A Critical Analysis of All-Cause Deaths during COVID-19 Vaccination in an Italian Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Immortal Time Bias Correction
- (a)
- “Unvaccinated”: in this group, we included never-vaccinated individuals, and vaccinated individuals before receiving 1 or more doses;
- (b)
- “1–dose”: in this group, we included all individuals vaccinated with 1 dose and all individuals vaccinated before they received 2 or more doses;
- (c)
- “2–doses”: in this group, we included all individuals vaccinated with 2 doses and all vaccinated individuals before they received 3 or more doses;
- (d)
- “3/4 doses”: in this group, we included all vaccinated individuals with 3 or more doses.
- (a)
- “Unvaccinated”: the follow-up started on 1 January 2021 and ended on the day of death, or of the 1st dose, or on 15 February 2023;
- (b)
- “1–dose”: the follow-up started on the 15th day after the 1st dose and ended on the day of death, or of the 2nd dose, or on 15 February 2023;
- (c)
- “2–doses”: the follow-up started on the 15th day after the 2nd dose and ended on the day of death, or of the 3rd dose, or on 15 February 2023;
- (d)
- “3/4 doses”: the follow-up started on the 15th day after the 3rd dose and ended on the day of death or on 15 February 2023.
2.3. Follow-Up
- (a)
- “Unvaccinated”: 258 days;
- (b)
- “1 dose”: 61 days;
- (c)
- “2 doses”: 247 days;
- (d)
- “3/4 doses”: 400 days.
2.4. Outcome
- (a)
- “All-cause deaths”;
- (b)
- “COVID-19-related deaths”.
2.5. Statistical Analysis
3. Results
3.1. Population Distribution after ITB Correction
3.2. COVID-19-Related Death Classifications
3.3. One Dose versus Unvaccinated
3.4. Two Doses versus Unvaccinated
3.5. 3/4 Doses versus Unvaccinated
4. Discussion
- −
- Univariate and multivariate analysis, to highlight the differences between the adjusted and unadjusted data.
- −
- The HRs of the covariates, because they represent the comparison between subjects who have a specific comorbidity with subjects who do not have it, for the same vaccination doses. This may allow for appropriate public health assessments and reassessments of the opportunity to reserve vaccination priority for specific categories of frail subjects.
- −
- RMST and RMTL, as they provide information on the loss of life expectancy among the compared populations and can replace the HRs when the model assumptions are not met despite the corrections made.
Limitations and Suggestions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renoux, C.; Azoulay, L.; Suissa, S. Biases in Evaluating the Safety and Effectiveness of Drugs for the Treatment of COVID-19, Designing Real-World Evidence Studies. Am. J. Epidemiol. 2021, 190, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Mansournia, M.A.; Nazemipour, M.; Etminan, M. Causal diagrams for immortal time bias. Int. J. Epidemiol. 2021, 50, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Flacco, M.E.; Acuti Martellucci, C.; Soldato, G.; Di Martino, G.; Carota, R.; De Benedictis, M.; Di Marco, G.; Parruti, G.; Di Luzio, R.; Caponetti, A.; et al. COVID-19 Vaccination Did Not Increase the Risk of Potentially Related Serious Adverse Events: 18-Month Cohort Study in an Italian Province. Vaccines 2022, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Berrino, F.; Donzelli, A.; Bellavite, P.; Malatesta, G. COVID-19 vaccination and all-cause and non-COVID-19 mortality. A revaluation of a study carried out in an Italian Province. Epidemiol. Prev. 2023, 47, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P.A. Over- and under-estimation of COVID-19 deaths. Eur. J. Epidemiol. 2021, 36, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Fung, K.; Jones, M.; Doshi, P. Sources of bias in observational studies of COVID-19 vaccine effectiveness. J. Eval. Clin. Pract. 2023, 30, 30–36. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Factors influencing estimated effectiveness of COVID-19 vaccines in non-randomised studies. BMJ Evid.-Based Med. 2022, 27, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Mostert, S.; Hoogland, M.; Huibers, M.; Kaspers, G. Excess mortality across countries in the Western World since the COVID-19 pandemic: ‘Our World in Data’ estimates of January 2020 to December 2022. BMJ Public Health 2024, 2, e000282. [Google Scholar] [CrossRef]
- Rosso, A.; Flacco, M.E.; Soldato, G.; Di Martino, G.; Acuti Martellucci, C.; Carota, R.; De Benedictis, M.; Di Marco, G.; Di Luzio, R.; Fiore, M.; et al. COVID-19 Vaccination Effectiveness in the General Population of an Italian Province: Two Years of Follow-Up. Vaccines 2023, 11, 1325. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.istat.it/it/dati-analisi-e-prodotti/banche-dati/statbase (accessed on 25 May 2024).
