Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughn, C.C. Ecosystem services provided by freshwater mussels. Hydrobiologia 2018, 810, 15–27. [Google Scholar] [CrossRef]
- Vaughn, C.C.; Hakenkamp, C.C. The functional role of burrowing bivalves in freshwater ecosystems. Freshw. Biol. 2001, 46, 1431–1446. [Google Scholar] [CrossRef]
- Raikow, D.F.; Hamilton, S.K. Bivalve diets in a midwestern US stream: A stable isotope enrichment study. Limnol. Oceanogr. 2001, 46, 514–522. [Google Scholar] [CrossRef]
- Fogelman, K.J.; Stoeckel, J.A.; Miller, J.M.; Helms, B.S. Feeding ecology of three freshwater mussel species (Family: Unionidae) in a North American lentic system. Hydrobiologia 2023, 850, 385–397. [Google Scholar] [CrossRef]
- Byllaardt, J.V.; Ackerman, J.D. Hydrodynamic habitat influences suspension feeding by unionid mussels in freshwater ecosystems. Freshw. Biol. 2014, 59, 1187–1196. [Google Scholar] [CrossRef]
- Atkinson, C.L.; van Ee, B.C.; Pfeiffer, J.M. Evolutionary history drives aspects of stoichiometric niche variation and functional effects within a guild. Ecology 2020, 101, e03100. [Google Scholar] [CrossRef]
- Sanchez Gonzalez, I.; Hopper, G.W.; Bucholz, J.R.; Kubala, M.E.; Lozier, J.D.; Atkinson, C.L. Niche specialization and community niche space increase with species richness in filter-feeder assemblages. Ecosphere 2023, 14, e4495. [Google Scholar] [CrossRef]
- Tran, K.; Ackerman, J.D. Mussels partition resources from natural waters under flowing conditions. Sci. Total Environ. 2019, 696, 133870. [Google Scholar] [CrossRef]
- Hansen, A.T.; Czuba, J.A.; Schwenk, J.; Longjas, A.; Danesh-Yazdi, M.; Hornback, D.J.; Foufoula-Georgiou, E. Coupling freshwater mussel ecology and river dynamics using a simplified dynamic interaction model. Freshw. Sci. 2016, 35, 200–215. [Google Scholar] [CrossRef]
- Weingarten, E.A.; Atkinson, C.L.; Jackson, C.R. The gut microbiome of freshwater Unionidae mussels is determined by host species and is selectively retained from filtered seston. PLoS ONE 2019, 14, e0224796. [Google Scholar] [CrossRef]
- Aceves, A.K.; Johnson, P.D.; Atkinson, C.L.; van Ee, B.C.; Bullard, S.A.; Arias, C.R. Digestive gland microbiome of Pleurobema cordatum: Mesocosms induce dysbiosis. J. Mollus Stud. 2020, 86, 280–289. [Google Scholar] [CrossRef]
- McCauley, M.; Chiarello, M.; Atkinson, C.L.; Jackson, C.R. Gut microbiomes of freshwater mussels (Unionidae) are taxonomically and phylogenetically variable across years but remain functionally stable. Microorganisms 2021, 9, 411. [Google Scholar] [CrossRef] [PubMed]
- Lawson, L.A.; Atkinson, C.L.; Jackson, C.R. The gut bacterial microbiome of the Threeridge mussel, Amblema plicata, varies between rivers but shows a consistent core community. Freshw. Biol. 2022, 67, 1125–1136. [Google Scholar] [CrossRef]
- Carty, S. Freshwater Dinoflagellates of North America, 1st ed.; Cornell University Press: Ithaca, NY, USA, 2014; pp. 4–17. [Google Scholar]
- Maggard, I.J.; Deel, K.B.; Etoll, T.W.; Sproles, R.C.; Lane, T.W.; Cahoon, A.B. Freshwater mussels prefer a diet of stramenopiles and fungi over bacteria. Sci. Rep. 2024, 14, 11958. [Google Scholar] [CrossRef]
