Humoral and Innate Immunological Profile of Paediatric Recipients of Pfizer-BioNTech BNT162b2 mRNA Vaccine
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Screening and Recruitment of Participants
2.3. Blood Sample Collection
2.4. Immune Cell Counts by FACS
2.5. ELISA for Anti-Nucleocapsid Protein Antibody of SARS-CoV-2
2.6. Chemiluminescence Assay for Anti-Spike Protein Antibody of SARS-CoV-2
2.7. PBMC Isolation
2.8. IFNα Challenge Assay- qPCR for ISG
2.9. Statistical Methods
3. Results
3.1. Study Participants and Demographics
3.2. Anti Spike Antibody Levels
3.3. Immune Cell Counts
3.4. Interferon-Stimulated Gene Expression to Type-1 Interferon Challenge
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, N.; Joyal-Desmarais, K.; Ribeiro, P.A.B.; Vieira, A.M.; Stojanovic, J.; Sanuade, C.; Yip, D.; Bacon, S.L. Long-Term Effectiveness of COVID-19 Vaccines against Infections, Hospitalisations, and Mortality in Adults: Findings from a Rapid Living Systematic Evidence Synthesis and Meta-Analysis up to December, 2022. Lancet Respir. Med. 2023, 11, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Maruggi, G.; Chiarot, E.; Giovani, C.; Buccato, S.; Bonacci, S.; Frigimelica, E.; Margarit, I.; Geall, A.; Bensi, G.; Maione, D. Immunogenicity and Protective Efficacy Induced by Self-Amplifying mRNA Vaccines Encoding Bacterial Antigens. Vaccine 2017, 35, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Mirtaleb, M.S.; Falak, R.; Heshmatnia, J.; Bakhshandeh, B.; Taheri, R.A.; Soleimanjahi, H.; Zolfaghari Emameh, R. An Insight Overview on COVID-19 mRNA Vaccines: Advantageous, Pharmacology, Mechanism of Action, and Prospective Considerations. Int. Immunopharmacol. 2023, 117, 109934. [Google Scholar] [CrossRef] [PubMed]
- Vivaldi, G.; Jolliffe, D.A.; Faustini, S.; Shields, A.M.; Holt, H.; Perdek, N.; Talaei, M.; Tydeman, F.; Chambers, E.S.; Cai, W.; et al. Correlation between Postvaccination Anti-Spike Antibody Titers and Protection against Breakthrough Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Population-Based Longitudinal Study. J. Infect. Dis. 2022, 226, 1903–1908. [Google Scholar] [CrossRef] [PubMed]
- Laczkó, D.; Hogan, M.J.; Toulmin, S.A.; Hicks, P.; Lederer, K.; Gaudette, B.T.; Castaño, D.; Amanat, F.; Muramatsu, H.; Oguin, T.H.; et al. A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity 2020, 53, 724–732.e7. [Google Scholar] [CrossRef] [PubMed]
- Haller, O.; Kochs, G.; Weber, F. The Interferon Response Circuit: Induction and Suppression by Pathogenic Viruses. Virology 2006, 344, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Perng, Y.-C.; Lenschow, D.J. ISG15 in Antiviral Immunity and Beyond. Nat. Rev. Microbiol. 2018, 16, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Sa Ribero, M.; Jouvenet, N.; Dreux, M.; Nisole, S. Interplay between SARS-CoV-2 and the Type I Interferon Response. PLoS Pathog. 2020, 16, e1008737. [Google Scholar] [CrossRef] [PubMed]
