Overview of the Efficacy of Using Probiotics for Neurosurgical and Potential Neurosurgical Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Probiotics and Gastrointestinal Health after Neurosurgery
4.2. Probiotics and Antibiotic-Associated Diarrhea after Neurosurgery
4.3. Probiotics and Surgical Site Infections after Neurosurgery
4.4. Probiotics, the Inflammatory Response, and the Central Nervous System
4.5. Other Indirect Influences of Probiotics on the Central Nervous System
4.6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muzumdar, D. Neurosurgery in the Past and Future. An Appraisal. Ann. Med. Surg. 2012, 1, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Deidda, G.; Biazzo, M. Gut and Brain: Investigating Physiological and Pathological Interactions between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Front. Neurosci. 2021, 15, 753915. [Google Scholar] [CrossRef] [PubMed]
- Parenteau, C.S.; Lau, E.C.; Campbell, I.C.; Courtney, A. Prevalence of spine degeneration diagnosis by type, age, gender, and obesity using Medicare data. Sci. Rep. 2021, 11, 5389. [Google Scholar] [CrossRef]
- Du, Q.J.; Li, Q.J.; Liao, G.N.; Li, J.F.; Ye, P.L.; Zhang, Q.; Gong, X.T.; Yang, J.J.; Li, K. Emerging trends and focus of research on the relationship between traumatic brain injury and gut microbiota: A visualized study. Front. Microbiol. 2023, 14, 1278438. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Wu, P.H.; Jang, I.-T. Lumbar Degenerative Disease Part 1: Anatomy and Pathophysiology of Intervertebral Discogenic Pain and Radiofrequency Ablation of Basivertebral and Sinuvertebral Nerve Treatment for Chronic Discogenic Back Pain: A Prospective Case Series and Review of Literature. Int. J. Mol. Sci. 2020, 21, 1483. [Google Scholar] [CrossRef] [PubMed]
- Costi, J.J.; Ledet, E.H.; O’Connell, G.D. Spine biomechanical testing methodologies: The controversy of consensus vs. scientific evidence. JOR Spine 2021, 4, e1138. [Google Scholar] [CrossRef]
- Sharma, P.; Agrawal, A. Does modern research validate the ancient wisdom of gut flora and brain connection? A literature review of gut dysbiosis in neurological and neurosurgical disorders over the last decade. Neurosurg. Rev. 2022, 45, 27–48. [Google Scholar] [CrossRef]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef]
- Fijan, S.; Frauwallner, A.; Langerholc, T.; Krebs, B.; Ter Haar, J.A.; Heschl, A.; Mičetić Turk, D.; Rogelj, I.; ter Haar, J.A.; Heschl, A.; et al. Efficacy of Using Probiotics with Antagonistic Activity against Pathogens of Wound Infections: An Integrative Review of Literature. BioMed Res. Int. 2019, 2019, 7585486. [Google Scholar] [CrossRef]
- Panther, E.J.; Dodd, W.; Clark, A.; Lucke-Wold, B. Gastrointestinal Microbiome and Neurologic Injury. Biomedicines 2022, 10, 500. [Google Scholar] [CrossRef]
- Zhou, L.; Foster, J.A. Psychobiotics and the gut-brain axis: In the pursuit of happiness. Neuropsychiatr. Dis. Treat. 2015, 11, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 1459. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Chen, C.; Patil, S.; Dong, S. Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Front. Nutr. 2024, 11, 1355542. [Google Scholar] [CrossRef] [PubMed]
- Pluznick, J.L.; Protzko, R.J.; Gevorgyan, H.; Peterlin, Z.; Sipos, A.; Han, J.; Brunet, I.; Wan, L.X.; Rey, F.; Wang, T.; et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl. Acad. Sci. USA 2013, 110, 4410–4415. [Google Scholar] [CrossRef] [PubMed]
- Krakovski, M.A.; Arora, N.; Jain, S.; Glover, J.; Dombrowski, K.; Hernandez, B.; Yadav, H.; Sarma, A.K. Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Front. Neurosci. 2022, 16, 1002266. [Google Scholar] [CrossRef] [PubMed]