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Rulli, E.; Ghilotti, F.; Biagioli, E.; Porcu, L.; Marabese, M.; D’Incalci, M.; Bellocco, R.; Torri, V. Assessment of proportional hazard assumption in aggregate data: A systematic review on statistical methodology in clinical trials using time-to-event endpoint. Br. J. Cancer 2018, 119, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Uno, H.; Claggett, B.; Tian, L.; Fu, H.; Huang, B.; Kim, D.H.; Wei, L.J. Adding a new analytical procedure with clinical interpretation in the tool box of survival analysis. Ann. Oncol. 2018, 29, 1092–1094. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.istat.it/it/files//2023/10/BesT-Abruzzo-2023-VSP.pdf (accessed on 25 May 2024).
- Seneff, S.; Nigh, G.; Kyriakopoulos, A.M.; McCullough, P.A. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem. Toxicol. 2022, 164, 113008. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Redwan, E.M.; Makis, W.; Rubio-Casillas, A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines 2023, 11, 991. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S. Is it bad, is it good, or is IgG4 just misunderstood? Sci. Immunol. 2023, 8, eadg7327. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.A.; Connolly, M.; Fenton, N.E.; Hatfill, S.J.; Hynds, P.; ÓhAiseadha, C.; Sikora, K.; Soon, W.; Connolly, R. Influence of Seasonality and Public-Health Interventions on the COVID-19 Pandemic in Northern Europe. J. Clin. Med. 2024, 13, 334. [Google Scholar] [CrossRef]
- Available online: https://www.iss.it/documents/20126/0/Risposta+_Eccesso+Mortalita%CC%80+Umanita%CC%80+e+Ragione_ultimo_rev31_07.pdf/34ae7793-32f1-7d7d-57e3-4f0b16833cd1?t=1696589930009 (accessed on 25 May 2024).
- Fine, P.E.M.; Chen, R.T. Confounding in Studies of Adverse Reactions to Vaccines. Am. J. Epidemiol. 1992, 136, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Coronary Drug Project Research Group. Influence of adherence to treatment and response of cholesterol on mortality in the Coronary Drug Project. N. Engl. J. Med. 1980, 303, 1038–1041. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, R.I.; Viscoli, C.M.; Berkman, L.; Donaldson, R.M.; Horwitz, S.M.; Murray, C.J.; Ransohoff, D.F.; Sindelar, J. Treatment adherence and risk of death after a myocardial infarction. Lancet 1990, 336, 542–545. [Google Scholar] [CrossRef]
- Simpson, S.H.; Eurich, D.T.; Majumdar, S.R.; Padwal, R.S.; Tsuyuki, R.T.; Varney, J.; Johnson, J.A. A meta-analysis of the association between adherence to drug therapy and mortality. BMJ 2006, 333, 15. [Google Scholar] [CrossRef]
- Granger, B.B.; Swedberg, K.; Ekman, I.; Granger, C.B.; Olofsson, B.; McMurray, J.J.; Yusuf, S.; Michelson, E.L.; Pfeffer, M.A.; CHARM investigators. Adherence to candesartan and placebo and outcomes in chronic heart failure in the CHARM programme: Double-blind, randomised, controlled clinical trial. Lancet 2005, 366, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.A.; Jackson, M.L.; Nelson, J.C.; Neuzil, K.M.; Weiss, N.S. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. Int. J. Epidemiol. 