Establishment of a Protocol for Viability qPCR in Dental Hard Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Teeth, and Bacterial Strains
2.2. Treatment of Purified Genomic DNA of E. faecalis with PMAxx
2.3. Treatment of Planktonic E. faecalis with PMAxx
2.4. Preparation of Teeth and Cultivation with E. faecalis
2.5. Treatment of Teeth with PMAxx and Grinding of Teeth
2.6. Purification of Genomic DNA from Tooth Powder
2.7. Quantitative Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Test of PMAxx for Functionality
3.2. Quantitative Live/Dead qPCR in Infected Root Canals
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tzanetakis, G.N.; Azcarate-Peril, A.M.; Zachaki, S.; Panopoulos, P.; Kontakiotis, E.G.; Madianos, P.N.; Divaris, K. Comparison of Bacterial Community Composition of Primary and Persistent Endodontic Infections Using Pyrosequencing. J. Endod. 2015, 41, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Görduysus, M.Ö.; Yilmaz, Z.; Görduysus, M.; Kaya, C.; Gülmez, D.; Emini, L.; Hoxha, V. Bacterial Reduction in Infected Root Canals Treated With Calcium Hydroxide Using Hand and Rotary Instrument: An in-Vivo Study. Clin. Dent. Res. 2012, 36, 15–21. [Google Scholar]
- Siqueira Junior, J.F.; Rôças, I.D.N.; Marceliano-Alves, M.F.; Pérez, A.R.; Ricucci, D. Unprepared Root Canal Surface Areas: Causes, Clinical Implications, and Therapeutic Strategies. Braz. Oral Res. 2018, 32, e65. [Google Scholar] [CrossRef]
- Kirsch, J.; Basche, S.; Neunzehn, J.; Dede, M.; Dannemann, M.; Hannig, C.; Weber, M.T. Is It Really Penetration? Locomotion of Devitalized Enterococcus Faecalis Cells within Dentinal Tubules of Bovine Teeth. Arch. Oral Biol. 2017, 83, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, J.; Basche, S.; Neunzehn, J.; Dede, M.; Dannemann, M.; Hannig, C.; Weber, M.T. Is It Really Penetration? Part 2. Locomotion of Enterococcus Faecalis Cells within Dentinal Tubules of Bovine Teeth. Clin. Oral Investig. 2019, 23, 4325–4334. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Linares, M.; Aguado-Pérez, B.; Baca, P.; Arias-Moliz, M.T.; Ferrer-Luque, C.M. Efficacy of Antimicrobial Solutions against Polymicrobial Root Canal Biofilm. Int. Endod. J. 2017, 50, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro-Tanomaru, J.M.; Nascimento, C.A.; Faria-Junior, N.B.; Graeff, M.S.Z.; Watanabe, E.; Tanomaru-Filho, M. Antibiofilm Activity of Irrigating Solutions Associated with Cetrimide. Confocal Laser Scanning Microscopy. Int. Endod. J. 2014, 47, 1058–1063. [Google Scholar] [CrossRef]
- Tawakoli, P.N.; Al-Ahmad, A.; Hoth-Hannig, W.; Hannig, M.; Hannig, C. Comparison of Different Live/Dead Stainings for Detection and Quantification of Adherent Microorganisms in the Initial Oral Biofilm. Clin. Oral Investig. 2013, 17, 841–850. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, B.C.; de Almeida Gomes, F.; Ferreira, C.M.; de Negreiros Pinto Rocha, M.M.; Barros, E.B.; de Albuquerque, D.S. Persistent Extra-Radicular Bacterial Biofilm in Endodontically Treated Human Teeth: Scanning Electron Microscopy Analysis after Apical Surgery. Microsc. Res. Technol. 2017, 80, 662–667. [Google Scholar] [CrossRef]
- Rusu, D.; Stratul, S.-I.; Calniceanu, H.; Boariu, M.; Ogodescu, A.; Milicescu, S.; Didilescu, A.; Roman, A.; Surlin, P.; Locovei, C.; et al. A Qualitative and Semiquantitative SEM Study of the Morphology of the Biofilm on Root Surfaces of Human Teeth with Endodontic-periodontal Lesions. Exp. Ther. Med. 2020, 20, 201. [Google Scholar] [CrossRef]
- Hannig, C.; Follo, M.; Hellwig, E.; Al-Ahmad, A. Visualization of Adherent Micro-Organisms Using Different Techniques. J. Med. Microbiol. 2010, 59, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Yang, C.J.; Lai, J.Y. Optically Active Two-Dimensional MoS2-Based Nanohybrids for Various Biosensing Applications: A Comprehensive Review. Biosens. Bioelectron. 2024, 246, 115861. [Google Scholar] [CrossRef] [PubMed]