- Grizzle, J.M.; Brunner, C.J. Infectious disease of freshwater mussels and other freshwater bivalve mollusks. Rev. Fish. Sci. 2009, 17, 425–467. [Google Scholar] [CrossRef]
- Bolotov, I.N.; Klass, A.L.; Kondakov, A.V.; Vikhrev, I.V.; Bespalaya, Y.V.; Gofarov, M.Y.; Filippov, B.Y.; Bogan, A.E.; Lopes-Lima, M.; Lunn, Z.; et al. Freshwater mussels house a diverse mussel-associated leech assemblage. Sci. Rep. 2019, 9, 16449. [Google Scholar] [CrossRef]
- Prosser, R.S.; Lynn, D.H.; Salerno, J.; Bennett, J.; Gillis, P.L. The facultatively parasitic ciliated protozoan, Tetrahymena glochidiophila (Lynn, 2018), causes a reduction in viability of freshwater mussel glochidia. J. Invertebr. Pathol. 2018, 157, 25–31. [Google Scholar] [CrossRef]
- Taskinen, J.; Urbańska, M.; Ercoli, F.; Andrzejewski, W.; Ożgo, M.; Deng, B.; Choo, J.M.; Riccardi, N. Parasites in sympatric populations of native and invasive freshwater bivalves. Hydrobiologia 2021, 848, 3167–3178. [Google Scholar] [CrossRef]
- Lewisch, E.; Arnold, F.; Fuehrer, H.P.; Harl, J.; Thielen, F.; El-Matbouli, M. Parasites and their impact on thick-shelled river mussels Unio crassus from two populations in Luxembourg. Dis. Aquat. Org. 2023, 153, 31–43. [Google Scholar] [CrossRef]
- Müller, T.; Czarnoleski, M.; Labecka, A.M.; Cichy, A.; Zając, K.; Dragosz-Kluska, D. Factors affecting trematode infection rates in freshwater mussels. Hydrobiologia 2015, 742, 59–70. [Google Scholar] [CrossRef]
- Edwards, D.D.; Vidrine, M.F. Host diversity affects parasite diversity: A case study involving Unionicola spp. inhabiting freshwater mussels. J. Parasitol. 2020, 106, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.R.; Dimock, R.V., Jr.; Kuhn, R.E. The symbiotic water mite Unionicola formosa (Acari: Unionicolidae) ingests mucus and tissue of its molluscan host. J. Parasitol. 2000, 86, 1254–1258. [Google Scholar] [CrossRef]
- Carella, F.; Villari, G.; Maio, N.; De Vico, G. Disease and disorders of freshwater unionid mussels: A brief overview of recent studies. Front. Physiol. 2016, 7, 00489. [Google Scholar] [CrossRef] [PubMed]
- Knowles, S.; Dennis, M.; McElwain, A.; Leis, E.; Richard, J. Pathology and infectious agents of unionid mussels: A primer for pathologists in disease surveillance and investigation of mortality events. Vet. Pathol. 2023, 60, 510–528. [Google Scholar] [CrossRef]
- Brian, J.I.; Aldridge, D.C. Endosymbionts: An overlooked threat in the conservation of freshwater mussels? Biol. Conserv. 2019, 237, 155–165. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Fayer, R.; Lewis, E.J.; Trout, J.M.; Farley, C.A. Cryptosporidium oocysts in Bent mussels (Ischadium recurvum) in the Chesapeake Bay. Parasitol. Res. 1999, 85, 518–521. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Marcogliese, D.J.; de Lafontaine, Y.; Da Silva, A.J.; Mhangami-Ruwende, B.; Pieniazek, N.J. Cryptosporidium parvum oocysts in zebra mussels (Dreissena polymorpha): Evidence from the St. Lawrence River. Parasitol. Res. 2001, 87, 231–234. [Google Scholar] [CrossRef]
- Kopecna, J.; Jirku, M.; Obornik, M.; Tokarev, Y.S.; Lukes, J.; Modry, D. Phylogenetic Analysis of Coccidian Parasites from Invertebrates: Search for Missing Links. Protist 2006, 157, 173–183. [Google Scholar] [CrossRef]
