Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughn, C.C. Ecosystem services provided by freshwater mussels. Hydrobiologia 2018, 810, 15–27. [Google Scholar] [CrossRef]
- Vaughn, C.C.; Hakenkamp, C.C. The functional role of burrowing bivalves in freshwater ecosystems. Freshw. Biol. 2001, 46, 1431–1446. [Google Scholar] [CrossRef]
- Raikow, D.F.; Hamilton, S.K. Bivalve diets in a midwestern US stream: A stable isotope enrichment study. Limnol. Oceanogr. 2001, 46, 514–522. [Google Scholar] [CrossRef]
- Fogelman, K.J.; Stoeckel, J.A.; Miller, J.M.; Helms, B.S. Feeding ecology of three freshwater mussel species (Family: Unionidae) in a North American lentic system. Hydrobiologia 2023, 850, 385–397. [Google Scholar] [CrossRef]
- Byllaardt, J.V.; Ackerman, J.D. Hydrodynamic habitat influences suspension feeding by unionid mussels in freshwater ecosystems. Freshw. Biol. 2014, 59, 1187–1196. [Google Scholar] [CrossRef]
- Atkinson, C.L.; van Ee, B.C.; Pfeiffer, J.M. Evolutionary history drives aspects of stoichiometric niche variation and functional effects within a guild. Ecology 2020, 101, e03100. [Google Scholar] [CrossRef]
- Sanchez Gonzalez, I.; Hopper, G.W.; Bucholz, J.R.; Kubala, M.E.; Lozier, J.D.; Atkinson, C.L. Niche specialization and community niche space increase with species richness in filter-feeder assemblages. Ecosphere 2023, 14, e4495. [Google Scholar] [CrossRef]
- Tran, K.; Ackerman, J.D. Mussels partition resources from natural waters under flowing conditions. Sci. Total Environ. 2019, 696, 133870. [Google Scholar] [CrossRef]
- Hansen, A.T.; Czuba, J.A.; Schwenk, J.; Longjas, A.; Danesh-Yazdi, M.; Hornback, D.J.; Foufoula-Georgiou, E. Coupling freshwater mussel ecology and river dynamics using a simplified dynamic interaction model. Freshw. Sci. 2016, 35, 200–215. [Google Scholar] [CrossRef]
- Weingarten, E.A.; Atkinson, C.L.; Jackson, C.R. The gut microbiome of freshwater Unionidae mussels is determined by host species and is selectively retained from filtered seston. PLoS ONE 2019, 14, e0224796. [Google Scholar] [CrossRef]
- Aceves, A.K.; Johnson, P.D.; Atkinson, C.L.; van Ee, B.C.; Bullard, S.A.; Arias, C.R. Digestive gland microbiome of Pleurobema cordatum: Mesocosms induce dysbiosis. J. Mollus Stud. 2020, 86, 280–289. [Google Scholar] [CrossRef]
- McCauley, M.; Chiarello, M.; Atkinson, C.L.; Jackson, C.R. Gut microbiomes of freshwater mussels (Unionidae) are taxonomically and phylogenetically variable across years but remain functionally stable. Microorganisms 2021, 9, 411. [Google Scholar] [CrossRef] [PubMed]
- Lawson, L.A.; Atkinson, C.L.; Jackson, C.R. The gut bacterial microbiome of the Threeridge mussel, Amblema plicata, varies between rivers but shows a consistent core community. Freshw. Biol. 2022, 67, 1125–1136. [Google Scholar] [CrossRef]
- Carty, S. Freshwater Dinoflagellates of North America, 1st ed.; Cornell University Press: Ithaca, NY, USA, 2014; pp. 4–17. [Google Scholar]
- Maggard, I.J.; Deel, K.B.; Etoll, T.W.; Sproles, R.C.; Lane, T.W.; Cahoon, A.B. Freshwater mussels prefer a diet of stramenopiles and fungi over bacteria. Sci. Rep. 2024, 14, 11958. [Google Scholar] [CrossRef]
