Characterization of Streptococcus pyogenes Strains from Tonsillopharyngitis and Scarlet Fever Resurgence, 2023—FIRST Detection of M1UK in Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting, Participants, and Sample Collection
2.2. Routine Microbiological Culture Method
2.3. Antimicrobial Susceptibility Testing
2.4. Molecular Detection of Virulence Factors and M1UK
2.5. Whole Genome Sequencing (WGS)
2.6. Bioinformatic Analyses
2.7. Immunological Methods
2.8. Statistical Analysis
3. Results
3.1. Brief Epidemiology
3.2. Clinical Characterization of Children Infected with GAS in Pediatric Department
3.3. Microbiological Characterization of GAS
3.3.1. Antimicrobial Susceptibility Testing (AST)
3.3.2. GAS Virulence Factors
3.4. Whole Genome Sequencing of GAS Strains
3.4.1. Multilocus Sequence Typing (MLST) Findings
3.4.2. emm Genotyping
3.5. Detection of M1UK Variant
3.6. Host Immune Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.J.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat. Rev. Microbiol. 2023, 21, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yu, D.; Yang, Y. Group A Streptococcus Is Still at Large. J. Clin. Med. 2023, 12, 2739. [Google Scholar] [CrossRef] [PubMed]
- Wilde, S.; Johnson, A.F.; LaRock, C.N. Playing with Fire: Proinflammatory Virulence Mechanisms of Group A Streptococcus. Front. Cell. Infect. Microbiol. 2021, 11, 704099. [Google Scholar] [CrossRef]
- Barnett, T.; Indraratna, A.; Sanderson-Smith, M. Secreted Virulence Factors of Streptococcus pyogenes. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations, 2nd ed.; Ferretti, J., Stevens, D., Fischetti, V., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2022; pp. 301–336. [Google Scholar]
- Proft, T.; Fraser, J.D. Streptococcus pyogenes Superantigens: Biological properties and potential role in disease. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations, 2nd ed.; Ferretti, J., Stevens, D., Fischetti, V., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2022; pp. 337–363. [Google Scholar]
- Brouwer, S.; Barnett, T.C.; Ly, D.; Kasper, K.J.; De Oliveira, D.M.P.; Rivera-Hernandez, T.; Cork, A.J.; McIntyre, L.; Jespersen, M.G.; Richter, J.; et al. Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nat. Commun. 2020, 11, 5018. [Google Scholar] [CrossRef]
- Castro, S.A.; Dorfmueller, H.C. A brief review on Group A Streptococcus pathogenesis and vaccine development. R. Soc. Open. Sci. 2021, 8, 201991. [Google Scholar] [CrossRef]
- Jasim, S.A.; Hatem, Z.A.; Mohammed, Z.A. Virulence Factors and Clinical Features of Streptococcus pyogenes: Overview. Ann. Rom. Soc. Cell Biol. 2021, 25, 603–614. [Google Scholar]
- Cunningham, M.W. Pathogenesis of Group A Streptococcal Infections. Clin. Microbiol. Rev. 2000, 13, 470. [Google Scholar] [CrossRef]
- Moore, H.C.; Cannon, J.W.; Kaslow, D.C.; Lamagni, T.; Bowen, A.C.; Miller, K.M.; Cherian, T.; Carapetis, J.; Van Beneden, C. A Systematic Framework for Prioritizing Burden of Disease Data Required for Vaccine Development and Implementation: The Case for Group A Streptococcal Diseases. Clin. Infect. Dis. 2022, 75, 1245–1254. [Google Scholar] [CrossRef]
- Norton, L.; Myers, A. The treatment of streptococcal tonsillitis/pharyngitis in young children. World J. Otorhinolaryngol. Neck Surg. 2021, 7, 161–165. [Google Scholar] [CrossRef]
