescu, R.; Tarlinton, R.E.; Constantin-Teodosiu, D.; Gran, B. Do Antiretroviral Drugs Protect from Multiple Sclerosis by Inhibiting Expression of MS-Associated Retrovirus? Front. Immunol. 2019, 9, 3092. [Google Scholar] [CrossRef]
- Gold, J.; Goldacre, R.; Maruszak, H.; Giovannoni, G.; Yeates, D.; Goldacre, M. HIV and Lower Risk of Multiple Sclerosis: Beginning to Unravel a Mystery Using a Record-Linked Database Study. J. Neurol. Neurosurg. Psychiatry 2015, 86, 9–12. [Google Scholar] [CrossRef]
- McCormick, A.L.; Brown, R.H.; Cudkowicz, M.E.; Al-Chalabi, A.; Garson, J.A. Quantification of Reverse Transcriptase in ALS and Elimination of a Novel Retroviral Candidate. Neurology 2008, 70, 278–283. [Google Scholar] [CrossRef]
- Gold, J.; Rowe, D.B.; Kiernan, M.C.; Vucic, S.; Mathers, S.; van Eijk, R.P.A.; Nath, A.; Garcia Montojo, M.; Norato, G.; Santamaria, U.A.; et al. Safety and Tolerability of Triumeq in Amyotrophic Lateral Sclerosis: The Lighthouse Trial. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 595–604. [Google Scholar] [CrossRef]
- Cipriani, C.; Giudice, M.; Petrone, V.; Fanelli, M.; Minutolo, A.; Miele, M.T.; Toschi, N.; Maracchioni, C.; Siracusano, M.; Benvenuto, A.; et al. Modulation of Human Endogenous Retroviruses and Cytokines Expression in Peripheral Blood Mononuclear Cells from Autistic Children and Their Parents. Retrovirology 2022, 19, 26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, M.; Carta, A.; Cipriani, C.; Cavassa, V.; Simula, E.R.; Huyen, N.T.; Phan, G.T.H.; Noli, M.; Matteucci, C.; Sotgiu, S.; et al. HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members. Microorganisms 2025, 13, 9. https://doi.org/10.3390/microorganisms13010009
Bo M, Carta A, Cipriani C, Cavassa V, Simula ER, Huyen NT, Phan GTH, Noli M, Matteucci C, Sotgiu S, et al. HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members. Microorganisms. 2025; 13(1):9. https://doi.org/10.3390/microorganisms13010009
Chicago/Turabian StyleBo, Marco, Alessandra Carta, Chiara Cipriani, Vanna Cavassa, Elena Rita Simula, Nguyen Thi Huyen, Giang Thi Hang Phan, Marta Noli, Claudia Matteucci, Stefano Sotgiu, and et al. 2025. "HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members" Microorganisms 13, no. 1: 9. https://doi.org/10.3390/microorganisms13010009
APA StyleBo, M., Carta, A., Cipriani, C., Cavassa, V., Simula, E. R., Huyen, N. T., Phan, G. T. H., Noli, M., Matteucci, C., Sotgiu, S., Balestrieri, E., & Sechi, L. A. (2025). HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members. Microorganisms, 13(1), 9. https://doi.org/10.3390/microorganisms13010009