- Grenham, S.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-gut-microbe communication in health and disease. Front. Physiol. 2011, 2, 94. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, X.; Zhang, Y.; Liu, Y.; Geng, R.; Liu, H.; Sun, Y.; Wang, B. The Effects of Perioperative Probiotics on Postoperative Gastrointestinal Function in Patients with Brain Tumors: A Randomized, Placebo-Controlled Study. Nutr. Cancer 2023, 75, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Lu, X.J.; Wu, Q. Gut Microbiota and Acute Central Nervous System Injury: A New Target for Therapeutic Intervention. Front. Immunol. 2021, 12, 800796. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Kumar, S.; Sarkar, S.R.; Halder, R.; Kumari, R.; Banerjee, S.; Sarkar, B. Dietary polyphenols represent a phytotherapeutic alternative for gut dysbiosis associated neurodegeneration: A Systematic review. J. Nutr. Biochem. 2024, 129, 109622. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, J.; Lei, X.; Liu, S.; Chen, H.; Wei, Z.; Li, H.; Yang, Y.; Zheng, C.; Li, Z. Dual-directional regulation of spinal cord injury and the gut microbiota. Neural Regen. Res. 2024, 19, 548–556. [Google Scholar] [CrossRef]
- Pawlowski, K.D.; David, B.T.; Fessler, R.G. Spinal Cord–Gut–Immune Axis and Its Implications Regarding Therapeutic Development for Spinal Cord Injury. J. Neurotrauma 2022, 40, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.J.; Sayre, N.L.; Patterson, T.T.; Nicholson, S.E.; Hilton, D.; Grandhi, R. Spinal cord injury and the human microbiome: Beyond the brain–gut axis. Neurosurg. Focus 2019, 46, E11. [Google Scholar] [CrossRef] [PubMed]
- Xi, D.; Liu, P.; Feng, Y.; Teng, Y.; Liang, Y.; Zhou, J.; Deng, H.; Zeng, G.; Zong, S. Fecal microbiota transplantation regulates the microbiota-gut-spinal cord axis to promote recovery after spinal cord injury. Int. Immunopharmacol. 2024, 126, 111212. [Google Scholar] [CrossRef] [PubMed]
- Ratna, H.V.K.; Jeyaraman, M.; Yadav, S.; Jeyaraman, N.; Nallakumarasamy, A. Is Dysbiotic Gut the Cause of Low Back Pain? Cureus J. Med. Sci. 2023, 15, e42496. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.O.; Bariguian, F.; Mobasheri, A. The Potential Role of Probiotics in the Management of Osteoarthritis Pain: Current Status and Future Prospects. Curr. Rheumatol. Rep. 2023, 25, 307–326. [Google Scholar] [CrossRef]
- Norins, L.C. The Beehive Theory: Role of microorganisms in late sequelae of traumatic brain injury and chronic traumatic encephalopathy. Med. Hypotheses 2019, 128, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.W.; Pandya, J.D.; Shear, D.A. Gut Microbiota as a Therapeutic Target to Ameliorate the Biochemical, Neuroanatomical, and Behavioral Effects of Traumatic Brain Injuries. Front. Neurol. 2019, 10, 875. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.L.; Ma, Y.Y.; He, H.Y.; Chen, T.; Fu, J.J.; Zhu, J.C. Preventive strategies for feeding intolerance among patients with severe traumatic brain injury: A cross-sectional survey. Int. J. Nurs. Sci. 2022, 9, 278–285. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Zommiti, M.; Feuilloley, M.G.J.; Connil, N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020, 8, 1907. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.C.; Valiere, A. Probiotics and medical nutrition therapy. Nutr. Clin. Care 2004, 7, 56–68. [Google Scholar]
- Maftei, N.-M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S. Potential of probiotics as pharmaceutical agent: A review. Br. Food J. 2013, 115, 1658–1687. [Google Scholar] [CrossRef]
- Kotzampassi, K.; Eleftheriadis, E. Synbiotics in Trauma: Of Proven Benefit or a New Fad? In Intensive Care Units: Stress, Procedures and Mortality Rates; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; pp. 149–157. [Google Scholar]
- Shimizu, K.; Ojima, M.; Ogura, H. Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients. Nutrients 2021, 13, 2439. [Google Scholar] [CrossRef] [PubMed]
- Spindler-Vesel, A.; Bengmark, S.; Vovk, I.; Cerovic, O.; Kompan, L. Synbiotics, prebiotics, glutamine, or peptide in early enteral nutrition: A randomized study in trauma patients. JPEN J. Parenter. Enter. Nutr. 2007, 31, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Tzikos, G.; Tsalkatidou, D.; Stavrou, G.; Thoma, G.; Chorti, A.; Tsilika, M.; Michalopoulos, A.; Papavramidis, T.; Giamarellos-Bourboulis, E.J.; Kotzampassi, K. A Four-Probiotic Regime to Reduce Surgical Site Infections in Multi-Trauma Patients. Nutrients 2022, 14, 2620. [Google Scholar] [CrossRef]