- Hardefeldt, H.A.; Monteiro, F.; Anferida, M.D.; Yan, J.; Francis, J.R. Acute Rheumatic Fever: Recent Advances. Pediatr. Infect. Dis. J. 2023, 42, 42–44. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, B.; Haas, M. Post-Streptococcus pyogenes Glomerulonephritis. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations, 2nd ed.; Ferretti, J., Stevens, D., Fischetti, V., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2022; pp. 615–634. [Google Scholar]
- Ohashi, A.; Murayama, M.A.; Miyabe, Y.; Yudoh, K.; Miyabe, C. Streptococcal infection and autoimmune diseases. Front. Immunol. 2024, 15, 1361123. [Google Scholar] [CrossRef]
- Katzenellenbogen, J.M.; Bond-Smith, D.; Seth, R.J.; Dempsey, K.; Cannon, J.; Stacey, I.; Wade, V.; de Klerk, N.; Greenland, M.; Sanfilippo, F.M.; et al. Contemporary Incidence and Prevalence of Rheumatic Fever and Rheumatic Heart Disease in Australia Using Linked Data: The Case for Policy Change. J. Am. Heart Assoc. 2020, 9, 016851. [Google Scholar] [CrossRef] [PubMed]
- Prinzi, A. Scarlet Fever: A Deadly History and How it Prevails. Am. Soc. Microbiol. 2023. Available online: https://asm.org/articles/2023/january/scarlet-fever-a-deadly-history-and-how-it-prevails (accessed on 10 February 2023).
- Erkmen, A.; Tüzün, N.; Erkmen, O. Scarlet fever epidemics, deaths, efects on society and precautions taken in the Ottoman Empire and the Early Turkish Republic. Discov. Public Health 2024, 21, 20. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bryant, A.E. Severe Streptococcus pyogenes Infections. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations, 2nd ed.; Ferretti, J., Stevens, D., Fischetti, V., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2022; pp. 593–614. [Google Scholar]
- Smeesters, P.R.; de Crombrugghe, G.; Tsoi, S.K.; Leclercq, C.; Baker, C.; Osowicki, J.; Verhoeven, C.; Botteaux, A.; Steer, A.C. Global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development: A systematic review. Lancet Microbe 2024, 5, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Hasso-Agopsowicz, M.; Hwang, A.; Hollm-Delgado, M.G.; Umbelino-Walker, I.; Karron, R.A.; Raman, R.; Sparrow, E.; Giersing, B. Identifying WHO global priority endemic pathogens for vaccine research and development (R&D) using multi-criteria decision analysis (MCDA): An objective of the Immunization Agenda 2030. eBioMedicine 2024, 110, 105424. [Google Scholar]
- Vieira, A.; Wan, Y.; Ryan, Y.; Li, H.K.; Guy, R.L.; Papangeli, M.; Huse, K.K.; Reeves, L.C.; Soo, V.W.C.; Daniel, R.; et al. Rapid expansion and international spread of M1UK in the post-pandemic UK upsurge of Streptococcus pyogenes. Nat. Commun. 2024, 10, 3916. [Google Scholar] [CrossRef]
- Butler, T.A.J.; Story, C.; Green, E.; Williamson, K.M.; Newton, P.; Jenkins, F.; Varadhan, H.; van Hal, S. Insights gained from sequencing Australian non-invasive and invasive Streptococcus pyogenes isolates. Microb. Genom. 2024, 10, 001152. [Google Scholar] [CrossRef]
- Demczuk, W.; Martin, I.; Domingo, F.R.; MacDonald, D.; Mulvey, M.R. Identification of Streptococcus pyogenes M1UK clone in Canada. Lancet. Infect. Dis. 2019, 19, 1284–1285. [Google Scholar] [CrossRef]
- Aboulhosn, A.; Sanson, M.A.; Vega, L.A.; Segura, M.G.; Summer, L.M.; Joseph, M.; McNeil, J.C.; Flores, A.R. Increases in group A streptococcal infections in the pediatric population in Houston, TX, 2022. Clin. Infect. Dis. 2023, 77, 351–354. [Google Scholar] [CrossRef]