- Seneff, S.; Nigh, G.; Kyriakopoulos, A.M.; McCullough, P.A. Innate Immune Suppression by SARS-CoV-2 mRNA Vaccinations: The Role of G-Quadruplexes, Exosomes, and MicroRNAs. Food Chem. Toxicol. 2022, 164, 113008. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lee, A.; Grigoryan, L.; Arunachalam, P.S.; Scott, M.K.D.; Trisal, M.; Wimmers, F.; Sanyal, M.; Weidenbacher, P.A.; Feng, Y.; et al. Mechanisms of Innate and Adaptive Immunity to the Pfizer-BioNTech BNT162b2 Vaccine. Nat. Immunol. 2022, 23, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Link-Gelles, R.; Levy, M.E.; Natarajan, K.; Reese, S.E.; Naleway, A.L.; Grannis, S.J.; Klein, N.P.; DeSilva, M.B.; Ong, T.C.; Gaglani, M.; et al. Estimation of COVID-19 mRNA Vaccine Effectiveness and COVID-19 Illness and Severity by Vaccination Status During Omicron BA.4 and BA.5 Sublineage Periods. JAMA Netw. Open 2023, 6, e232598. [Google Scholar] [CrossRef] [PubMed]
- Fowlkes, A.L.; Yoon, S.K.; Lutrick, K.; Gwynn, L.; Burns, J.; Grant, L.; Phillips, A.L.; Ellingson, K.; Ferraris, M.V.; LeClair, L.B.; et al. Effectiveness of 2-Dose BNT162b2 (Pfizer BioNTech) mRNA Vaccine in Preventing SARS-CoV-2 Infection among Children Aged 5–11 Years and Adolescents Aged 12–15 Years—PROTECT Cohort, July 2021–February 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Klein, N.P.; Stockwell, M.S.; Demarco, M.; Gaglani, M.; Kharbanda, A.B.; Irving, S.A.; Rao, S.; Grannis, S.J.; Dascomb, K.; Murthy, K.; et al. Effectiveness of COVID-19 Pfizer-BioNTech BNT162b2 mRNA Vaccination in Preventing COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalizations among Nonimmunocompromised Children and Adolescents Aged 5–17 Years—VISION Network, 10 States, April 2021–January 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 352–358. [Google Scholar] [CrossRef]
- Yung, C.F.; Saffari, S.E.; Mah, S.Y.Y.; Tan, N.W.H.; Chia, W.-N.; Thoon, K.C.; Wang, L.-F. Analysis of Neutralizing Antibody Levels in Children and Adolescents up to 16 Months after SARS-CoV-2 Infection. JAMA Pediatr. 2022, 176, 1142–1143. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Dai, S.; Dang, L.; Wang, L.; Cao, L.; Chen, X.; Wang, Y.; Ge, M.; Liu, W.; et al. Pediatric Population (Aged 3–11 Years) Received Primary Inactivated SARS-CoV-2 Vaccination Prior to Infection Exhibiting Robust Humoral Immune Response Following Infected with Omicron Variant: A Study Conducted in Beijing. Front. Immunol. 2023, 14, 1269665. [Google Scholar] [CrossRef] [PubMed]
- Hønge, B.L.; Petersen, M.S.; Olesen, R.; Møller, B.K.; Erikstrup, C. Optimizing Recovery of Frozen Human Peripheral Blood Mononuclear Cells for Flow Cytometry. PLoS ONE 2017, 12, e0187440. [Google Scholar] [CrossRef] [PubMed]
- Moll, H.P.; Maier, T.; Zommer, A.; Lavoie, T.; Brostjan, C. The Differential Activity of Interferon-α Subtypes Is Consistent among Distinct Target Genes and Cell Types. Cytokine 2011, 53, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, Z.; Prajapati, M.; Li, Y. Lymphopenia Caused by Virus Infections and the Mechanisms Beyond. Viruses 2021, 13, 1876. [Google Scholar] [CrossRef] [PubMed]
- Cao, X. ISG15 Secretion Exacerbates Inflammation in SARS-CoV-2 Infection. Nat. Immunol. 2021, 22, 1360–1362. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs 2021, 81, 495–501. [Google Scholar] [CrossRef] [PubMed]
- The Pfizer BioNTech (BNT162b2) COVID-19 Vaccine: What You Need to Know. Available online: https://www.who.int/news-room/feature-stories/detail/who-can-take-the-pfizer-biontech-covid-19--vaccine-what-you-need-to-know (accessed on 12 December 2023).