2006, 35, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, P.F.; Miller, A.; Kramer, B.S.; Church, T.; Reding, D.; Prorok, P.; Gelmann, E.; Schoen, R.E.; Buys, S.; Hayes, R.B.; et al. Evidence of a healthy volunteer effect in the prostate, lung, colorectal, and ovarian cancer screening trial. Am. J. Epidemiol. 2007, 165, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Brookhart, M.A.; Patrick, A.R.; Dormuth, C. Adherence to lipid-lowering therapy and the use of preventive health services: An investigation of the healthy user effect. Am. J. Epidemiol. 2007, 166, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Dormuth, C.R.; Patrick, A.R.; Shrank, W.H. Statin adherence and risk of accidents: A cautionary tale. Circulation 2009, 119, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Vestbo, J.; Anderson, J.A.; Calverley, P.M.; Celli, B.; Ferguson, G.T.; Jenkins, C.; Knobil, K.; Willits, L.R.; Yates, J.C.; Jones, P.W. Adherence to inhaed therapy, mortality and hospital admission in COPD. Thorax 2009, 64, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Hottes, T.S.; Skowronski, D.M.; Hiebert, B.; Janjua, N.Z.; Roos, L.L.; Van Caeseele, P.; Law, B.J.; De Serres, G. Influenza vaccine effectiveness in the elderly based on administrative databases: Change in immunization habit as a marker for bias. PLoS ONE 2011, 6, e22618. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, N.L.; Weintraub, E.; Vellozzi, C.; Duffy, J.; Gee, J.; Donahue, J.G.; Jackson, M.L.; Lee, G.M.; Glanz, J.; Baxter, R.; et al. Mortality rates and cause-of-death patterns in a vaccinated population. Am. J. Prev. Med. 2013, 45, 91–97. [Google Scholar] [CrossRef]
- Ladova, K.; Vlcek, J.; Vytrisalova, M.; Maly, J. Healthy adherer effect—The pitfall in the interpretation of the effect of medication adherence on health outcomes. J. Eval. Clin. Pract. 2014, 20, 111–116. [Google Scholar] [CrossRef]
- Tielemans, S.M.A.J.; de Melker, H.E.; Hahné, S.J.M.; Boef, A.G.C.; van der Klis, F.R.M.; Sanders, E.A.M.; van der Sande, M.A.B.; Knol, M.J. Non-specific effects of measles, mumps, and rubella (MMR) vaccination in high income setting: Population based cohort study in the Netherlands. BMJ 2017, 358, j3862. [Google Scholar] [CrossRef]
- Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.M.; von Delft, A.; Price, A.; Fridman, L.; Tang, L.H.; et al. An evidence review of face masks against COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2014564118. [Google Scholar] [CrossRef] [PubMed]
- Remschmidt, C.; Wichmann, O.; Harder, T. Frequency and impact of confounding by indication and healthy vaccinee bias in observational studies assessing influenza vaccine effectiveness: A systematic review. BMC Infect. Dis. 2015, 15, 429. [Google Scholar] [CrossRef] [PubMed]
- Hama, R.; Watanabe, S. The Risk of Vaccination May Be Higher by Considering “Healthy Vaccinee Effect” 27 September 2022 Rapid Response to Husby et al. SARS-CoV-2 Vaccination and Myocarditis or Myopericarditis: Population Based Cohort Study. Available online: https://www.bmj.com/content/375/bmj-2021-068665/rr-5 (accessed on 3 June 2024).