- de Gier, B.; Marchal, N.; de Beer-Schuurman, I.; Te Wierik, M.; Hooiveld, M.; ISIS-AR Study Group; GAS Study group; de Melker, H.E.; van Sorge, N.M. Increase in invasive group A streptococcal (Streptococcus pyogenes) infections (iGAS) in young children in the Netherlands, 2022. Eurosurveillance 2023, 1, 2200941. [Google Scholar] [CrossRef]
- Johannesen, T.B.; Munkstrup, C.; Edslev, S.M.; Baig, S.; Nielsen, S.; Funk, T.; Kristensen, D.K.; Jacobsen, L.H.; Ravn, S.F.; Bindslev, N.; et al. Increase in invasive group A streptococcal infections and emergence of novel, rapidly expanding sub-lineage of the virulent Streptococcus pyogenes M1 clone, Denmark, 2023. Eurosurveillance 2023, 28, 2300291. [Google Scholar] [CrossRef] [PubMed]
- Beres, S.B.; Olsen, R.J.; Long, S.W.; Langley, R.; Williams, T.; Erlendsdottir, H.; Smith, A.; Kristinsson, K.G.; Musser, J.M. Increase in invasive Streptococcus pyogenes M1 infections with close evolutionary genetic relationship, Iceland and Scotland, 2022 to 2023. Eurosurveillance 2024, 28, 2400129. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ruiz, J.P.; Lin, Q.; Lammens, C.; Smeesters, P.R.; van Kleef-van Koeveringe, S.; Matheeussen, V.; Malhotra-Kumar, S. Increase in bloodstream infections caused by emm 1 group A Streptococcus correlates with emergence of toxigenic M1UK, Belgium, May 2022 to August 2023. Eurosurveillance 2023, 28, 2300422. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, C.; Bajanca-Lavado, M.P.; Mamede, R.; Araújo Carvalho, A.; Rodrigues, F.; Melo-Cristino, J.; Ramirez, M.; Friães, A.; Portuguese Group for the Study of Streptococcal Infections; Portuguese Study Group of Pediatric Invasive Streptococcal Disease. Sustained increase of paediatric invasive Streptococcus pyogenes infections dominated by M1UK and diverse emm 12 isolates, Portugal, September 2022 to May 2023. Eurosurveillance 2023, 28, 2300427. [Google Scholar] [CrossRef]
- Garancini, N.; Ricci, G.; Ghezzi, M.; Tommasi, P.; Zunica, F.; Mandelli, A.; Zoia, E.; D’Auria, E.; Zuccotti, G.V. Invasive Group A streptococcal infections: Are we facing a new outbreak? A case series with the experience of a single tertiary center. Ital. J. Pediatr. 2023, 49, 88. [Google Scholar] [CrossRef]
- Ramírez de Arellano, E.; Saavedra-Lozano, J.; Villalón, P.; Jové-Blanco, A.; Grandioso, D.; Sotelo, J.; Gamell, A.; González-López, J.J.; Cervantes, E.; Gónzalez, M.J.; et al. Clinical, microbiological, and molecular characterization of pediatric invasive infections by Streptococcus pyogenes in Spain in a context of global outbreak. mSphere 2024, 9, e0072923. [Google Scholar] [CrossRef]
- Wolters, M.; Berinson, B.; Degel-Brossmann, N.; Hoffmann, A.; Bluszis, R.; Aepfelbacher, M.; Rohde, H.; Christner, M. Population of invasive group A streptococci isolates from a German tertiary care center is dominated by the hypertoxigenic virulent M1UK genotype. Infection 2024, 52, 667–671. [Google Scholar] [CrossRef]
- CDC. Increase in Invasive Group A Strep Infections, 2022–2023. Available online: https://archive.cdc.gov/#/details?q=Increase%20in%20Invasive%20Group%20A%20Strep%20Infections&start=0&rows=10&url=https://www.cdc.gov/groupastrep/igas-infections-investigation.html (accessed on 10 February 2023).