- Francisco, C.J.; Hermida, M.A.; Santos, M.J. Parasites and symbionts from Mytilus galloprovincialis (Lamark, 1819) (Bivalves: Mytilidae) of the Aveiro estuary Portugal. J. Parasitol. 2010, 96, 200–205. [Google Scholar] [CrossRef]
- Inglis, S.D.; Kristmundsson, A.; Freeman, M.A.; Levesque, M.; Stokesbury, K. Gray meat in the Atlantic sea scallop, Placopecten magellanicus, and the identification of a known pathogenic scallop apicomplexan. J. Invertebr. Pathol. 2016, 141, 66–75. [Google Scholar] [CrossRef]
- Meyers, T.R. Endemic diseases of cultured shellfish of Long Island, New York: Adult and juvenile American oysters (Crassostrea virginica) and hard clams (Mercenaria mercenaria). Aquaculture 1981, 22, 305–330. [Google Scholar] [CrossRef]
- Allam, B.; Carden, W.E.; Ward, J.E.; Ralph, G.; Winnicki, S. Early host-pathogen interactions in marine bivalves: Evidence that the alveolate parasite Perkinsus marinus infects through the oyster mantle during rejection of pseudofeces. J. Invertebr. Pathol. 2013, 113, 26–34. [Google Scholar] [CrossRef]
- Soudant, P.; Chu, F.E.; Volety, A. Host–parasite interactions: Marine bivalve molluscs and protozoan parasites, Perkinsus species. J. Invertebr. Pathol. 2013, 114, 196–216. [Google Scholar] [CrossRef]
- Villalba, A.; Reece, K.S.; Ordas, M.C.; Casas, S.M.; Figueras, A. Perkinsosis in molluscs: A review. Aquat. Living Resour. 2004, 17, 411–432. [Google Scholar] [CrossRef]
- Mladineo, I.; Trumbic, Z.; Jozic, S.; Segvic, T. First report of Cryptosporidium sp. (Coccidia, Apicomplexa) oocysts in the black mussel (Mytilus galloprovincialis) reared in the Mali Ston Bay, Adriatic Sea. J. Shellfish. Res. 2009, 28, 541–546. [Google Scholar] [CrossRef]
- Neemuchwala, S.; Johnson, N.A.; Pfeiffer, J.M.; Lopes-Lima, M.; Gomes-dos-Santos, A.; Froufe, E.; Hillis, D.M.; Smith, C.H. Coevolution with host fishes shapes parasitic life histories in a group of freshwater mussels (Unionidae: Quadrulini). Bull. Soc. Syst. Biol. 2023, 2, 1–25. [Google Scholar] [CrossRef]
- Bolland, S.J.; Zahedi, A.; Oskam, C.; Murphy, B.; Ryan, U. Cryptosporidium bollandi n. sp. (Apicomplexa: Cryptosporidiiae) from angelfish (Pterophyllum scalare) and Oscar fish (Astronotus ocellatus). Exp. Parasitol. 2020, 217, 107956. [Google Scholar] [CrossRef]
- Hoffman, G.L.; Williams, E.H. Parasites of North American Freshwater Fishes, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1999; pp. 21–91. [Google Scholar]
- Molnar, K. Remarks on the morphology, site of infection and validity of some coccidian species from fish. Acta Vet. Hung. 1996, 44, 295–308. [Google Scholar] [PubMed]
- Hopper, G.W.; Chen, S.; Sanchez Gonzalez, I.; Bucholz, J.R.; Lu, Y.; Atkinson, C.L. Aggregated filter-feeders govern the flux and stoichiometry of locally available energy and nutrients in rivers. Funct. Ecol. 2021, 35, 1183–1195. [Google Scholar] [CrossRef]
- Chiarello, M.; Bucholz, J.R.; McCauley, M.; Vaughn, S.N.; Hopper, G.W.; Gonzalez, I.S.; Atkinson, C.L.; Lozier, J.D.; Jackson, C.R. Environment and co-occurring native mussel species, but not host genetics, impact the microbiome of a freshwater invasive species (Corbicula fluminea). Front. Microbiol. 2022, 13, 800061. [Google Scholar] [CrossRef]