- Zhang, T.; Lv, G.G.; Song, Y.; Wang, F. The Effects of Early Enteral Nutrition when Combined with Probiotics in Patient with TBI. Prog. Nutr. 2021, 23, 10973. [Google Scholar] [CrossRef]
- Wan, G.; Wang, L.; Zhang, G.; Zhang, J.; Lu, Y.; Li, J.; Yi, X. Effects of probiotics combined with early enteral nutrition on endothelin-1 and C-reactive protein levels and prognosis in patients with severe traumatic brain injury. J. Int. Med. Res. 2020, 48, 030006051988811. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Zhu, J.C.; Du, J.; Zhang, L.M.; Yin, H.H. Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: A prospective randomized pilot study. Crit. Care 2011, 15, R290. [Google Scholar] [CrossRef] [PubMed]
- Falcão de Arruda, I.S.; de Aguilar-Nascimento, J.E. Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin. Sci. 2004, 106, 287–292. [Google Scholar] [CrossRef]
- Kaku, N.; Matsumoto, N.; Sasaki, D.; Tsuda, K.; Kosai, K.; Uno, N.; Morinaga, Y.; Tagami, A.; Adachi, S.; Hasegawa, H.; et al. Effect of probiotics on gut microbiome in patients with administration of surgical antibiotic prophylaxis: A randomized controlled study. J. Infect. Chemother. 2020, 26, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Taye, I.; Bradbury, J.; Grace, S.; Avila, C. Probiotics for pain of osteoarthritis; An N-of-1 trial of individual effects. Complement. Ther. Med. 2020, 54, 102548. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.K.; Andersen, M.H.; Østgård, R.D.; Andersen, N.T.; Rolving, N. Probiotics for chronic low back pain with type 1 Modic changes: A randomized double-blind, placebo-controlled trial with 1-year follow-up using Lactobacillus Rhamnosis GG. Eur. Spine J. 2019, 28, 2478–2486. [Google Scholar] [CrossRef]
- Shukla, A.; Gaur, P.; Aggarwal, A. Effect of probiotics on clinical and immune parameters in enthesitis-related arthritis category of juvenile idiopathic arthritis. Clin. Exp. Immunol. 2016, 185, 301–308. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Tan, M.; Lu, X.L.; Duan, J.W.; Peng, H.; Zhu, J.C. Effects of probiotics on blood glucose levels and clinical outcomes in patients with severe craniocerebral trauma. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2013, 25, 627–630. [Google Scholar] [CrossRef]
- Andriolo, I.R.L.; Longo, B.; Melo, D.M.; Souza, M.M.; Prediger, R.D.; Silva, L.M.D. Gastrointestinal Issues in Depression, Anxiety, and Neurodegenerative Diseases: A Systematic Review on Pathways and Clinical Targets Implications. CNS Neurol. Disord. Drug Targets 2024, 23, 1371–1391. [Google Scholar] [CrossRef]
- Chui, Z.S.W.; Chan, L.M.L.; Zhang, E.W.H.; Liang, S.; Choi, E.P.H.; Lok, K.Y.W.; Tun, H.M.; Kwok, J.Y.Y. Effects of microbiome-based interventions on neurodegenerative diseases: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 9558. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Hu, M.; Ding, Y.; Meng, Y.; Zhao, Y. Efficacy in bowel movement and change of gut microbiota on adult functional constipation patients treated with probiotics-containing products: A systematic review and meta-analysis. BMJ Open 2024, 14, e074557. [Google Scholar] [CrossRef] [PubMed]
- Poeze, M. Postoperative Gastrointestinal Dysfunction. In Surgical Intensive Care Medicine; O’Donnell, J.M., Nácul, F.E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 589–595. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Z.; Guo, J.; Xiong, Z.; Hu, B. Exploring the gut microbiome-Postoperative Cognitive Dysfunction connection: Mechanisms, clinical implications, and future directions. Brain Behav. Immun. Health 2024, 38, 100763. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, A.; Shi, H.; Tao, H.; Nahata, M.C. Efficacy and safety of probiotics and synbiotics for functional constipation in children: A systematic review and meta-analysis of randomized clinical trials. Clin. Nutr. 2023, 42, 1817–1826. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.; Zeng, K.R.; Zhong, F.R.; Tu, S.J.; Luo, J.L.; Shu, S.L.; Peng, X.F.; Yang, H.; Lu, K. Effects of oral probiotics on inflammation and intestinal function in adult patients after appendectomy: Randomized controlled trial. World J. Gastrointest. Surg. 2024, 16, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.J.; Oh, H.K.; Lee, J.; Cho, J.R.; Kim, M.J.; Kim, D.W.; Kang, S.B. Effects of probiotics on bowel function restoration following ileostomy closure in rectal cancer patients: A randomized controlled trial. Color. Dis. 2021, 23, 901–910. [Google Scholar] [CrossRef]