- Haveri, A.; Ekström, N.; Solastie, A.; Virta, C.; Österlund, P.; Isosaari, E.; Nohynek, H.; Palmu, A.A.; Melin, M. Persistence of Neutralizing Antibodies a Year after SARS-CoV-2 Infection in Humans. Eur. J. Immunol. 2021, 51, 3202–3213. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, K.; Kubo, S.; Jeremiah, S.S.; Go, H.; Yamaoka, Y.; Ohtake, N.; Kato, H.; Ikeda, S.; Mihara, T.; Matsuba, I.; et al. Persistence of Robust Humoral Immune Response in COVID-19 Convalescent Individuals over Twelve Months after Infection. Open Forum Infect. Dis. 2021, 9, ofab626. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.P.; Zeng, C.; Carlin, C.; Lozanski, G.; Saif, L.J.; Oltz, E.M.; Gumina, R.J.; Liu, S.-L. Neutralizing Antibody Responses Elicited by SARS-CoV-2 mRNA Vaccination Wane over Time and Are Boosted by Breakthrough Infection. Sci. Transl. Med. 2022, 14, eabn8057. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.Y.L.; Pukhari, M.H.; Bador, M.K.; Sam, I.-C.; Chan, Y.F. Humoral and T Cell Immune Responses against SARS-CoV-2 after Primary and Homologous or Heterologous Booster Vaccinations and Breakthrough Infection: A Longitudinal Cohort Study in Malaysia. Viruses 2023, 15, 844. [Google Scholar] [CrossRef] [PubMed]
- Sing, C.-W.; Tang, C.T.L.; Chui, C.S.L.; Fan, M.; Lai, F.T.T.; Li, X.; Wan, E.Y.F.; Wong, C.K.H.; Chan, E.W.Y.; Hung, I.F.N.; et al. COVID-19 Vaccines and Risks of Hematological Abnormalities: Nested Case-Control and Self-Controlled Case Series Study. Am. J. Hematol. 2022, 97, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Veerman, S.R.T.; Moscou, T.; Bogers, J.P.A.M.; Cohen, D.; Schulte, P.F.J. Clozapine and COVID-19 Vaccination: Effects on Blood Levels and Leukocytes. An Observational Cohort Study. Acta Psychiatr. Scand. 2022, 146, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Reizis, B.; Bunin, A.; Ghosh, H.S.; Lewis, K.L.; Sisirak, V. Plasmacytoid Dendritic Cells: Recent Progress and Open Questions. Annu. Rev. Immunol. 2011, 29, 163–183. [Google Scholar] [CrossRef] [PubMed]
- Haniffa, M.; Collin, M.; Ginhoux, F. Ontogeny and Functional Specialization of Dendritic Cells in Human and Mouse. Adv. Immunol. 2013, 120, 1–49. [Google Scholar] [CrossRef]
- Heinze, A.; Elze, M.C.; Kloess, S.; Ciocarlie, O.; Königs, C.; Betz, S.; Bremm, M.; Esser, R.; Klingebiel, T.; Serban, M.; et al. Age-Matched Dendritic Cell Subpopulations Reference Values in Childhood. Scand. J. Immunol. 2013, 77, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Li, J.; Venzon, D.J.; Berzofsky, J.A. SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary Cells from Macaque Lung Bronchoalveolar Lavage. Front. Immunol. 2021, 12, 658428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, Z.; Huang, C.; Sun, J.; Xue, M.; Feng, T.; Pan, W.; Wang, K.; Dai, J. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Membrane (M) and Spike (S) Proteins Antagonize Host Type I Interferon Response. Front. Cell. Infect. Microbiol. 2021, 11, 766922. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, L.; Liu, G.; Gack, M.U. ISG15: Its Roles in SARS-CoV-2 and Other Viral Infections. Trends Microbiol. 2023, 31, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Munnur, D.; Teo, Q.; Eggermont, D.; Lee, H.H.Y.; Thery, F.; Ho, J.; van Leur, S.W.; Ng, W.W.S.; Siu, L.Y.L.; Beling, A.; et al. Altered ISGylation Drives Aberrant Macrophage-Dependent Immune Responses during SARS-CoV-2 Infection. Nat. Immunol. 2021, 22, 1416–1427. [Google Scholar] [CrossRef] [PubMed]
- Atti, A.; Insalata, F.; Carr, E.J.; Otter, A.D.; Castillo-Olivares, J.; Wu, M.; Harvey, R.; Howell, M.; Chan, A.; Lyall, J.; et al. Antibody Correlates of Protection from SARS-CoV-2 Reinfection Prior to Vaccination: A Nested Case-Control within the SIREN Study. J. Infect. 2022, 85, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Post, N.; Eddy, D.; Huntley, C.; van Schalkwyk, M.C.I.; Shrotri, M.; Leeman, D.; Rigby, S.; Williams, S.V.; Bermingham, W.H.; Kellam, P.; et al. Antibody Response to SARS-CoV-2 Infection in Humans: A Systematic Review. PLoS ONE 2020, 15, e0244126. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhi, H.; Teng, Y. The Outbreak of SARS-CoV-2 Omicron Lineages, Immune Escape, and Vaccine Effectivity. J. Med. Virol. 2023, 95, e28138. [Google Scholar] [CrossRef] [PubMed]
Demographics | 5–11 Years | 12–17 Years | |
---|---|---|---|
Gender | Male | 5 | 15 |
Female | 4 | 10 | |
Day 0 NP ELISA (Infection status) | Positive (Previously infected) | 7 | 15 |
Negative (Uninfected) | 2 | 10 | |
Comorbidities | Yes | - | 2 (T1DM) |
No | 9 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeremiah, S.S.; Das, P.; Venkatesan, M.; Albinzayed, R.; Ahmed, A.; Stevenson, N.J.; Corbally, M.; Alqahtani, M.; Al-Wedaie, F.; Farid, E.; et al. Humoral and Innate Immunological Profile of Paediatric Recipients of Pfizer-BioNTech BNT162b2 mRNA Vaccine. Microorganisms 2024, 12, 1389. https://doi.org/10.3390/microorganisms12071389
Jeremiah SS, Das P, Venkatesan M, Albinzayed R, Ahmed A, Stevenson NJ, Corbally M, Alqahtani M, Al-Wedaie F, Farid E, et al. Humoral and Innate Immunological Profile of Paediatric Recipients of Pfizer-BioNTech BNT162b2 mRNA Vaccine. Microorganisms. 2024; 12(7):1389. https://doi.org/10.3390/microorganisms12071389
Chicago/Turabian StyleJeremiah, Sundararaj Stanleyraj, Priya Das, Manu Venkatesan, Reem Albinzayed, Aysha Ahmed, Nigel John Stevenson, Martin Corbally, Manaf Alqahtani, Fatima Al-Wedaie, Eman Farid, and et al. 2024. "Humoral and Innate Immunological Profile of Paediatric Recipients of Pfizer-BioNTech BNT162b2 mRNA Vaccine" Microorganisms 12, no. 7: 1389. https://doi.org/10.3390/microorganisms12071389
APA StyleJeremiah, S. S., Das, P., Venkatesan, M., Albinzayed, R., Ahmed, A., Stevenson, N. J., Corbally, M., Alqahtani, M., Al-Wedaie, F., Farid, E., & Hejres, S. (2024). Humoral and Innate Immunological Profile of Paediatric Recipients of Pfizer-BioNTech BNT162b2 mRNA Vaccine. Microorganisms, 12(7), 1389. https://doi.org/10.3390/microorganisms12071389