- Lopes-Lima, M.; Burlakova, L.; Karatayev, A.; Gomes-dos-Satos, A.; Zieritz, A.; Froufe, E.; Bogan, A.E. Revisiting the North American freshwater mussel genus Quadrula sensu lato (Bivalvia Unionidae): Phylogeny, taxonomy and species delineation. Zool. Scr. 2019, 48, 313–336. [Google Scholar] [CrossRef]
- Kristmundsson, A.; Helgason, S.; Bambir, S.H.; Eydal, M.; Freeman, M.A. Margolisiella islandica sp. nov. (Apicomplexa: Eimeridae) infecting Iceland scallop Chlamys islandica (Müller, 1776) in Icelandic waters. J. Invertebr. Pathol. 2011, 108, 139–146. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Evol. Biol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Hopper, G.W.; Bucholz, J.R.; Dubose, T.P.; Fogelman, K.J.; Keogh, S.M.; Kubala, M.E.; Atkinson, C.L. A trait dataset for freshwater mussels of the United States of America. Sci. Data 2023, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: Cham, Switzerland, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Satta, C.T.; Rene, A.; Padedda, B.M.; Pulina, S.; Lai, G.G.; Soru, O.; Buscarinu, P.; Virdis, T.; Marceddu, S.; Luglie, A. First detection of the bloom forming Unruhdinium penardii (Dinophyceae) in a Mediterranean reservoir: Insights on its ecology, morphology and genetics. Adv. Oceanogr. Limnol. 2020, 11, 71–83. [Google Scholar] [CrossRef]
- Elias, M.; Amaral, R.; Fawley, K.P.; Fawley, M.W.; Nemcova, Y.; Neustupa, J.; Pribyl, P.; Santos, L.M.A.; Sevcikova, T. Eustigmatophyceae. In Handbook of the Protists, 2nd ed.; Archibald, J.M., Simpson, A.G., Slamovits, C.H., Eds.; Springer: Cham, Switzerland, 2017; Volume 10, pp. 367–406. [Google Scholar]
- Baker, S.M.; Levinton, J.S. Selective feeding by three native North American freshwater mussels implies food competition with zebra mussels. Hydrobiologia 2003, 505, 97–105. [Google Scholar] [CrossRef]
- Atkinson, C.L.; First, M.R.; Covich, A.P.; Opsahl, S.P.; Golladay, S.W. Suspended material availability and filtration–biodeposition processes performed by a native and invasive bivalve species in streams. Hydrobiologia 2011, 667, 191–204. [Google Scholar] [CrossRef]
- Mychek-Londer, J.G.; Chaganti, S.R.; Heath, D.D. Metabarcoding of native and invasive species in stomach contents of Great Lakes fishes. PLoS ONE 2020, 15, e0236077. [Google Scholar] [CrossRef]
- O’Rorke, R.; Lavery, S.; Chow, S.; Takeyama, H.; Tsai, P.; Beckley, L.E.; Thompson, P.A.; Waite, A.M.; Jeffs, A.G. Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS ONE 2012, 7, e42757. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Chang, Z.; Li, J.; Li, T. Selective feeding of three bivalve species on the phytoplankton community in a marine pond revealed by high-throughput sequencing. Sci. Rep. 2022, 12, 6163. [Google Scholar] [CrossRef] [PubMed]
- Lovy, J.; Friend, S.E. Intestinal coccidiosis of anadromous and landlocked alewives, Alosa pseudoharengus, caused by Goussia ameliae n. sp. and G. alosii n. sp. (Apicomplexa: Eimeriidae). Int. J. Parasitol. Parasites Wildl. 2015, 4, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Matsche, M.A.; Adams, C.R.; Blazer, V.S. Newly described coccidia Goussia bayae from White Perch Morone americana: Morphology and phylogenetics support emerging taxonomy of Goussia within piscine hosts. J. Parasitol. 2019, 105, 1–10. [Google Scholar] [CrossRef]