- Grizzle, J.M.; Brunner, C.J. Infectious disease of freshwater mussels and other freshwater bivalve mollusks. Rev. Fish. Sci. 2009, 17, 425–467. [Google Scholar] [CrossRef]
- Bolotov, I.N.; Klass, A.L.; Kondakov, A.V.; Vikhrev, I.V.; Bespalaya, Y.V.; Gofarov, M.Y.; Filippov, B.Y.; Bogan, A.E.; Lopes-Lima, M.; Lunn, Z.; et al. Freshwater mussels house a diverse mussel-associated leech assemblage. Sci. Rep. 2019, 9, 16449. [Google Scholar] [CrossRef]
- Prosser, R.S.; Lynn, D.H.; Salerno, J.; Bennett, J.; Gillis, P.L. The facultatively parasitic ciliated protozoan, Tetrahymena glochidiophila (Lynn, 2018), causes a reduction in viability of freshwater mussel glochidia. J. Invertebr. Pathol. 2018, 157, 25–31. [Google Scholar] [CrossRef]
- Taskinen, J.; Urbańska, M.; Ercoli, F.; Andrzejewski, W.; Ożgo, M.; Deng, B.; Choo, J.M.; Riccardi, N. Parasites in sympatric populations of native and invasive freshwater bivalves. Hydrobiologia 2021, 848, 3167–3178. [Google Scholar] [CrossRef]
- Lewisch, E.; Arnold, F.; Fuehrer, H.P.; Harl, J.; Thielen, F.; El-Matbouli, M. Parasites and their impact on thick-shelled river mussels Unio crassus from two populations in Luxembourg. Dis. Aquat. Org. 2023, 153, 31–43. [Google Scholar] [CrossRef]
- Müller, T.; Czarnoleski, M.; Labecka, A.M.; Cichy, A.; Zając, K.; Dragosz-Kluska, D. Factors affecting trematode infection rates in freshwater mussels. Hydrobiologia 2015, 742, 59–70. [Google Scholar] [CrossRef]
- Edwards, D.D.; Vidrine, M.F. Host diversity affects parasite diversity: A case study involving Unionicola spp. inhabiting freshwater mussels. J. Parasitol. 2020, 106, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.R.; Dimock, R.V., Jr.; Kuhn, R.E. The symbiotic water mite Unionicola formosa (Acari: Unionicolidae) ingests mucus and tissue of its molluscan host. J. Parasitol. 2000, 86, 1254–1258. [Google Scholar] [CrossRef]
- Carella, F.; Villari, G.; Maio, N.; De Vico, G. Disease and disorders of freshwater unionid mussels: A brief overview of recent studies. Front. Physiol. 2016, 7, 00489. [Google Scholar] [CrossRef] [PubMed]
- Knowles, S.; Dennis, M.; McElwain, A.; Leis, E.; Richard, J. Pathology and infectious agents of unionid mussels: A primer for pathologists in disease surveillance and investigation of mortality events. Vet. Pathol. 2023, 60, 510–528. [Google Scholar] [CrossRef]
- Brian, J.I.; Aldridge, D.C. Endosymbionts: An overlooked threat in the conservation of freshwater mussels? Biol. Conserv. 2019, 237, 155–165. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Fayer, R.; Lewis, E.J.; Trout, J.M.; Farley, C.A. Cryptosporidium oocysts in Bent mussels (Ischadium recurvum) in the Chesapeake Bay. Parasitol. Res. 1999, 85, 518–521. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Marcogliese, D.J.; de Lafontaine, Y.; Da Silva, A.J.; Mhangami-Ruwende, B.; Pieniazek, N.J. Cryptosporidium parvum oocysts in zebra mussels (Dreissena polymorpha): Evidence from the St. Lawrence River. Parasitol. Res. 2001, 87, 231–234. [Google Scholar] [CrossRef]
- Kopecna, J.; Jirku, M.; Obornik, M.; Tokarev, Y.S.; Lukes, J.; Modry, D. Phylogenetic Analysis of Coccidian Parasites from Invertebrates: Search for Missing Links. Protist 2006, 157, 173–183. [Google Scholar] [CrossRef]