- Moreira, M.M.; Carriço, M.; Capelas, M.L.; Pimenta, N.; Santos, T.; Ganhão-Arranhado, S.; Mäkitie, A.; Ravasco, P. The impact of pre-, pro- and synbiotics supplementation in colorectal cancer treatment: A systematic review. Front. Oncol. 2024, 14, 1395966. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiang, Q.L.; Liu, L. Comparison of antibiotic-associated diarrhea caused by cefoperazone/sulbactam or piperacillin/tazobactam in neurosurgery patients. J. Int. Med. Res. 2021, 49, 03000605211019661. [Google Scholar] [CrossRef] [PubMed]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef]
- Issa, I.; Moucari, R. Probiotics for antibiotic-associated diarrhea: Do we have a verdict? World J. Gastroenterol. 2014, 20, 17788–17795. [Google Scholar] [CrossRef]
- Darbandi, A.; Banar, M.; Koupaei, M.; Afifirad, R.; Asadollahi, P.; Bafandeh, E.; Rasooli, I.; Emamie, A.; Navidifar, T.; Owlia, P. Clinical efficacy of probiotics in prevention of infectious diseases among hospitalized patients in ICU and non-ICU wards in clinical randomized trials: A systematic review. Health Sci. Rep. 2023, 6, e1469. [Google Scholar] [CrossRef]
- Long, B.; Gottlieb, M. Probiotics for Preventing Antibiotic-Associated Diarrhea. Am. Fam. Physician 2021, 104. Available online: https://www.aafp.org/pubs/afp/issues/2021/1200/od1.html (accessed on 26 June 2024).
- Kotzampassi, K. Why Give My Surgical Patients Probiotics. Nutrients 2022, 14, 4389. [Google Scholar] [CrossRef] [PubMed]
- Bekiaridou, A.; Karlafti, E.; Oikonomou, I.M.; Ioannidis, A.; Papavramidis, T.S. Probiotics and Their Effect on Surgical Wound Healing: A Systematic Review and New Insights into the Role of Nanotechnology. Nutrients 2021, 13, 4265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-W.; Du, P.; Yang, B.-R.; Gao, J.; Fang, W.-J.; Ying, C.-M. Preoperative Probiotics Decrease Postoperative Infectious Complications of Colorectal Cancer. Am. J. Med. Sci. 2012, 343, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wen, T.; Zhao, Q. Probiotics Used for Postoperative Infections in Patients Undergoing Colorectal Cancer Surgery. BioMed Res. Int. 2020, 2020, 5734718. [Google Scholar] [CrossRef]
- Mohammad Aidid, E.; Shalihin, M.S.E.; Md Nor, A.; Hamzah, H.A.; Ab Hamid, N.F.; Saipol Bahri, N.A.N.; Abd Ghani, N.D. Risk of colorectal cancer due to Streptococcus gallolyticus: A systematic review. Med. J. Malays. 2023, 78, 404–410. [Google Scholar]
- Jaya-Bodestyne, S.L.; Tan, Y.Y.; Sultan, R.; Yeo, K.T.; Kong, J.Y. Clinical Course and Outcomes of Infants with Streptococcus bovis/Streptococcus Gallolyticus subspecies pasteurianus Infection: A Systematic Review and Meta-analysis. Pediatr. Infect. Dis. J. 2024, 4361. [Google Scholar] [CrossRef] [PubMed]
- Iliodromiti, Z.; Tsaousi, M.; Kitsou, K.; Bouza, H.; Boutsikou, T.; Pouliakis, A.; Tsampou, E.; Oikonomidi, S.; Dagre, M.; Sokou, R.; et al. Neonatal Sepsis Caused by Streptococcus gallolyticus Complicated with Pulmonary Hypertension: A Case-Report and a Systematic Literature Review. Diagnostics 2022, 12, 3116. [Google Scholar] [CrossRef]
- Naik, S.S.; Ramphall, S.; Rijal, S.; Prakash, V.; Ekladios, H.; Mulayamkuzhiyil Saju, J.; Mandal, N.; Kham, N.I.; Shahid, R.; Venugopal, S. Association of Gut Microbial Dysbiosis and Hypertension: A Systematic Review. Cureus 2022, 14, e29927. [Google Scholar] [CrossRef]
- Goudman, L.; Demuyser, T.; Pilitsis, J.G.; Billot, M.; Roulaud, M.; Rigoard, P.; Moens, M. Gut dysbiosis in patients with chronic pain: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1342833. [Google Scholar] [CrossRef]
