Clinical Evaluation of a Rapid Reciprocal-Flow PCR Assay and Real-Time PCR Assay with Quenching Probe for Detection of Mycobacterium tuberculosis Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Routine Testing
2.2. Retest Using the COBAS TaqMan MTB Assay
2.3. Confirmed Results
2.4. DNA Extraction for GeneSoC and GENECUBE MTB Assays
2.5. GeneSoC Assay
2.6. GENECUBE MTB Assay
2.7. Performance of the GeneSoC and GENECUBE MTB Assays and Statistical Analysis
3. Results
3.1. Determination of Confirmed Results and Exclusion of a Sample with an Invalid Result
3.2. GeneSoC and GENECUBE MTB Assays for Samples with Confirmed Results
3.3. Performance of the GeneSoC and GENECUBE MTB Assays
3.4. GeneSoC and GENECUBE MTB Assays for Samples with Non-Confirmed Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.H.; Kim, Y.J.; Ki, C.S.; Kim, J.Y.; Lee, N.Y. Evaluation of Cobas TaqMan MTB PCR for detection of Mycobacterium tuberculosis. J. Clin. Microbiol. 2011, 49, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Procop, G.W. Laboratory Diagnosis and Susceptibility Testing for Mycobacterium tuberculosis. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Kim, J.Y.; Lee, J.W.; Hwang, Y.Y.; Jeon, K.; Koh, W.J.; Ki, C.S.; Lee, N.Y. Comparison of the Xpert MTB/RIF and Cobas TaqMan MTB assays for detection of Mycobacterium tuberculosis in respiratory specimens. J. Clin. Microbiol. 2013, 51, 3225–3227. [Google Scholar] [CrossRef] [PubMed]
- Bloemberg, G.V.; Voit, A.; Ritter, C.; Deggim, V.; Bottger, E.C. Evaluation of Cobas TaqMan MTB for direct detection of the Mycobacterium tuberculosis complex in comparison with Cobas Amplicor MTB. J. Clin. Microbiol. 2013, 51, 2112–2117. [Google Scholar] [CrossRef]
- Yang, Y.C.; Lu, P.L.; Huang, S.C.; Jenh, Y.S.; Jou, R.; Chang, T.C. Evaluation of the Cobas TaqMan MTB test for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J. Clin. Microbiol. 2011, 49, 797–801. [Google Scholar] [CrossRef]
- Lee, M.R.; Chung, K.P.; Wang, H.C.; Lin, C.B.; Yu, C.J.; Lee, J.J.; Hsueh, P.R. Evaluation of the Cobas TaqMan MTB real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory specimens. J. Med. Microbiol. 2013, 62, 1160–1164. [Google Scholar] [CrossRef]
- Park, J.E.; Huh, H.J.; Koh, W.J.; Song, D.J.; Ki, C.S.; Lee, N.Y. Performance evaluation of the Cobas TaqMan MTB assay on respiratory specimens according to clinical application. Int. J. Infect. Dis. 2017, 64, 42–46. [Google Scholar] [CrossRef]
- Hida, Y.; Hisada, K.; Shimada, A.; Yamashita, M.; Kimura, H.; Yoshida, H.; Iwasaki, H.; Iwano, M. Rapid detection of the Mycobacterium tuberculosis complex by use of quenching probe PCR (geneCube). J. Clin. Microbiol. 2012, 50, 3604–3608. [Google Scholar] [CrossRef]
- Chin, K.L.; Sarmiento, M.E.; Norazmi, M.N.; Acosta, A. DNA markers for tuberculosis diagnosis. Tuberculosis 2018, 113, 139–152. [Google Scholar] [CrossRef]
- Yoshida, S.; Tsuyuguchi, K.; Kobayashi, T.; Shimatani, Y.; Inoue, Y. Effect of sputum quality on Mycobacterium avium-intracellulare complex lung disease diagnosis and treatment initiation according to disease type. Diagn. Microbiol. Infect. Dis. 2022, 104, 115773. [Google Scholar] [CrossRef]