- Francisco, C.J.; Hermida, M.A.; Santos, M.J. Parasites and symbionts from Mytilus galloprovincialis (Lamark, 1819) (Bivalves: Mytilidae) of the Aveiro estuary Portugal. J. Parasitol. 2010, 96, 200–205. [Google Scholar] [CrossRef]
- Inglis, S.D.; Kristmundsson, A.; Freeman, M.A.; Levesque, M.; Stokesbury, K. Gray meat in the Atlantic sea scallop, Placopecten magellanicus, and the identification of a known pathogenic scallop apicomplexan. J. Invertebr. Pathol. 2016, 141, 66–75. [Google Scholar] [CrossRef]
- Meyers, T.R. Endemic diseases of cultured shellfish of Long Island, New York: Adult and juvenile American oysters (Crassostrea virginica) and hard clams (Mercenaria mercenaria). Aquaculture 1981, 22, 305–330. [Google Scholar] [CrossRef]
- Allam, B.; Carden, W.E.; Ward, J.E.; Ralph, G.; Winnicki, S. Early host-pathogen interactions in marine bivalves: Evidence that the alveolate parasite Perkinsus marinus infects through the oyster mantle during rejection of pseudofeces. J. Invertebr. Pathol. 2013, 113, 26–34. [Google Scholar] [CrossRef]
- Soudant, P.; Chu, F.E.; Volety, A. Host–parasite interactions: Marine bivalve molluscs and protozoan parasites, Perkinsus species. J. Invertebr. Pathol. 2013, 114, 196–216. [Google Scholar] [CrossRef]
- Villalba, A.; Reece, K.S.; Ordas, M.C.; Casas, S.M.; Figueras, A. Perkinsosis in molluscs: A review. Aquat. Living Resour. 2004, 17, 411–432. [Google Scholar] [CrossRef]
- Mladineo, I.; Trumbic, Z.; Jozic, S.; Segvic, T. First report of Cryptosporidium sp. (Coccidia, Apicomplexa) oocysts in the black mussel (Mytilus galloprovincialis) reared in the Mali Ston Bay, Adriatic Sea. J. Shellfish. Res. 2009, 28, 541–546. [Google Scholar] [CrossRef]
- Neemuchwala, S.; Johnson, N.A.; Pfeiffer, J.M.; Lopes-Lima, M.; Gomes-dos-Santos, A.; Froufe, E.; Hillis, D.M.; Smith, C.H. Coevolution with host fishes shapes parasitic life histories in a group of freshwater mussels (Unionidae: Quadrulini). Bull. Soc. Syst. Biol. 2023, 2, 1–25. [Google Scholar] [CrossRef]
- Bolland, S.J.; Zahedi, A.; Oskam, C.; Murphy, B.; Ryan, U. Cryptosporidium bollandi n. sp. (Apicomplexa: Cryptosporidiiae) from angelfish (Pterophyllum scalare) and Oscar fish (Astronotus ocellatus). Exp. Parasitol. 2020, 217, 107956. [Google Scholar] [CrossRef]
- Hoffman, G.L.; Williams, E.H. Parasites of North American Freshwater Fishes, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1999; pp. 21–91. [Google Scholar]
- Molnar, K. Remarks on the morphology, site of infection and validity of some coccidian species from fish. Acta Vet. Hung. 1996, 44, 295–308. [Google Scholar] [PubMed]
- Hopper, G.W.; Chen, S.; Sanchez Gonzalez, I.; Bucholz, J.R.; Lu, Y.; Atkinson, C.L. Aggregated filter-feeders govern the flux and stoichiometry of locally available energy and nutrients in rivers. Funct. Ecol. 2021, 35, 1183–1195. [Google Scholar] [CrossRef]
- Chiarello, M.; Bucholz, J.R.; McCauley, M.; Vaughn, S.N.; Hopper, G.W.; Gonzalez, I.S.; Atkinson, C.L.; Lozier, J.D.; Jackson, C.R. Environment and co-occurring native mussel species, but not host genetics, impact the microbiome of a freshwater invasive species (Corbicula fluminea). Front. Microbiol. 2022, 13, 800061. [Google Scholar] [CrossRef]