- Farsi, Y.; Tahvildari, A.; Arbabi, M.; Vazife, F.; Sechi, L.A.; Shahidi Bonjar, A.H.; Jamshidi, P.; Nasiri, M.J.; Mirsaeidi, M. Diagnostic, Prognostic, and Therapeutic Roles of Gut Microbiota in COVID-19: A Comprehensive Systematic Review. Front. Cell. Infect. Microbiol. 2022, 12, 804644. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Taniguchi, K.; Sawamura, H.; Ikeda, Y.; Tsuji, A.; Matsuda, S. Encouraging probiotics for the prevention and treatment of immune-related adverse events in novel immunotherapies against malignant glioma. Explor. Target. Antitumor Ther. 2022, 3, 817–827. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, B.R.; Hao, Q. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2022, 2022, CD006895. [Google Scholar] [CrossRef]
- Estes, M.L.; McAllister, A.K. Alterations in immune cells and mediators in the brain: It’s not always neuroinflammation! Brain Pathol. 2014, 24, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Woodburn, S.C.; Bollinger, J.L.; Wohleb, E.S. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. J. Neuroinflamm. 2021, 18, 258. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, J.P.; Sriram, K.; Miller, D.B. Defining “neuroinflammation”. Ann. N.Y. Acad. Sci. 2008, 1139, 318–330. [Google Scholar] [CrossRef]
- Tremblay, M.; Stevens, B.; Sierra, A.; Wake, H.; Bessis, A.; Nimmerjahn, A. The role of microglia in the healthy brain. J. Neurosci. 2011, 31, 16064–16069. [Google Scholar] [CrossRef] [PubMed]
- Maher, S.; Elmeligy, H.A.; Aboushousha, T.; Helal, N.S.; Ossama, Y.; Rady, M.; Hassan, A.M.A.; Kamel, M. Synergistic immunomodulatory effect of synbiotics pre- and postoperative resection of pancreatic ductal adenocarcinoma: A randomized controlled study. Cancer Immunol. Immunother. 2024, 73, 109. [Google Scholar] [CrossRef]
- Roussel, E.; Brasse-Lagnel, C.; Tuech, J.J.; Montialoux, H.; Papet, E.; Tortajada, P.; Bekri, S.; Schwarz, L. Influence of Probiotics Administration Before Liver Resection in Patients with Liver Disease: A Randomized Controlled Trial. World J. Surg. 2022, 46, 656–665. [Google Scholar] [CrossRef]
- Fyntanidou, B.; Amaniti, A.; Soulioti, E.; Zagalioti, S.-C.; Gkarmiri, S.; Chorti, A.; Loukipoudi, L.; Ioannidis, A.; Dalakakis, I.; Menni, A.-E.; et al. Probiotics in Postoperative Pain Management. J. Pers. Med. 2023, 13, 1645. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Eguílaz, M.; Ramón-Trapero, J.L.; Pérez-Martínez, L.; Blanco, J.R. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: A pilot study. Benef. Microbes 2018, 9, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Brenner, L.A.; Forster, J.E.; Stearns-Yoder, K.A.; Stamper, C.E.; Hoisington, A.J.; Brostow, D.P.; Mealer, M.; Wortzel, H.S.; Postolache, T.T.; Lowry, C.A. Evaluation of an Immunomodulatory Probiotic Intervention for Veterans With Co-occurring Mild Traumatic Brain Injury and Posttraumatic Stress Disorder: A Pilot Study. Front. Neurol. 2020, 11, 1015. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.X.; Zeng, W.; Zhang, X.L.; Pei, Y.L.; Zhang, H.Z.; Li, Y.P. The role of gut microbiota in patients with benign and malignant brain tumors: A pilot study. Bioengineered 2022, 13, 7847–7859. [Google Scholar] [CrossRef] [PubMed]
- Curtis, L.; Epstein, P. Nutritional treatment for acute and chronic traumatic brain injury patients. J. Neurosurg. Sci. 2014, 58, 151–160. [Google Scholar] [PubMed]
- Brenner, L.A.; Stearns-Yoder, K.A.; Hoffberg, A.S.; Penzenik, M.E.; Starosta, A.J.; Hernández, T.D.; Hadidi, D.A.; Lowry, C.A. Growing literature but limited evidence: A systematic review regarding prebiotic and probiotic interventions for those with traumatic brain injury and/or posttraumatic stress disorder. Brain Behav. Immun. 2017, 65, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Noshadi, N.; Heidari, M.; Naemi Kermanshahi, M.; Zarezadeh, M.; Sanaie, S.; Ebrahimi-Mameghani, M. Effects of Probiotics Supplementation on CRP, IL-6, and Length of ICU Stay in Traumatic Brain Injuries and Multiple Trauma Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evid. Based Complement. Altern. Med. 2022, 2022, 4674000. [Google Scholar] [CrossRef] [PubMed]