- Høeg, T.B.; Duriseti, R.; Prasad, V. Potential “Healthy Vaccinee Bias” in a Study of BNT162b2 Vaccine against COVID-19. N. Engl. J. Med. 2023, 389, 284–285. [Google Scholar] [CrossRef] [PubMed]
- Furst, T.; Straka, R.; Janosek, J. Healthy vaccinee effect: A bias not to be forgotten in observational studies on COVID-19 vaccine effectiveness. Pol. Arch. Intern. Med. 2024, 134, 16634. [Google Scholar] [CrossRef]
- Fürst, T.; Bazalová, A.; Fryčák, T.; Janošek, J. Does the healthy vaccinee bias rule them all? Association of COVID-19 vaccination status and all-cause mortality from an analysis of data from 2.2 million individual health records. Int. J. Infect. Dis. 2024, 142, 106976. [Google Scholar] [CrossRef]
Unvaccinated a | 1 Dose b | 2 Dose c | 3/4 Dose d | |
---|---|---|---|---|
(n = 290,727) | (n = 245,741) | (n = 234,287) | (n = 186,684) | |
Age in years (Mean, SD) | 48.9 (20.8) | 49.7 (20.7) | 50.1 (20.7) | 52.5 (20.2) |
Gender (n,%) | ||||
Females | 148,770 (51.2) | 127,121 (51.7) | 121,516 (51.9) | 97,440 (52.2) |
Males | 141,957 (48.8) | 118,620 (48.3) | 112,771 (48.1) | 89,244 (47.8) |
Risk factors and comorbidities (n,%) | ||||
Hypertension | 40,255 (13.8) | 37,003 (15.1) | 36,159 (15.4) | 32,264 (17.3) |
Diabetes | 15,599 (5.4) | 14,224 (5.8) | 13,837 (5.9) | 12,282 (6.6) |
CVD | 23,252 (8) | 20,940 (8.5) | 19,991 (8.5) | 17,321 (9.3) |
Kidney disease | 5431 (1.9) | 4718 (1.9) | 4568 (1.9) | 3793 (2) |
Cancer | 16,580 (5.7) | 15,065 (6.1) | 14,676 (6.3) | 12,810 (6.9) |
Infection | 117,559 (40.4) | 104,397 (42.5) | 97,102 (41.4) | 69,637 (37.3) |
COPD | 11,035 (3.8) | 9802 (4) | 9391 (4) | 7683 (4.1) |
Unvaccinated | 1 Dose | 2 Doses | 3/4 Doses | Total Sample | |
---|---|---|---|---|---|
Total COVID-19-related deaths, n (%) 1 | 573 (28.9) | 66 (20.1) | 225 (11.5) | 658 (25.8) | 1522 (22.3) |
Deaths without severe COVID-19, n (%) 2 | 78 (13.6) | 34 (51.5) | 68 (30.2) | 267 (40.6) | 447 (29.4) |
Same day for swab and death, n (%) 2 | 18 (3.1) | 0 (0) | 8 (3.6) | 22(3.3) | 48 (3.2) |
Deaths > 90 days from swab, n (%) 2 | 107 (18.7) | 43 (65.2) | 83 (36.9) | 244 (37.1) | 477 (31.3) |
Cumulative questionable classifications, n (%) 2 | 142 (24.8) | 47 (71.2) | 100 (44.4) | 330 (50.2) | 619 (40.7) |
Covariate | 1 Dose | 2 Doses | 3/4 Doses | |||
---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | Univariate | Multivariate | |
HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | |||
Groups | 0.88 (0.78–1.00) ‡ | 2.40 (2.00–2.88) ** | 1.23 (1.16–1.32) * | 1.98 (1.75–2.24) ** | 1.21 (1.14–1.29) * | 0.99 (0.90–1.09) |
Hypertension | 12.59 (11.58–13.69) * | 1.49 (1.23–1.82) ** | 11.47 (10.76–12.23) * | / | 9.65 (9.09–10.24) * | 1.24 (1.11–1.39) ** |
Diabetes | 8.07 (7.31–8.90) * | 2.00 (1.60–2.49) ** | 6.71 (6.23–7.23) * | 1.74 (1.38–2.20) ** | 5.90 (5.51–6.31) * | 1.68 (1.48–1.90) ** |