- Lopes-Lima, M.; Burlakova, L.; Karatayev, A.; Gomes-dos-Satos, A.; Zieritz, A.; Froufe, E.; Bogan, A.E. Revisiting the North American freshwater mussel genus Quadrula sensu lato (Bivalvia Unionidae): Phylogeny, taxonomy and species delineation. Zool. Scr. 2019, 48, 313–336. [Google Scholar] [CrossRef]
- Kristmundsson, A.; Helgason, S.; Bambir, S.H.; Eydal, M.; Freeman, M.A. Margolisiella islandica sp. nov. (Apicomplexa: Eimeridae) infecting Iceland scallop Chlamys islandica (Müller, 1776) in Icelandic waters. J. Invertebr. Pathol. 2011, 108, 139–146. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Evol. Biol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Hopper, G.W.; Bucholz, J.R.; Dubose, T.P.; Fogelman, K.J.; Keogh, S.M.; Kubala, M.E.; Atkinson, C.L. A trait dataset for freshwater mussels of the United States of America. Sci. Data 2023, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: Cham, Switzerland, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Satta, C.T.; Rene, A.; Padedda, B.M.; Pulina, S.; Lai, G.G.; Soru, O.; Buscarinu, P.; Virdis, T.; Marceddu, S.; Luglie, A. First detection of the bloom forming Unruhdinium penardii (Dinophyceae) in a Mediterranean reservoir: Insights on its ecology, morphology and genetics. Adv. Oceanogr. Limnol. 2020, 11, 71–83. [Google Scholar] [CrossRef]
- Elias, M.; Amaral, R.; Fawley, K.P.; Fawley, M.W.; Nemcova, Y.; Neustupa, J.; Pribyl, P.; Santos, L.M.A.; Sevcikova, T. Eustigmatophyceae. In Handbook of the Protists, 2nd ed.; Archibald, J.M., Simpson, A.G., Slamovits, C.H., Eds.; Springer: Cham, Switzerland, 2017; Volume 10, pp. 367–406. [Google Scholar]
- Baker, S.M.; Levinton, J.S. Selective feeding by three native North American freshwater mussels implies food competition with zebra mussels. Hydrobiologia 2003, 505, 97–105. [Google Scholar] [CrossRef]
- Atkinson, C.L.; First, M.R.; Covich, A.P.; Opsahl, S.P.; Golladay, S.W. Suspended material availability and filtration–biodeposition processes performed by a native and invasive bivalve species in streams. Hydrobiologia 2011, 667, 191–204. [Google Scholar] [CrossRef]
- Mychek-Londer, J.G.; Chaganti, S.R.; Heath, D.D. Metabarcoding of native and invasive species in stomach contents of Great Lakes fishes. PLoS ONE 2020, 15, e0236077. [Google Scholar] [CrossRef]
- O’Rorke, R.; Lavery, S.; Chow, S.; Takeyama, H.; Tsai, P.; Beckley, L.E.; Thompson, P.A.; Waite, A.M.; Jeffs, A.G. Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS ONE 2012, 7, e42757. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Chang, Z.; Li, J.; Li, T. Selective feeding of three bivalve species on the phytoplankton community in a marine pond revealed by high-throughput sequencing. Sci. Rep. 2022, 12, 6163. [Google Scholar] [CrossRef] [PubMed]
- Lovy, J.; Friend, S.E. Intestinal coccidiosis of anadromous and landlocked alewives, Alosa pseudoharengus, caused by Goussia ameliae n. sp. and G. alosii n. sp. (Apicomplexa: Eimeriidae). Int. J. Parasitol. Parasites Wildl. 2015, 4, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Matsche, M.A.; Adams, C.R.; Blazer, V.S. Newly described coccidia Goussia bayae from White Perch Morone americana: Morphology and phylogenetics support emerging taxonomy of Goussia within piscine hosts. J. Parasitol. 2019, 105, 1–10. [Google Scholar] [CrossRef]