- Ito, Y.; Iwashima, S.; Hayano, S.; Nishio, T.; Shiozawa, R.; Yata, S.; Kubota, T.; Kubota, A.; Uemura, K. Rapid detection of the macrolide sensitivity of pneumonia-causing Mycoplasma pneumoniae using quenching probe polymerase chain reaction (GENECUBE®). Mol. Diagn. Ther. 2018, 22, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Hida, Y.; Uemura, K.; Sugimoto, H.; Kawashima, Y.; Koyanagi, N.; Notake, S.; Akashi, Y.; Sakaguchi, S.; Kimura, H.; Suzuki, H. Evaluation of performance of the GENECUBE assay for rapid molecular identification of Staphylococcus aureus and methicillin resistance in positive blood culture medium. PLoS ONE 2019, 14, e0219819. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Suzuki, H.; Oyanagi, T.; Koyanagi, N.; Ushiki, A.; Kawabata, N.; Goto, M.; Hida, Y.; Yaguchi, Y.; Tamai, K.; et al. Clinical evaluation of a non-purified direct molecular assay for the detection of Clostridioides difficile toxin genes in stool specimens. PLoS ONE 2020, 15, e0234119. [Google Scholar] [CrossRef] [PubMed]
- Kiyasu, Y.; Akashi, Y.; Sugiyama, A.; Takeuchi, Y.; Notake, S.; Naito, A.; Nakamura, K.; Ishikawa, H.; Suzuki, H.A. A prospective evaluation of the analytical performance of GENECUBE® HQ SARS-CoV-2 and GENECUBE® FLU A/B. Mol. Diagn. Ther. 2021, 25, 495–504. [Google Scholar] [CrossRef]
- Furutani, S.; Naruishi, N.; Hagihara, Y.; Nagai, H. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology. Anal. Bioanal. Chem. 2016, 408, 5641–5649. [Google Scholar] [CrossRef]
- Chiba, M.; Aoyagi, T.; Yoshida, M.; Katsumi, M.; Fujimaki, S.I.; Ishii, Y.; Tateda, K.; Kaku, M. Evaluation of the performance of GeneSoC®, a novel rapid real-time PCR system, to detect Staphylococcus aureus and methicillin resistance in blood cultures. J. Infect. Chemother. 2023, 29, 718–721. [Google Scholar] [CrossRef]
- Sakai, J.; Tarumoto, N.; Orihara, Y.; Kawamura, R.; Kodana, M.; Matsuzaki, N.; Matsumura, R.; Ogane, K.; Kawamura, T.; Takeuchi, S.; et al. Evaluation of a high-speed but low-throughput RT-qPCR system for detection of SARS-CoV-2. J. Hosp. Infect. 2020, 105, 615–618. [Google Scholar] [CrossRef]
- Watanabe, R.; Asai, S.; Kakizoe, H.; Saeki, H.; Masukawa, A.; Miyazawa, M.; Ohtagawa, K.; Ravzanaaadii, M.A.; Doi, M.; Atsumi, H.; et al. Evaluation of the basic assay performance of the GeneSoc® rapid PCR testing system for detection of severe acute respiratory syndrome coronavirus 2. PLoS ONE 2021, 16, e0248397. [Google Scholar] [CrossRef]
- Ota, K.; Kurahara, R.; Tsukamoto, C.; Kawamoto, Y.; Akamatsu, N.; Sasaki, D.; Mitsumoto-Kaseida, F.; Sakamoto, K.; Kosai, K.; Hasegawa, H.; et al. Performance of the GeneSoC rapid PCR system in detection of SARS-CoV-2 from saliva specimens. Microbiol. Spectr. 2023, 11, e0325922. [Google Scholar] [CrossRef]
- Takata, M.; Nakamoto, M.; Kitaura, T.; Okada, K.; Tsuneki-Tokunaga, A.; Yamasaki, A.; Kageyama, S.; Burioka, N.; Chikumi, H. Rapid Multiplex RT-PCR for Influenza A and B by Genesoc®, a Microfluidic PCR System. Yonago Acta Med. 2023, 66, 223–231. [Google Scholar] [CrossRef]
- Kosai, K.; Akamatsu, N.; Ota, K.; Mitsumoto-Kaseida, F.; Sakamoto, K.; Hasegawa, H.; Izumikawa, K.; Mukae, H.; Yanagihara, K. BioFire FilmArray Pneumonia Panel enhances detection of pathogens and antimicrobial resistance in lower respiratory tract specimens. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 24. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Kosai, K.; Akamatsu, N.; Matsuyama, Y.; Oda, M.; Wakamatsu, A.; Izumikawa, K.; Mukae, H.; Yanagihara, K. Diagnostic Performance of BD Phoenix CPO Detect panels for detection and classification of carbapenemase-producing Gram-negative bacteria. Microbiol. Spectr. 2023, 11, e0089723. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 26 December 2024).