- ECDC. Increase in Invasive Group A streptococcal Infections Among Children in Europe, Including Fatalities. Available online: https://ecdc.europa.eu/en/news-events/increase-invasive-group-streptococcal-infections-among-children-europe-including (accessed on 10 February 2023).
- WHO. Disease Outbreak News: Increased Incidence of Scarlet Fever and Invasive Group A Streptococcus Infection—Multi-Country. WHO. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON429 (accessed on 10 February 2023).
- Davies, P.J.B.; Russell, C.D.; Morgan, A.R.; Taori, S.K.; Lindsay, D.; Ure, R.; Brown, D.; Smith, A. Increase of severe pulmonary infections in adults caused by M1UK Streptococcus pyogenes, central Scotland, UK. Emerg. Infect. Dis. 2023, 29, 1638–1642. [Google Scholar] [CrossRef]
- Adamkova, V.; Adamkova, V.G.; Kroneislova, G.; Zavora, J.; Kroneislova, M.; Huptych, M.; Lahoda Brodska, H. Increasing Rate of Fatal Streptococcus pyogenes Bacteriemia-A Challenge for Prompt Diagnosis and Appropriate Therapy in Real Praxis. Microorganisms 2024, 12, 995. [Google Scholar] [CrossRef]
- Gammoh, N.Z.; Rink, L. Closed-Tube Multiplex Real-Time PCR for the Detection of Group A Streptococcal Superantigens. Methods Mol. Biol. 2020, 2136, 17–23. [Google Scholar]
- Zhi, X.; Li, H.K.; Li, H.; Loboda, Z.; Charles, S.; Vieira, A.; Huse, K.; Jauneikaite, E.; Reeves, L.; Mok, K.Y.; et al. Emerging Invasive Group A Streptococcus M1UK Lineage Detected by Allele-Specific PCR, England, 2020. Emerg. Infect. Dis. 2023, 29, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Baev, V.; Mitov, G.; Radev, M. Scarlatina. In Epidemiology of Infectious and Noninfectious Diseases; Durmishev, A., Iliev, B., Baev, V., Mitov, G., Angelov, L., Radev, M., Balabanov, P., Eds.; Medicine and Physical Culture: Sofia, Bulgaria, 1994; pp. 92–97. (In Bulgarian) [Google Scholar]
- Lynskey, N.; Jauneikaite, E.; Li, H.K.; Zhi, X.; Turner, C.E.; Mosavie, M.; Pearson, M.; Asai, M.; Lobkowicz, L.; Chow, J.Y.; et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: A population-based molecular epidemiological study. Lancet Infect. Dis. 2019, 19, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Liang, Y.; Lu, Q.; Meng, Q.; Wang, W.; Huang, L.; Bao, Y.; Zhao, R.; Chen, Y.; Zheng, Y.; et al. Molecular Characteristics of Streptococcus pyogenes Isolated From Chinese Children with Different Diseases. Front. Microbiol. 2021, 9, 722225. [Google Scholar] [CrossRef]
- Muhtarova, A.; Gergova, R.; Setchanova, L.; Mitov, I. Distribution of Super-Antigens and Toxins in Bulgarian Invasive and Non-Invasive Clinical Isolates Streptococcus pyogenes. Acta Microbiol. Bulg. 2017, 33, 151–156. [Google Scholar]