- Saraiva, A.; Eiras, J.C.; Cruz, C.; Xavier, R. Synopsis of the species of coccidians reported in marine fish. Animals 2023, 13, 2119. [Google Scholar] [CrossRef]
- Thompson, R.A.; Koh, W.H.; Clode, P.L. Cryptosporidium—What is it? Food Waterborne Parasitol. 2016, 4, 54–61. [Google Scholar] [CrossRef]
- Zahedi, A.; Monis, P.; Aucote, S.; King, B.; Paparini, A.; Jian, F.; Yang, R.; Oskam, C.; Ball, A.; Robertson, I.; et al. Zoonotic Cryptosporidium Species in Animals Inhabiting Sydney Water Catchments. PLoS ONE 2016, 11, e0168169. [Google Scholar] [CrossRef]
- Hayes, L.; Robinson, G.; Chalmers, R.M.; Ormerod, S.J.; Paziewska-Harris, A.; Chadwick, E.A.; Durance, I.; Cable, J. The occurrence and zoonotic potential of Cryptosporidium species in freshwater biota. Parasites Vectors 2023, 16, 209. [Google Scholar] [CrossRef]
- Martins, M.L.; Cardoso, L.; Marchiori, N.; Benites de Pádua, S. Protozoan infections in farmed fish from Brazil: Diagnosis and pathogenesis. Rev. Bras. Parasitol. Vet. 2015, 24, 1–20. [Google Scholar] [CrossRef]
- Beggel, S.; Hinzmann, M.; Machado, J.; Giest, J. Combined impact of acute exposure to ammonia and temperature stress on the freshwater mussel Unio pictorum. Water 2017, 9, 455. [Google Scholar] [CrossRef]
- Jia, C.; Wu, C.; Huang, X.; Zhou, C.; Ouyang, S.; Lui, X.; Wu, X. Effect of complex hydraulic variables and physicochemical factors on freshwater mussel density in the largest floodplain lake, China. Ecol. Process. 2023, 12, 15. [Google Scholar] [CrossRef]
- Montes, J.F.; Durfort, M.; Garcia-Valero, J. Parasitism by the protozoan Perkinsus atlanticus favours the development of opportunistic infections. Dis. Aquat. Organ. 2001, 46, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, A.; Rasmussen, J.B. Extinction rates of North American freshwater fauna. Conserv. Biol. 1999, 13, 1220–1222. [Google Scholar] [CrossRef]
- Haag, W.R.; Williams, J.D. Biodiversity on the brink: An assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 2014, 735, 45–60. [Google Scholar] [CrossRef]
- Haag, W.R. Reassessing enigmatic mussel declines in the United States. Freshw. Mollusk Biol. Conserv. 2019, 22, 43–60. [Google Scholar] [CrossRef]
- Waller, D.L.; Cope, W.G. The status of mussel health assessment and a path forward. Freshw. Mollusk Biol. Conserv. 2019, 22, 26–42. [Google Scholar] [CrossRef]
Mussel Species | River | Microeukaryote Amplicon Phlyum:Family:Genus | No. | Identity |
---|---|---|---|---|
Amblema plicata | Bear | Ochrophyta: Paraphysomonadaceae: Paraphysomonas | 1 | 89.8 |
Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 4 | 89.0–99.1 | |
Ochrophyta: Eunotiaceae: Eunotia | 1 | 83.6 | ||
Ochrophyta: Fragilariaceae: Fragilariforma | 1 | 94.6 | ||
Ochrophyta: Stephanodiscaceae: Stephanodiscus | 1 | 80.2 | ||
Ochrophyta: Pleurochloridaceae: Monodus | 2 | 91.6–95.0 | ||
Duck | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 99.6 | |
Heterokontophyta:Cymatosiraceae: Plagiogrammopsis | 1 | 99.6 | ||
Paint | Dinophyceae:Kryptoperidiniaceae: Unruhdinium | 5 | 81.3–95.5 | |