- Frigoli, M.; Lowdon, J.W.; Caldara, M.; Cleij, T.J.; Diliën, H.; Eersels, K.; van Grinsven, B. Emerging Biomimetic Sensor Technologies for the Detection of Pathogenic Bacteria: A Commercial Viability Study. ACS Omega 2024, 9, 23155–23171. [Google Scholar] [CrossRef] [PubMed]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent Progress and Growth in Biosensors Technology: A Critical Review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Timpel, J.; Klinghammer, S.; Riemenschneider, L.; Ibarlucea, B.; Cuniberti, G.; Hannig, C.; Sterzenbach, T. Sensors for in Situ Monitoring of Oral and Dental Health Parameters in Saliva. Clin. Oral Investig. 2023, 27, 5719–5736. [Google Scholar] [CrossRef] [PubMed]
- Sterzenbach, T.; Pioch, A.; Dannemann, M.; Hannig, C.; Weber, M.T. Quantification of Bacterial Colonization in Dental Hard Tissues Using Optimized Molecular Biological Methods. Front. Genet. 2020, 11, 599137. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.T.; Alkhafaji, Y.; Pioch, A.; Trips, E.; Basche, S.; Dannemann, M.; Kilistoff, A.; Hannig, C.; Sterzenbach, T. Quantification of Bacterial DNA from Infected Human Root Canals Using QPCR and DAPI after Disinfection with Established and Novel Irrigation Protocols. Materials 2022, 15, 1911. [Google Scholar] [CrossRef] [PubMed]
- Baymiev, A.K.; Baymiev, A.K.; Kuluev, B.R.; Shvets, K.Y.; Yamidanov, R.S.; Matniyazov, R.T.; Chemeris, D.A.; Zubov, V.V.; Alekseev, Y.I.; Mavzyutov, A.R.; et al. Modern Approaches to Differentiation of Live and Dead Bacteria Using Selective Amplification of Nucleic Acids. Microbiology 2020, 89, 13–27. [Google Scholar] [CrossRef]
- Cangelosi, G.A.; Meschke, J.S. Dead or Alive: Molecular Assessment of Microbial Viability. Appl. Environ. Microbiol. 2014, 80, 5884–5891. [Google Scholar] [CrossRef]
- Fittipaldi, M.; Nocker, A.; Codony, F. Progress in Understanding Preferential Detection of Live Cells Using Viability Dyes in Combination with DNA Amplification. J. Microbiol. Methods 2012, 91, 276–289. [Google Scholar] [CrossRef]
- Codony, F.; Dinh-Thanh, M.; Agustí, G. Key Factors for Removing Bias in Viability PCR-Based Methods: A Review. Curr. Microbiol. 2020, 77, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Yasunaga, A.; Yoshida, A.; Morikawa, K.; Maki, K.; Nakamura, S.; Soh, I.; Awano, S.; Ansai, T. Monitoring the Prevalence of Viable and Dead Cariogenic Bacteria in Oral Specimens and in Vitro Biofilms by QPCR Combined with Propidium Monoazide. BMC Microbiol. 2013, 13, 157. [Google Scholar] [CrossRef]
- Sánchez, M.C.; Marín, M.J.; Figuero, E.; Llama-Palacios, A.; León, R.; Blanc, V.; Herrera, D.; Sanz, M. Quantitative Real-Time PCR Combined with Propidium Monoazide for the Selective Quantification of Viable Periodontal Pathogens in an in Vitro Subgingival Biofilm Model. J. Periodontal Res. 2014, 49, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Lu, H.; Dong, B.; Huang, X.; Cheng, H.; Qu, R.; Hu, Y.; Zhong, L.; Guo, Z.; You, Y.; et al. Systematic Evaluation of the Viable Microbiome in the Human Oral and Gut Samples with Spike-in Gram +/− Bacteria. Msystems 2023, 8, e00738-22. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Shin, Y.; Lee, C.Y.; Jung, I.Y. In Vivo Quantitative Evaluation of Live and Dead Bacteria in Root Canal Infection by Using Propidium Monoazide with Real-Time PCR. J. Endod. 2013, 39, 1359–1363. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, E.T.; Neves, V.D.; Reis, C.C.; Longo, P.L.; Mayer, M.P.A. Evaluation of the Propidium Monoazide-Quantitative Polymerase Chain Reaction Method for the Detection of Viable Enterococcus Faecalis. J. Endod. 2016, 42, 1089–1092. [Google Scholar] [CrossRef] [PubMed]