- Karapati, E.; Tsantes, A.G.; Iliodromiti, Z.; Boutsikou, T.; Paliatsiou, S.; Domouchtsidou, A.; Ioannou, P.; Petrakis, V.; Iacovidou, N.; Sokou, R. Group A Streptococcus Infections in Children: Epidemiological Insights Before and After the COVID-19 Pandemic. Pathogens 2024, 13, 1007. [Google Scholar] [CrossRef]
- Hall, J.N.; Bah, S.Y.; Khalid, H.; Brailey, A.; Coleman, S.; Kirk, T.; Hussain, N.; Tovey, M.; Chaudhuri, R.R.; Davies, S.; et al. Molecular characterization of Streptococcus pyogenes (StrepA) non-invasive isolates during the 2022–2023 UK upsurge. Microb. Genom. 2024, 10, 001277. [Google Scholar] [CrossRef]
- Maldonado-Barrueco, A.; Bloise, I.; Cendejas-Bueno, E.; López-Rodrigo, F.; García-Rodríguez, J.; Lázaro-Perona, F. Epidemiological changes in invasive Streptococcus pyogenes infection during the UK alert period: A molecular comparative analysis from a tertiary Spanish hospital in 2023. Enfermedades Infecc. Microbiol. Clínica 2024, 42, 34–37. [Google Scholar] [CrossRef]
- Valcarcel Salamanca, B.; Cyr, P.R.; Bentdal, Y.E.; Watle, S.V.; Wester, A.L.; Strand, Å.M.W.; Bøås, H. Increase in invasive group A streptococcal infections (iGAS) in children and older adults, Norway, 2022 to 2024. Eurosurveillance 2024, 29, 2400242. [Google Scholar] [CrossRef]
- Bertram, R.; Itzek, A.; Marr, L.; Manzke, J.; Voigt, S.; Chapot, V.; van der Linden, M.; Rath, P.M.; Hitzl, W.; Steinmann, J. Divergent effects of emm types 1 and 12 on invasive group A streptococcal infections-results of a retrospective cohort study, Germany 2023. J. Clin. Microbiol. 2024, 62, e0063724. [Google Scholar] [CrossRef]
- Nygaard, U.; Hartling, U.B.; Munkstrup, C.; Nielsen, A.B.; Dungu, K.H.S.; Schmidt, L.S.; Glenthøj, J.; Matthesen, A.T.; Rytter, M.J.H.; Holm, M. Invasive group A streptococcal infections in children and adolescents in Denmark during 2022-23 compared with 2016–17 to 2021–22: A nationwide, multicentre, population-based cohort study. Lancet Child Adolesc. Health 2024, 8, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Detcheva, A.; Facklam, R.R.; Beall, B. Erythromycin-Resistant Group A Streptococcal Isolates Recovered in Sofia, Bulgaria, from 1995 to 2001. J. Clin. Microbiol. 2002, 40, 3831–3834. [Google Scholar] [CrossRef] [PubMed]
- Gherardi, G.; Vitali, L.A.; Creti, R. Prevalent emm Types among Invasive GAS in Europe and North America since Year 2000. Front. Public Health 2018, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Serruto, D.; Rappuoli, R.; Scarselli, M.; Gros, P.; van Strijp, J.A. Molecular mechanisms of complement evasion: Learning from staphylococci and meningococci. Nat. Rev. Microbiol. 2010, 8, 393–399. [Google Scholar] [CrossRef]
- Anderson, J.; Imran, S.; Frost, H.R.; Azzopardi, K.I.; Jalali, S.; Novakovic, B.; Osowicki, J.; Steer, A.C.; Licciardi, P.V.; Pellicci, D.G. Immune signature of acute pharyngitis in a Streptococcus pyogenes human challenge trial. Nat. Commun. 2022, 13, 769. [Google Scholar] [CrossRef]