- Kotzampassi, K.; Giamarellos-Bourboulis, E.J.; Voudouris, A.; Kazamias, P.; Eleftheriadis, E. Benefits of a Synbiotic Formula (Synbiotic 2000Forte®) in Critically Ill Trauma Patients: Early Results of a Randomized Controlled Trial. World J. Surg. 2006, 30, 1536. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Bengmark, S.; Kanellakopoulou, K.; Kotzampassi, K. Pro- and synbiotics to control inflammation and infection in patients with multiple injuries. J. Trauma Acute Care Surg. 2009, 67, 815–821. [Google Scholar] [CrossRef]
- McFarland, L.V.; Hecht, G.; Sanders, M.E.; Goff, D.A.; Goldstein, E.J.C.; Hill, C.; Johnson, S.; Kashi, M.R.; Kullar, R.; Marco, M.L.; et al. Recommendations to Improve Quality of Probiotic Systematic Reviews With Meta-Analyses. JAMA Netw. Open 2023, 6, e2346872. [Google Scholar] [CrossRef] [PubMed]
- Saxami, G.; Kerezoudi, E.; Eliopoulos, C.; Arapoglou, D.; Kyriacou, A. The Gut–Organ Axis within the Human Body: Gut Dysbiosis and the Role of Prebiotics. Life 2023, 13, 2023. [Google Scholar] [CrossRef] [PubMed]
Databases: | PubMed, ScienceDirect and manual search |
Search strategy: | “neurosurgery” OR “brain tumor” OR “brain tumor” OR “brain injury” OR “brain disease” OR “back surgery” OR “back surgery” OR “spinal surgery” OR “back pain” OR “neurosurgical” OR “neurologic injury”) AND (“probiotics” |
Types of research: | Randomized, placebo controlled clinical trials, case studies |
Language: | Publications in English |
Exclusion criteria: | Studies that utilized synbiotics or prebiotics were excluded to isolate only the influence of probiotics. Publications in languages other than English |
Timeframe: | Up to the 29th of February 2024 |
Reference | Aim and Study Type | Participants Who Completed the Study | Intervention | Main Findings | |
---|---|---|---|---|---|
Probiotics | Dosage/Duration | ||||
Jiang et al., 2023 [17], China | Double-blind RCT to assess the effect of probiotics on postoperative GI function in patients after craniotomy for brain tumors. | 180 patients after craniotomy for brain tumors. 88 in probiotic group. 92 in control group. | Bifidobacterium animalis subsp. lactis HNO19, Bifidobacterium animalis subsp. lactis BB-12, Bifidobacterium animalis subsp. lactis Bi07, Bifidobacterium animalis B94, Bifidobacterium bifidum Bb06, Bifidobacterium longum R175, Lacticaseibacillus * rhamnosus GG, Lacticaseibacillus * rhamnosus R11, Lacticaseibacillus * casei Lc11, Lactobacillus helveticus R52, Lacticaseibacillus * paracasei Lpc37, Lactiplantibacillus * plantarum R1012, Limosilactobacillus * reuteri HA188, Lactobacillus acidophilus NCFM, Streptococcus thermophilus St21. (Zhongke Yikang Biological Technology, Beijing, China) | Dose: 4 g bid. Total cfu per day: 1.1 × 109 cfu. Duration: 15 days. | The time of first stool and flatus were significantly shorter in the probiotics group compared to the placebo group (p < 0.001), suggesting that probiotics can improve the gastrointestinal mobility of patients who received craniotomy. No significant trends were observed for any other of the secondary outcome variables (assessments of the time of spontaneous bowel movements, diarrhea, nausea, and vomiting, changes in gastrointestinal permeability, and clinical outcomes). |
Tzikos et al., 2022 [40], Greece | Double-blind RCT to assess the effect of probiotics against SSI of patients after MT surgeries, including neurosurgeries. | A total of 103 patients, of these, 19 patients after neurosurgery. 6 in probiotic group. 13 in control group. | Lactobacillus acidophilus LA-5, Lactiplantibacillus * plantarum UBLP-40, Bifidobacterium animalis subsp. lactis BB-12, Saccharomyces boulardii Unique-28. (LactoLevure®, Athens, Greece). | Dose: 2 sachets bid. Total cfu per day: 1.5 × 1010 cfu. Duration: 15 days. | This study included various patients after multi-trauma surgeries (neurosurgery, thoracostomies; exploratory laparotomy for the liver and/or spleen damage; orthopedics, osteosynthesis; severe facial fractures and vascular damage related to open fractures). Two neurosurgery patients in the placebo group developed SSI, whilst only one neurosurgery patient in the probiotic group developed SSI. Due to such a low incidence of SSI, statistical analysis was not possible. Among all included surgical patients, Staphylococcus aureus and Acinetobacter baumannii were the most common pathogens. A significantly lower incidence of SSI after MT surgeries in the probiotic group compared to the placebo group (p = 0.022) suggests that prophylactic administration of probiotics in MT patients exerts a positive effect on the incidence of SSI. |