- Saraiva, A.; Eiras, J.C.; Cruz, C.; Xavier, R. Synopsis of the species of coccidians reported in marine fish. Animals 2023, 13, 2119. [Google Scholar] [CrossRef]
- Thompson, R.A.; Koh, W.H.; Clode, P.L. Cryptosporidium—What is it? Food Waterborne Parasitol. 2016, 4, 54–61. [Google Scholar] [CrossRef]
- Zahedi, A.; Monis, P.; Aucote, S.; King, B.; Paparini, A.; Jian, F.; Yang, R.; Oskam, C.; Ball, A.; Robertson, I.; et al. Zoonotic Cryptosporidium Species in Animals Inhabiting Sydney Water Catchments. PLoS ONE 2016, 11, e0168169. [Google Scholar] [CrossRef]
- Hayes, L.; Robinson, G.; Chalmers, R.M.; Ormerod, S.J.; Paziewska-Harris, A.; Chadwick, E.A.; Durance, I.; Cable, J. The occurrence and zoonotic potential of Cryptosporidium species in freshwater biota. Parasites Vectors 2023, 16, 209. [Google Scholar] [CrossRef]
- Martins, M.L.; Cardoso, L.; Marchiori, N.; Benites de Pádua, S. Protozoan infections in farmed fish from Brazil: Diagnosis and pathogenesis. Rev. Bras. Parasitol. Vet. 2015, 24, 1–20. [Google Scholar] [CrossRef]
- Beggel, S.; Hinzmann, M.; Machado, J.; Giest, J. Combined impact of acute exposure to ammonia and temperature stress on the freshwater mussel Unio pictorum. Water 2017, 9, 455. [Google Scholar] [CrossRef]
- Jia, C.; Wu, C.; Huang, X.; Zhou, C.; Ouyang, S.; Lui, X.; Wu, X. Effect of complex hydraulic variables and physicochemical factors on freshwater mussel density in the largest floodplain lake, China. Ecol. Process. 2023, 12, 15. [Google Scholar] [CrossRef]
- Montes, J.F.; Durfort, M.; Garcia-Valero, J. Parasitism by the protozoan Perkinsus atlanticus favours the development of opportunistic infections. Dis. Aquat. Organ. 2001, 46, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, A.; Rasmussen, J.B. Extinction rates of North American freshwater fauna. Conserv. Biol. 1999, 13, 1220–1222. [Google Scholar] [CrossRef]
- Haag, W.R.; Williams, J.D. Biodiversity on the brink: An assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 2014, 735, 45–60. [Google Scholar] [CrossRef]
- Haag, W.R. Reassessing enigmatic mussel declines in the United States. Freshw. Mollusk Biol. Conserv. 2019, 22, 43–60. [Google Scholar] [CrossRef]
- Waller, D.L.; Cope, W.G. The status of mussel health assessment and a path forward. Freshw. Mollusk Biol. Conserv. 2019, 22, 26–42. [Google Scholar] [CrossRef]
Mussel Species | River | Microeukaryote Amplicon Phlyum:Family:Genus | No. | Identity |
---|---|---|---|---|
Amblema plicata | Bear | Ochrophyta: Paraphysomonadaceae: Paraphysomonas | 1 | 89.8 |
Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 4 | 89.0–99.1 | |
Ochrophyta: Eunotiaceae: Eunotia | 1 | 83.6 | ||
Ochrophyta: Fragilariaceae: Fragilariforma | 1 | 94.6 | ||
Ochrophyta: Stephanodiscaceae: Stephanodiscus | 1 | 80.2 | ||
Ochrophyta: Pleurochloridaceae: Monodus | 2 | 91.6–95.0 | ||
Duck | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 99.6 | |
Heterokontophyta:Cymatosiraceae: Plagiogrammopsis | 1 | 99.6 | ||
Paint | Dinophyceae:Kryptoperidiniaceae: Unruhdinium | 5 | 81.3–95.5 | |
Sipsey | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 99.7 | |
Cyclonaias tuberculata | Duck | Heterokontophyta: Stephanodiscaceae: Cyclotella | 1 | 93.4 |