Target Gene | Primer | Sequences 5′-3′ | Product |
---|---|---|---|
pstB | Forward-SNP * Forward-WT * Reverse | GATAAATCAATCTTAGATAA GATAAATCAATCTTAGATCA CGTGAGGCTTGCTGCATTGAG | 287 bp |
gldA | Forward-SNP Forward-WT Reverse | AGATGGGTTAGCAACAAAG AGATGGGTTAGCAACAAGG GAATAGCACCTGTCAGCG | 292 bp |
Erythromycin | Levofloxacin | Moxifloxacin | Tetracycline | Co-Trimoxazole | |
---|---|---|---|---|---|
MIC range | 0.023–0.064 | 0.38–2 | 0.094–0.5 | 0.047–0.38 | 0.002–0.32 |
MIC50 | 0.036 | 0.83 | 0.17 | 0.12 | 0.05 |
MIC90 | 0.054 | 1.75 | 0.45 | 0.32 | 0.12 |
Exotoxin Virulence Factors | Produced by Number (%) of Strains |
---|---|
SpeA + SpeJ, including: | 18 (45%) |
SpeA + SpeJ + sdaD | 17 |
SpeA + SpeJ + sdaD + spd3 | 11 |
SpeC, including: | 11 (27.5%) |
SpeC + SpeI + SpeH + sdaD | 1 |
SpeC + spd3 | 5 |
SpeI + SpeH, including: | 11 (27.5%) |
SpeI + SpeH + sdaD | 6 |
SpeI + sdaD | 1 |
Position in MGAS5005 | Gene Locus | Gene | Product | SNP Found in This Study (S. pyogenes 706) | Ref. | SNP Found in Lynskey et al. [42] | |
---|---|---|---|---|---|---|---|
1 | 115646 | M5005_Spy0106 | rofA | Transcriptional regulator | T | C | T |
2 | 116162 | M5005_Spy0106 | rofA | Transcriptional regulator | C | A | C |
3 | 116163 | M5005_Spy0106 | rofA | Transcriptional regulator | A | C | A |
4 | 250832 | M5005_Spy0243 | ABC transporter-associated protein | C | T | C | |
5 | 513254 | M5005_Spy0525 | galactose-6-phosphate isomerase LacB subunit | T | G | T | |
6 | 528360 | Intergenic | - | T | A | T | |
7 | 563631 | M5005_Spy0566 | sagE | streptolysin S putative self-immunity protein | A | G | A |
8 | 613633 | M5005_Spy0609 | phosphoglycerol transferase | C | T | C | |
9 | 626494 | M5005_Spy0623 | methyltransferase | A | G | A | |
10 | 661707 | M5005_Spy0656 | trmD | tRNA (guanine-N(1)-)-methyltransferase | A | G | A |
11 | 730823 | M5005_Spy0727 | recJ | single-stranded-DNA-specific exonuclease | T | C | T |
12 | 784467 | M5005_Spy0779 | putative membrane spanning protein | C | T | C | |
13 | 819098 | M5005_Spy0825 | murB | UDP-N-acetylenolpyruvoylglucosamine reductase | A | G | A |
14 | 923079 | M5005_Spy0933 | putative NADH-dependent flavin oxidoreductase | A | G | A | |
15 | 942633 | M5005_Spy0951 | pstB | phosphate transport ATP-binding protein | T | G | T |
16 | 983438 | Intergenic | - | C | G | C | |
17 | 1082253 | M5005_Spy1108 | metK2 | S-adenosylmethionine synthetase | T | C | T |
18 | 1238124 | M5005_Spy1282 | msrA | peptide methionine sulfoxide reductase | A | G | A |
19 | 1238673 | M5005_Spy1283 | tlpA | thiol:disulfide interchange protein | A | G | A |
20 | 1251193 | M5005_Spy1293 | hypothetical protein | A | G | A | |
21 | 1373176 | M5005_Spy1400 | PTS system, galactose-specific IIB component | A | C | A | |