Reference | Aim and Study Type | Participants Who Completed Study | Intervention | Main Findings | |
---|---|---|---|---|---|
Probiotics | Dosage/Duration | ||||
Zhang et al., 2021 [41], China | Double-blind RCT to assess the effect of EEN with probiotics on patients after TBI. | 136 patients after TBI. 68 in probiotic group. 68 in control group. | Bifidobacterium longum **, Lactobacillus acidophilus **, Enterococcus faecalis **. (Bifid Triple Viable Enteric-Coated Capsules, Jincheng Haisi Pharmaceutical, Jincheng, China). | Dosage: two capsules bid. Cfu: 3 × 106 cfu/g. Total cfu per day: ND. Duration: 14 days. | Although both groups showed notable changes in TBI patients after EEN, more significant changes related to the reduction in inflammatory response and enhanced immune function were observed in the probiotic group compared to the placebo group (p < 0.05). The incidence rate of complications was also evidently lower in the probiotic group compared to the placebo group (p < 0.05). |
Wan et al., 2020 [42], China | Double-blind RCT to assess the effect of EN with probiotics on patients after TBI. | 76 patients with severe TBI. 38 in probiotic group. 38 in control group. | Bifidobacterium longum **, Lactobacillus bulgaricus **, Enterococcus faecalis ** (Xinyi Pharmaceutical Factory, Shanghai, China). | Dosage: six tablets bid. Total cfu per day: 1.2 × 108 cfu. Duration: 15 days. | Interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-a, and CRP at 7 and 15 days decreased significantly more in the combined treatment group. Thus, probiotics together with EN improve the recovery of patients with severe TBI. Hospitalization duration and pulmonary infection rates were also significantly reduced in the combined compared with the EN alone group. GCS scores at 15 days were significantly lower in the combined treatment group compared with the EN group. |
Tan et al., 2011 [43], China | Double-blind RCT to assess the effect of probiotics after severe TBI. | 52 patients with severe craniocerebral trauma. 26 in probiotic group. 26 in control group. | Bifidobacterium longum **, Lactobacillus bulgaricus **, Streptococcus thermophilus **. (Golden bifid Shuangqi Pharmaceutical, Inner Mongolia, China). | Dosage: 7 sachets tid. Total cfu per day: 1.0 × 109 cfu. Duration: 21 days. | The probiotic group exhibited a significantly higher increase in serum IL-12p70 and IFN-γ levels, coupled with a dramatic decrease in IL-4 and IL-10 concentrations, as compared to the control group. Patients in the probiotic group experienced a decreased incidence of nosocomial infections towards the end of the study. Shorter ICU stays were also observed among patients treated with probiotic therapy. |
Falcao de Arruda et al., 2004 [44], Brazil | RCT to assess the effect of EEN with glutamine and probiotics on patients with brain injury. | 20 patients with brain injury. 10 in probiotic group. 10 in control group. | Lactobacillus johnsonii La 1. (LC1®; Nestle, Sao Paulo, Brazil). | Dosage: 240 mL fermented milk with La 1. Total cfu per day: 109 cfu. Duration: 5 to 14 days. | Significantly lower levels of infection rate (p = 0.03), number of infections per patient (p < 0.01), number of days in the intensive care unit (p < 0.01) and days of mechanical ventilation (p = 0.04) of brain injury patients were observed in the group that received probiotic and glutamine and EEN compared to the control group that received enteral nutrition only. |
Reference | Aim and Study Type | Participants who Completed Study | Intervention | Main Findings | |
---|---|---|---|---|---|
Probiotics | Dosage/Duration | ||||