CVD | 11.56 (10.63–12.57) * | 1.60 (1.31–1.96) ** | 10.88 (10.21–11.60) * | 1.78 (1.44–2.20) ** | 10.03 (9.45–10.63) * | 1.86 (1.65–2.09) ** |
Kidney disease | 17.89 (16.08–19.90) * | 1.77 (1.35–2.34) ** | 16.83 (15.56–18.20) * | 2.44 (1.84–3.24) ** | 15.89 (14.78–17.08) * | 2.47 (2.11–2.89) ** |
Cancer | 9.34 (8.51–10.25) * | / | 8.65 (8.07–9.27) * | / | 7.62 (7.15–8.12) * | / |
Infection | 0.58 (0.53–0.63) * | / | 0.35 (0.32–0.38) * | / | 0.61 (0.58–0.66) * | / |
Age | 1.11 (1.11–1.11) * | / | 1.11 (1.11–1.12) * | / | 1.12 (1.11–1.12) * | / |
Sex | 0.87 (0.81–0.95) * | 1.50 (1.27–1.78) ** | 0.95 (0.89–1.01) | / | 0.98 (0.93–1.04) | 1.37 (1.24–1.51) ** |
COPD | 7.11 (6.40–7.91) * | 2.01 (1.56–2.60) ** | 6.28 (5.79–6.82) * | 2.89 (2.18–3.84) ** | 5.96 (5.52–6.43) * | 1.85 (1.59–2.15) ** |
Restricted Mean Survival Time (RMTS) (τ = 739 Days) | ||||
---|---|---|---|---|
Groups | Estimate | SE | 95% CI | |
RMST two doses (arm1) | 728.9 | 0.3 | 728.3–729.5 | |
RMST unvaccinated (arm0) | 731.6 | 0.2 | 731.3–731.9 | |
Restricted Mean Time Lost (RMTL) | ||||
RMTL two doses (arm1) | 10.1 | 0.3 | 9.5–10.7 | |
RMTL unvaccinated (arm0) | 7.4 | 0.2 | 7.0–7.7 | |
Between-group contrast | p-value | |||
RMST (arm1-arm0) | −2.7 | −3.4–−2.0 | <0.0001 | |
RMTL (arm1/arm0) | 1.37 | 1.27–1.48 | <0.0001 |
Restricted Mean Survival Time (RMTS) (τ = 579 Days) | ||||
---|---|---|---|---|
Groups | Estimate | SE | 95% CI | |
RMST three doses (arm1) | 573.7 | 0.1 | 573.5–573.9 | |
RMST unvaccinated (arm0) | 574. | 0.1 | 574.2–574.7 | |
Restricted Mean Time Lost (RMTL) | ||||
RMTL three doses (arm1) | 5.3 | 0.1 | 5.1–5.5 | |
RMTL unvaccinated (arm0) | 4.6 | 0.1 | 4.3–4.8 | |
Between-group contrast | p-value | |||
RMST (arm1-arm0) | −0.8 | −1.1–−0.5 | <0.0001 | |
RMTL (arm1/arm0) | 1.17 | 1.10–1.24 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alessandria, M.; Malatesta, G.M.; Berrino, F.; Donzelli, A. A Critical Analysis of All-Cause Deaths during COVID-19 Vaccination in an Italian Province. Microorganisms 2024, 12, 1343. https://doi.org/10.3390/microorganisms12071343
Alessandria M, Malatesta GM, Berrino F, Donzelli A. A Critical Analysis of All-Cause Deaths during COVID-19 Vaccination in an Italian Province. Microorganisms. 2024; 12(7):1343. https://doi.org/10.3390/microorganisms12071343
Chicago/Turabian StyleAlessandria, Marco, Giovanni M. Malatesta, Franco Berrino, and Alberto Donzelli. 2024. "A Critical Analysis of All-Cause Deaths during COVID-19 Vaccination in an Italian Province" Microorganisms 12, no. 7: 1343. https://doi.org/10.3390/microorganisms12071343
APA StyleAlessandria, M., Malatesta, G. M., Berrino, F., & Donzelli, A. (2024). A Critical Analysis of All-Cause Deaths during COVID-19 Vaccination in an Italian Province. Microorganisms, 12(7), 1343. https://doi.org/10.3390/microorganisms12071343