- Dede, M.; Basche, S.; Neunzehn, J.; Dannemann, M.; Hannig, C.; Kühne, M.T. Efficacy of Endodontic Disinfection Protocols in an E. Faecalis Biofilm Model—Using DAPI Staining and SEM. J. Funct. Biomater. 2023, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Nogva, H.K.; Drømtorp, S.M.; Nissen, H.; Rudi, K. Ethidium Monoazide for DNA-Based Differentiation of Viable and Dead Bacteria by 5′-Nuclease PCR. Biotechniques 2003, 34, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Loozen, G.; Boon, N.; Pauwels, M.; Quirynen, M.; Teughels, W. Live/Dead Real-Time Polymerase Chain Reaction to Assess New Therapies against Dental Plaque-Related Pathologies. Mol. Oral Microbiol. 2011, 26, 253–261. [Google Scholar] [CrossRef]
- Agustí, G.; Fittipaldi, M.; Codony, F. Optimization of a Viability PCR Method for the Detection of Listeria Monocytogenes in Food Samples. Curr. Microbiol. 2018, 75, 779–785. [Google Scholar] [CrossRef]
- Nocker, A.; Cheung, C.Y.; Camper, A.K. Comparison of Propidium Monoazide with Ethidium Monoazide for Differentiation of Live vs. Dead Bacteria by Selective Removal of DNA from Dead Cells. J. Microbiol. Methods 2006, 67, 310–320. [Google Scholar] [CrossRef]
- Biotium. PMAxxTM Dye, 20 mM in H2O; Biotium: Fremont, CA, USA. Available online: https://biotium.com/product/pmaxx-20-mm-in-h2o/ (accessed on 8 July 2024).
- Codony, F.; Barreto, L.; Agustí, G.; Asensio, D. Understanding the Reaction Balances behind the Viability PCR Protocols Based on Photoreactive Dyes. J. Microbiol. Methods 2023, 209, 106737. [Google Scholar] [CrossRef] [PubMed]
- Desneux, J.; Chemaly, M.; Pourcher, A.M. Experimental Design for the Optimization of Propidium Monoazide Treatment to Quantify Viable and Non-Viable Bacteria in Piggery Effluents. BMC Microbiol. 2015, 15, 164. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.; Villena, I.; Dumètre, A.; Escotte-Binet, S.; Favennec, L.; Dubey, J.P.; Aubert, D.; La Carbona, S. Evaluation of Propidium Monoazide–Based QPCR to Detect Viable Oocysts of Toxoplasma Gondii. Parasitol. Res. 2019, 118, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, W.; Piqueras, J.; Evtoski, Z.; Sastre, G.; Sancho, R.; Gonzalez, C.; Sánchez, G. Interlaboratory Comparative Study to Detect Potentially Infectious Human Enteric Viruses in Influent and Effluent Waters. Food Environ. Virol. 2019, 11, 350–363. [Google Scholar] [CrossRef]
- Truchado, P.; Gil, M.I.; Larrosa, M.; Allende, A. Detection and Quantification Methods for Viable but Non-Culturable (VBNC) Cells in Process Wash Water of Fresh-Cut Produce: Industrial Validation. Front. Microbiol. 2020, 11, 673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sterzenbach, T.; Neumann, V.; Trips, E.; Basche, S.; Hannig, C.; Kühne, M.-T. Establishment of a Protocol for Viability qPCR in Dental Hard Tissues. Microorganisms 2024, 12, 1400. https://doi.org/10.3390/microorganisms12071400
Sterzenbach T, Neumann V, Trips E, Basche S, Hannig C, Kühne M-T. Establishment of a Protocol for Viability qPCR in Dental Hard Tissues. Microorganisms. 2024; 12(7):1400. https://doi.org/10.3390/microorganisms12071400
Chicago/Turabian StyleSterzenbach, Torsten, Vanessa Neumann, Evelyn Trips, Sabine Basche, Christian Hannig, and Marie-Theres Kühne. 2024. "Establishment of a Protocol for Viability qPCR in Dental Hard Tissues" Microorganisms 12, no. 7: 1400. https://doi.org/10.3390/microorganisms12071400
APA StyleSterzenbach, T., Neumann, V., Trips, E., Basche, S., Hannig, C., & Kühne, M.-T. (2024). Establishment of a Protocol for Viability qPCR in Dental Hard Tissues. Microorganisms, 12(7), 1400. https://doi.org/10.3390/microorganisms12071400