Paint | Chlorophyta: Pedinomonadaceae: Pedinomonas | 1 | 96.5 | |
Dinophyceae: Amphidiniaceae Amphidinium | 1 | 81.6 | ||
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 9 | 97.2–99.8 | ||
Dinophyceae: Peridiniopsidaceae: Parvodinium | 1 | 81.4 | ||
Elliptio arca | Butta | Heterokontophyta: Goniochloridaceae: Tetraedriella | 2 | 84.2–94.7 |
Heterokontophyta: Goniochloridaceae: Trachydiscus | 1 | 92.5 | ||
Sipsey | Dinophyceae: Gymnodiniaceae: Akashiwo | 1 | 73.3 | |
Elliptio crassidens | Bear | Ochrophyta: Goniochloridaceae: Trachydiscus | 1 | 88.72 |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 2 | 88.1–96.3 | ||
Fusconaia cerina | Butta | Ochrophyta: Pleurochloridaceae: Monodus | 1 | 95.5 |
Ochrophyta: Monodopsidaceae: Nannochloropsis | 1 | 87 | ||
Heterokontophyta: Goniochloridaceae: Trachydiscus | 2 | 82.7–92.5 | ||
Hamiota perovalis | Sipsey | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 83.6 |
Lampsilis ornata | Bogue | Heterokontophyta: Pleurochloridaceae: Monodus | 2 | 92.6–93.3 |
Ochrophyta: Cymatosiraceae: Plagiogrammopsis | 1 | 85.12 | ||
Ochrophyta: Goniochloridaceae: Trachydiscus | 1 | 86.31 | ||
Butta | Heterokontophyta: Pleurochloridaceae: Monodus | 2 | 90.9–94.9 | |
Sipsey | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 93.93 | |
Lampsilis ovata | Bear | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 4 | 85.9–99.4 |
Ochrophyta: Goniochloridaceae: Trachydiscus | 1 | 91.6 | ||
Paint | Colponemida: Colponemidia: Colponema | 1 | 96.6 | |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 9 | 82.8–99.6 | ||
Dinophyceae: Kryptoperidiniaceae: Durinskia | 2 | 83.3–88.0 | ||
Dinophyceae: Prorocentraceae: Prorocentrum | 1 | 90.3 | ||
Lampsilis teres | Bogue | Ochrophyta: Goniochloridaceae: Trachydiscus | 1 | 87.2 |
Ochrophyta: Pleurochloridaceae: Monodus | 1 | 92.5 | ||
Lasmigona alabamensis | Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 99.5 |
Ochrophyta: Thalassiosiraceae: Thalassiosira | 1 | 86.3 | ||
Megalonaias nervosa | Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 87.8 |
Obliquaria reflexa | Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 86.0 |
Duck | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 98.9 | |
Heterokontophyta: Stephanodiscaceae: Cyclotella | 1 | 99.8 | ||
Sipsey | Heterokontophyta: Goniochloridaceae: Vacuoliviride | 1 | 98.8 | |
Pleurobema oviforme | Paint | Dinophyceae: Kryptoperidiniaceae: Durinskia | 1 | 99.2 |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 4 | 98.8–99.1 | ||
Potamilus purpuratus | Bogue | Ochrophyta: Pleurochloridaceae: Monodus | 1 | 91.5 |
Ptychobranchus fasciolaris | Paint | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 2 | 97.9–99.2 |
Ochrophyta: Stephanodiscaceae: Discostella | 1 | 87.5 | ||
Ochrophyta: Thalassiosiraceae: Thalassiosira | 1 | 88.9 | ||
Pustulosa kieneriana | Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 6 | 84.2–97.7 |
Ochrophyta: Chlorobotryaceae: Characiopsis | 1 | 84.9 | ||
Ochrophyta: Cymatosiraceae: Plagiogrammopsis | 1 | 88.9 | ||
Ochrophyta: Dinobryaceae: Dinobryon | 1 | 96.3 | ||
Ochrophyta: Goniochloridaceae: Vacuoliviride | 1 | 93 | ||
Ochrophyta: Monodopsidaceae: Nannochloropsis | 1 | 90.4 | ||