Sipsey | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 99.7 | |
Cyclonaias tuberculata | Duck | Heterokontophyta: Stephanodiscaceae: Cyclotella | 1 | 93.4 |
Paint | Chlorophyta: Pedinomonadaceae: Pedinomonas | 1 | 96.5 | |
Dinophyceae: Amphidiniaceae Amphidinium | 1 | 81.6 | ||
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 9 | 97.2–99.8 | ||
Dinophyceae: Peridiniopsidaceae: Parvodinium | 1 | 81.4 | ||
Elliptio arca | Butta | Heterokontophyta: Goniochloridaceae: Tetraedriella | 2 | 84.2–94.7 |
Heterokontophyta: Goniochloridaceae: Trachydiscus | 1 | 92.5 | ||
Sipsey | Dinophyceae: Gymnodiniaceae: Akashiwo | 1 | 73.3 | |
Elliptio crassidens | Bear | Ochrophyta: Goniochloridaceae: Trachydiscus | 1 | 88.72 |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 2 | 88.1–96.3 | ||
Fusconaia cerina | Butta | Ochrophyta: Pleurochloridaceae: Monodus | 1 | 95.5 |
Ochrophyta: Monodopsidaceae: Nannochloropsis | 1 | 87 | ||
Heterokontophyta: Goniochloridaceae: Trachydiscus | 2 | 82.7–92.5 | ||
Hamiota perovalis | Sipsey | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 83.6 |
Lampsilis ornata | Bogue | Heterokontophyta: Pleurochloridaceae: Monodus | 2 | 92.6–93.3 |
Ochrophyta: Cymatosiraceae: Plagiogrammopsis | 1 | 85.12 | ||
Ochrophyta: Goniochloridaceae: Trachydiscus | 1 | 86.31 | ||
Butta | Heterokontophyta: Pleurochloridaceae: Monodus | 2 | 90.9–94.9 | |
Sipsey | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 93.93 | |
Lampsilis ovata | Bear | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 4 | 85.9–99.4 |
Ochrophyta: Goniochloridaceae: Trachydiscus | 1 | 91.6 | ||
Paint | Colponemida: Colponemidia: Colponema | 1 | 96.6 | |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 9 | 82.8–99.6 | ||
Dinophyceae: Kryptoperidiniaceae: Durinskia | 2 | 83.3–88.0 | ||
Dinophyceae: Prorocentraceae: Prorocentrum | 1 | 90.3 | ||
Lampsilis teres | Bogue | Ochrophyta: Goniochloridaceae: Trachydiscus | 1 | 87.2 |
Ochrophyta: Pleurochloridaceae: Monodus | 1 | 92.5 | ||
Lasmigona alabamensis | Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 99.5 |
Ochrophyta: Thalassiosiraceae: Thalassiosira | 1 | 86.3 | ||
Megalonaias nervosa | Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 87.8 |
Obliquaria reflexa | Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 86.0 |
Duck | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 98.9 | |
Heterokontophyta: Stephanodiscaceae: Cyclotella | 1 | 99.8 | ||
Sipsey | Heterokontophyta: Goniochloridaceae: Vacuoliviride | 1 | 98.8 | |
Pleurobema oviforme | Paint | Dinophyceae: Kryptoperidiniaceae: Durinskia | 1 | 99.2 |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 4 | 98.8–99.1 | ||
Potamilus purpuratus | Bogue | Ochrophyta: Pleurochloridaceae: Monodus | 1 | 91.5 |
Ptychobranchus fasciolaris | Paint | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 2 | 97.9–99.2 |
Ochrophyta: Stephanodiscaceae: Discostella | 1 | 87.5 | ||
Ochrophyta: Thalassiosiraceae: Thalassiosira | 1 | 88.9 | ||
Pustulosa kieneriana | Bogue | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 6 | 84.2–97.7 |
Ochrophyta: Chlorobotryaceae: Characiopsis | 1 | 84.9 | ||
Ochrophyta: Cymatosiraceae: Plagiogrammopsis | 1 | 88.9 | ||