- Chen, J.H.K.; Lam, H.Y.; Yip, C.C.Y.; Wong, S.C.Y.; Chan, J.F.W.; Ma, E.S.K.; Cheng, V.C.C.; Tang, B.S.F.; Yuen, K.Y. Clinical evaluation of the new high-throughput Luminex NxTAG Respiratory Pathogen Panel assay for multiplex respiratory pathogen detection. J. Clin. Microbiol. 2016, 54, 1820–1825. [Google Scholar] [CrossRef] [PubMed]
Culture (Routine) | COBAS TaqMan MTB | No. of Specimens | |||
---|---|---|---|---|---|
Routine | Retest | All | Respiratory | Non-Respiratory | |
Positive | Positive | Positive | 20 | 12 | 8 |
Positive | Positive | Negative | 5 | 4 | 1 |
Negative | Positive | Positive | 2 | 0 | 2 |
Negative | Positive | Negative | 3 | 1 | 2 |
Negative | Negative | Negative | 33 | 19 | 14 |
Confirmed Result | GeneSoC | GENECUBE | No. of Specimens | ||
---|---|---|---|---|---|
All | Respiratory | Non-Respiratory | |||
Positive | Positive | Positive | 19 | 11 | 8 |
Positive | Positive | Negative | 1 | 1 | 0 |
Negative | Negative | Negative | 33 | 19 | 14 |
Specimen | Confirmed Result | GeneSoC | GENECUBE | ||
---|---|---|---|---|---|
Positive | Negative | Positive | Negative | ||
All | Positive | 20 | 0 | 19 | 1 |
Negative | 0 | 33 | 0 | 33 | |
Respiratory | Positive | 12 | 0 | 11 | 1 |
Negative | 0 | 19 | 0 | 19 | |
Non-respiratory | Positive | 8 | 0 | 8 | 0 |
Negative | 0 | 14 | 0 | 14 |
Specimen | Method | OA (95% CI) | PPA (95% CI) | NPA (95% CI) |
---|---|---|---|---|
All | GeneSoC | 100.0 (93.3–100.0) | 100.0 (83.2–100.0) | 100.0 (89.4–100.0) |
GENECUBE | 98.1 (89.9–100.0) | 95.0 (75.1–99.9) | 100.0 (89.4–100.0) | |
Respiratory | GeneSoC | 100.0 (88.8–100.0) | 100.0 (73.5–100.0) | 100.0 (82.4–100.0) |
GENECUBE | 96.8 (83.3–99.9) | 91.7 (61.5–99.8) | 100.0 (82.4–100.0) | |
Non-respiratory | GeneSoC | 100.0 (84.6–100.0) | 100.0 (63.1–100.0) | 100.0 (76.8–100.0) |
GENECUBE | 100.0 (84.6–100.0) | 100.0 (63.1–100.0) | 100.0 (76.8–100.0) |
Culture (Routine) | COBAS TaqMan MTB | All | GeneSoC | GENECUBE | |||
---|---|---|---|---|---|---|---|
Routine | Retest | Positive | Negative | Positive | Negative | ||
Positive | Positive | Negative | 5 | 4 | 1 | 0 | 5 |
Negative | Positive | Positive | 2 | 2 | 0 | 2 | 0 |
Negative | Positive | Negative | 3 | 3 | 0 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosai, K.; Matsumoto, K.; Ishikawa, T.; Kawamoto, Y.; Akamatsu, N.; Ota, K.; Mitsumoto-Kaseida, F.; Kaku, N.; Hasegawa, H.; Izumikawa, K.; et al. Clinical Evaluation of a Rapid Reciprocal-Flow PCR Assay and Real-Time PCR Assay with Quenching Probe for Detection of Mycobacterium tuberculosis Complex. Microorganisms 2025, 13, 201. https://doi.org/10.3390/microorganisms13010201
Kosai K, Matsumoto K, Ishikawa T, Kawamoto Y, Akamatsu N, Ota K, Mitsumoto-Kaseida F, Kaku N, Hasegawa H, Izumikawa K, et al. Clinical Evaluation of a Rapid Reciprocal-Flow PCR Assay and Real-Time PCR Assay with Quenching Probe for Detection of Mycobacterium tuberculosis Complex. Microorganisms. 2025; 13(1):201. https://doi.org/10.3390/microorganisms13010201
Chicago/Turabian StyleKosai, Kosuke, Keisuke Matsumoto, Takahisa Ishikawa, Yasuhide Kawamoto, Norihiko Akamatsu, Kenji Ota, Fujiko Mitsumoto-Kaseida, Norihito Kaku, Hiroo Hasegawa, Koichi Izumikawa, and et al. 2025. "Clinical Evaluation of a Rapid Reciprocal-Flow PCR Assay and Real-Time PCR Assay with Quenching Probe for Detection of Mycobacterium tuberculosis Complex" Microorganisms 13, no. 1: 201. https://doi.org/10.3390/microorganisms13010201
APA StyleKosai, K., Matsumoto, K., Ishikawa, T., Kawamoto, Y., Akamatsu, N., Ota, K., Mitsumoto-Kaseida, F., Kaku, N., Hasegawa, H., Izumikawa, K., Mukae, H., & Yanagihara, K. (2025). Clinical Evaluation of a Rapid Reciprocal-Flow PCR Assay and Real-Time PCR Assay with Quenching Probe for Detection of Mycobacterium tuberculosis Complex. Microorganisms, 13(1), 201. https://doi.org/10.3390/microorganisms13010201