Ochrophyta: Pleurochloridaceae: Monodus | 3 | 84.1–87.1 | ||
Butta | Heterokontophyta: Goniochloridaceae: Tetraedriella | 1 | 92.7 | |
Heterokontophyta: Goniochloridaceae: Trachydiscus | 1 | 94.7 | ||
Ochrophyta: Pleurochloridaceae: Monodus | 1 | 93.5 | ||
Sipsey | Heterokontophyta: Goniochloridaceae: Trachydiscus | 1 | 97.9 | |
Ochrophyta: Goniochloridaceae: Vacuoliviride | 1 | 98.7 | ||
Pustulosa pustulosa | Bear | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 15 | 81.3–98.9 |
Heterokontophyta: Goniochloridaceae: Trachydiscus | 1 | 98.5 | ||
Ochrophyta: Stephanodiscaceae: Discostella | 1 | 98.5 | ||
Duck | Heterokontophyta: Chaetocerotaceae: Chaetoceros | 1 | 96.6 | |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 98.8 | ||
Paint | Dinophyceae: Amphidiniaceae: Amphidinium | 1 | 84.8 | |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 2 | 92.9–97.3 | ||
Dinophyceae: Peridiniales incertae sedis: Vulcanodinium | 1 | 85.1 | ||
Quadrula quadrula | Bogue | Ochrophyta: Pleurochloridaceae: Monodus | 4 | 89.9–96.3 |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 3 | 91.9–98.9 | ||
Quadrula verrucosa | Butta | Heterokontophyta: Goniochloridaceae: Trachydiscus | 3 | 87.2–96.46 |
Paint | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 3 | 98.7–99.5 | |
Sipsey | Heterokontophyta: Goniochloridaceae: Trachydiscus | 4 | 85.8–92.9 | |
Heterokontophyta: Goniochloridaceae: Trebonskia | 2 | 89.4–95.4 | ||
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 2 | 92.3–95.5 | ||
Toxolasma lividum | Paint | Dinophyceae: Ensiculiferaceae: Pentapharsodinium | 1 | 88.1 |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 3 | 87.5–98.7 | ||
Heterokontophyta: Chaetocerotaceae: Chaetoceros | 1 | 84.2 |
Mussel Species | River | Amplicon Phlyum:Family:Genus | No. | Identity |
---|---|---|---|---|
Lampsilis ovata | Paint | Apicomplexa: Babesiidae: Babesia | 1 | 94.6 |
Pleurobema oviforme | Paint | Apicomplexa: Cryptosporidiidae: Cryptosporidium | 2 | 87.0–90.3 |
Ptychobranchus fasciolaris | Paint | Cercozoa: Rhogostomidae: Rhogostoma | 1 | 91.1 |
Pustulosa kieneriana | Sipsey | Apicomplexa: Lecudinidae: Ascogregarina | 1 | 91.3 |
Bigyra: Blastocystidae: Blastocystis | 1 | 80.8 | ||
Bogue | Apicomplexa: Barrouxiidae: Goussia | 1 | 91.8 | |
Quadrula verrucosa | Butta | Apicomplexa: Gregarinidae: Gregarina | 1 | 88.7 |
Sipsey | Apicomplexa: Barrouxiidae: Goussia | 1 | 98.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halliday-Isaac, A.K.; Jackson, C.R. Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States. Microorganisms 2024, 12, 1835. https://doi.org/10.3390/microorganisms12091835
Halliday-Isaac AK, Jackson CR. Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States. Microorganisms. 2024; 12(9):1835. https://doi.org/10.3390/microorganisms12091835
Chicago/Turabian StyleHalliday-Isaac, Akacia K., and Colin R. Jackson. 2024. "Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States" Microorganisms 12, no. 9: 1835. https://doi.org/10.3390/microorganisms12091835
APA StyleHalliday-Isaac, A. K., & Jackson, C. R. (2024). Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States. Microorganisms, 12(9), 1835. https://doi.org/10.3390/microorganisms12091835