Ochrophyta: Dinobryaceae: Dinobryon | 1 | 96.3 | ||
Ochrophyta: Goniochloridaceae: Vacuoliviride | 1 | 93 | ||
Ochrophyta: Monodopsidaceae: Nannochloropsis | 1 | 90.4 | ||
Ochrophyta: Pleurochloridaceae: Monodus | 3 | 84.1–87.1 | ||
Butta | Heterokontophyta: Goniochloridaceae: Tetraedriella | 1 | 92.7 | |
Heterokontophyta: Goniochloridaceae: Trachydiscus | 1 | 94.7 | ||
Ochrophyta: Pleurochloridaceae: Monodus | 1 | 93.5 | ||
Sipsey | Heterokontophyta: Goniochloridaceae: Trachydiscus | 1 | 97.9 | |
Ochrophyta: Goniochloridaceae: Vacuoliviride | 1 | 98.7 | ||
Pustulosa pustulosa | Bear | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 15 | 81.3–98.9 |
Heterokontophyta: Goniochloridaceae: Trachydiscus | 1 | 98.5 | ||
Ochrophyta: Stephanodiscaceae: Discostella | 1 | 98.5 | ||
Duck | Heterokontophyta: Chaetocerotaceae: Chaetoceros | 1 | 96.6 | |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 1 | 98.8 | ||
Paint | Dinophyceae: Amphidiniaceae: Amphidinium | 1 | 84.8 | |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 2 | 92.9–97.3 | ||
Dinophyceae: Peridiniales incertae sedis: Vulcanodinium | 1 | 85.1 | ||
Quadrula quadrula | Bogue | Ochrophyta: Pleurochloridaceae: Monodus | 4 | 89.9–96.3 |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 3 | 91.9–98.9 | ||
Quadrula verrucosa | Butta | Heterokontophyta: Goniochloridaceae: Trachydiscus | 3 | 87.2–96.46 |
Paint | Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 3 | 98.7–99.5 | |
Sipsey | Heterokontophyta: Goniochloridaceae: Trachydiscus | 4 | 85.8–92.9 | |
Heterokontophyta: Goniochloridaceae: Trebonskia | 2 | 89.4–95.4 | ||
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 2 | 92.3–95.5 | ||
Toxolasma lividum | Paint | Dinophyceae: Ensiculiferaceae: Pentapharsodinium | 1 | 88.1 |
Dinophyceae: Kryptoperidiniaceae: Unruhdinium | 3 | 87.5–98.7 | ||
Heterokontophyta: Chaetocerotaceae: Chaetoceros | 1 | 84.2 |
Mussel Species | River | Amplicon Phlyum:Family:Genus | No. | Identity |
---|---|---|---|---|
Lampsilis ovata | Paint | Apicomplexa: Babesiidae: Babesia | 1 | 94.6 |
Pleurobema oviforme | Paint | Apicomplexa: Cryptosporidiidae: Cryptosporidium | 2 | 87.0–90.3 |
Ptychobranchus fasciolaris | Paint | Cercozoa: Rhogostomidae: Rhogostoma | 1 | 91.1 |
Pustulosa kieneriana | Sipsey | Apicomplexa: Lecudinidae: Ascogregarina | 1 | 91.3 |
Bigyra: Blastocystidae: Blastocystis | 1 | 80.8 | ||
Bogue | Apicomplexa: Barrouxiidae: Goussia | 1 | 91.8 | |
Quadrula verrucosa | Butta | Apicomplexa: Gregarinidae: Gregarina | 1 | 88.7 |
Sipsey | Apicomplexa: Barrouxiidae: Goussia | 1 | 98.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halliday-Isaac, A.K.; Jackson, C.R. Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States. Microorganisms 2024, 12, 1835. https://doi.org/10.3390/microorganisms12091835
Halliday-Isaac AK, Jackson CR. Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States. Microorganisms. 2024; 12(9):1835. https://doi.org/10.3390/microorganisms12091835
Chicago/Turabian StyleHalliday-Isaac, Akacia K., and Colin R. Jackson. 2024. "Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States" Microorganisms 12, no. 9: 1835. https://doi.org/10.3390/microorganisms12091835