22 | 1407497 | M5005_Spy1439 | portal protein | T | C | T | |
23 | 1446116 | M5005_Spy1490 | 3-oxoacyl-[acyl-carrier protein] reductase | T | C | T | |
24 | 1535209 | Intergenic | - | G | A | G | |
25 | 1702540 | M5005_Spy1714 | gldA | glycerol dehydrogenase | T | C | T |
26 | 1734749 | M5005_Spy1772 | glutamate formimidoyltransferase | A | G | A | |
27 | 1828734 | M5005_Spy1860 | putative membrane spanning protein | A | G | A |
Immune Parameters | Control Group | Patients | p |
---|---|---|---|
LYMPHOCYTES SUBSETS | means ± SD | ||
WBC × 109 | 7.8 ± 2.6 | 11.9 ± 6.4 | 0.063 |
% Lymphocytes | 47.7 ± 11.7 | 28.6 ± 16.56 | 0.003 |
% CD3+ | 71 ± 4.7 | 65 ± 6.4 | 0.017 |
% CD4+ | 42.3 ± 6.2 | 33 ± 7.3 | 0.004 |
% CD8+ | 22 ± 3.6 | 22 ± 5.2 | 0.60 |
CD4:CD8 ratio | 1.9 ± 0.55 | 1.58 ± 0.62 | 0.089 |
% CD19+ | 16.3 ± 2.22 | 18.2 ± 5 | 0.23 |
%CD3− CD16+ 56+ | 11.5 ± 5.05 | 15 ± 5.1 | 0.078 |
CYTOKINES | median (min–max), pg/mL | ||
IFN-γ | 2.73 (2–8) | 5.26 (2–75) | 0.02 |
IL-6 | 1.87 (1–3) | 5.83 (1.4–163) | 0.000 |
TNFα | 7.88 (6–31) | 7.07 (5–33) | 0.41 |
IL-10 | 3.96 (2–8) | 13.05 (2–104) | 0.003 |
IL-17A | 25.45 (17–30) | 9.5 (15–34) | 0.020 |
IL-1β | 7.14 (2–23) | 6.4 (3–58) | 0.562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keuleyan, E.; Todorov, T.; Donchev, D.; Kevorkyan, A.; Vazharova, R.; Kukov, A.; Todorov, G.; Georgieva, B.; Altankova, I.; Uzunova, Y. Characterization of Streptococcus pyogenes Strains from Tonsillopharyngitis and Scarlet Fever Resurgence, 2023—FIRST Detection of M1UK in Bulgaria. Microorganisms 2025, 13, 179. https://doi.org/10.3390/microorganisms13010179
Keuleyan E, Todorov T, Donchev D, Kevorkyan A, Vazharova R, Kukov A, Todorov G, Georgieva B, Altankova I, Uzunova Y. Characterization of Streptococcus pyogenes Strains from Tonsillopharyngitis and Scarlet Fever Resurgence, 2023—FIRST Detection of M1UK in Bulgaria. Microorganisms. 2025; 13(1):179. https://doi.org/10.3390/microorganisms13010179
Chicago/Turabian StyleKeuleyan, Emma, Theodor Todorov, Deyan Donchev, Ani Kevorkyan, Radoslava Vazharova, Alexander Kukov, Georgi Todorov, Boriana Georgieva, Iskra Altankova, and Yordanka Uzunova. 2025. "Characterization of Streptococcus pyogenes Strains from Tonsillopharyngitis and Scarlet Fever Resurgence, 2023—FIRST Detection of M1UK in Bulgaria" Microorganisms 13, no. 1: 179. https://doi.org/10.3390/microorganisms13010179
APA StyleKeuleyan, E., Todorov, T., Donchev, D., Kevorkyan, A., Vazharova, R., Kukov, A., Todorov, G., Georgieva, B., Altankova, I., & Uzunova, Y. (2025). Characterization of Streptococcus pyogenes Strains from Tonsillopharyngitis and Scarlet Fever Resurgence, 2023—FIRST Detection of M1UK in Bulgaria. Microorganisms, 13(1), 179. https://doi.org/10.3390/microorganisms13010179