Kaku et al., 2020 [45], Japan | Double-blind RCT to assess the effect of probiotics in patients administered SAP before spinal surgery. | 33 patients after spinal surgery. 16 in probiotic group. 17 in control group. | Enterococcus faecium 129 BIO 3B-R. (Biofermin Pharamceutical Ltd., Kobe, Hyogo, Japan) | Dosage: 1 g tid. Total cfu per day: ND. Duration: 10 days. | After evaluation of gut microbiome, no significant differences were found in alpha and beta diversity. However, Streptococcus gallolyticus and Roseburia were significantly decreased in the probiotic group compared with the control group. Considering the pathogenicity of Streptococcus gallolyticus, SAP had a negative influence on patients, and probiotics could prevent possible adverse effects after surgery. |
Taye et al., 2020 [46], Australia. | Case study to assess the effect of probiotics for osteoarthritis, including lower back and ankle pain. | 1 patient with osteoarthritis, including lower back pain. | Lacticaseibacillus rhamnosus GG Saccharomyces cerevisiae var. boulardii Bifidobacterium animalis subsp. lactis BB-12. (Metagenics Ultra Flora Intensive Care, East Lismore, Australia). | Dosage: 2 capsules bid. Total cfu per day: 1011 cfu. Duration: 3 blocks of 10 weeks with 2 weeks follow-up period. | The probiotic intervention was associated with lower pain scores and was the preferred intervention chosen by the participant. The mean pain score on the VAS scale was 4.9 ± 2.2 in the control group compared to 4.0 ± 1.7 in the probiotic group (p = 0.04). Although the reduction in pain scores associated with probiotic intervention was small, it was clinically significant for this patient. |
Jensen et al., 2019 [47], Denmark | Double-blind RCT to assess the effect of probiotics on chronic low back pain. | 85 patients with chronic low back pain. 42 in probiotic group. 43 in control group. | Lacticaseibacillus rhamnosus GG. (Dicoflor®, Rome, Italy) | Dosage: 1 capsule bid. Total cfu per day: 1.2×1010 cfu. Duration: 100 days. | A small, though hardly clinically relevant, effect on back pain using the VAS scale was seen after supplementation with probiotics compared to the control group. Back pain was statistically significantly reduced in the probiotic group (from 6.0 ± 1.81 to 4.7 ±2.57) compared to the control group (from 5.6 ± 1.63 to 5.3 ±2.00) after a one-year follow-up. |
Shukla et al., 2016 [48], India | Double-blind RCT to assess the effect of probiotics on the immune and clinical parameters of children having JIA-ERA, including back pain. | 40 children with JIA-ERA. 21 in probiotic group. 19 in control group. | Streptococcus thermophilus **, Bifidobacterium breve **, Bifidobacterium longum **, Bifidobacterium infantis **, Lactobacillus acidophilus **, Lactiplantibacillus plantarum **, Lacticaseibacillus paracasei **, Lactobacillus delbrueckii *. (VSL#3, Sun Pharmaceuticals, Mumbai, India) | Dosage: 1 capsule bid. Total cfu per day: 2.25 × 1011 cfu. Duration: 12 weeks. | No significant difference was observed in the improvement in the six-point composite disease activity index (mJSpADA) in the probiotics group compared to the control group. A significant decrease in the inflammatory cytokine Il-6 was observed in the probiotic group. Th2 cell frequency and serum IL-10 levels showed an increase in the control group, but the probiotic use did not show a significant change in immune parameters when compared to the control group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fijan, S.; Šmigoc, T. Overview of the Efficacy of Using Probiotics for Neurosurgical and Potential Neurosurgical Patients. Microorganisms 2024, 12, 1361. https://doi.org/10.3390/microorganisms12071361
Fijan S, Šmigoc T. Overview of the Efficacy of Using Probiotics for Neurosurgical and Potential Neurosurgical Patients. Microorganisms. 2024; 12(7):1361. https://doi.org/10.3390/microorganisms12071361
Chicago/Turabian StyleFijan, Sabina, and Tomaž Šmigoc. 2024. "Overview of the Efficacy of Using Probiotics for Neurosurgical and Potential Neurosurgical Patients" Microorganisms 12, no. 7: 1361. https://doi.org/10.3390/microorganisms12071361
APA StyleFijan, S., & Šmigoc, T. (2024). Overview of the Efficacy of Using Probiotics for Neurosurgical and Potential Neurosurgical Patients. Microorganisms, 12(7), 1361. https://doi.org/10.3390/microorganisms12071361