Searching for Chemical Agents Suppressing Substrate Microbiota in White-Rot Fungi Large-Scale Cultivation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Materials and Growth Media
2.2. Tested Organisms
2.3. Evaluation of the Impact of Bacteria and Yeast on the Growth of Microfungi and White-Rot Fungi
2.4. Evaluation of Suppression of Organism’s Growth by Different Chemicals
3. Results and Discussions
3.1. An Impact of Bacteria on the Growth of Microfungi and White-Rot Fungi
3.2. An Impact of Different Chemicals on the Growth of Bacteria, Microfungi, and White-Rot Fungi
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Mattos-Shipley, K.M.; Ford, K.L.; Alberti, F.; Banks, A.M.; Bailey, A.M.; Foster, G.D. The good, the bad and the tasty: The many roles of mushrooms. Stud. Mycol. 2016, 85, 125–157. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.V.; Varshney, V.K.; Pandey, A. Lovastatin: A journey from ascomycetes to basidiomycetes fungi. J. Biol. Act. Prod. Nat. 2019, 9, 162–178. [Google Scholar] [CrossRef]
- Elisashvili, V.; Asatiani, M.D.; Khardziani, T.; Rai, M. Natural antimicrobials from Basidiomycota mushrooms. In Promising Antimicrobials from Natural Products; Springer International Publishing: Cham, Switzerland, 2022; pp. 323–353. [Google Scholar] [CrossRef]
- Sivanandhan, S.; Khusro, A.; Paulraj, M.G.; Ignacimuthu, S.; Al-Dhabi, N.A. Biocontrol properties of basidiomycetes: An overview. J. Fungi 2017, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.C.; Hewage, R.T.; Lu, Y.C.; Chooi, Y.H. Biosynthesis of bioactive natural products from Basidiomycota. Org. Biomol. Chem. 2019, 17, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Uber, T.M.; Backes, E.; Saute, V.M.S.; da Silva, B.P.; Corrêa, R.C.G.; Kato, C.G.; Seixas, F.A.V.; Bracht, A.; Peralta, R.M. Enzymes from basidiomycetes—Peculiar and efficient tools for biotechnology. In Biotechnology of Microbial Enzymes; Academic Press: Cambridge, MA, USA, 2023; pp. 129–164. [Google Scholar] [CrossRef]
- Bentil, J.A. Biocatalytic potential of basidiomycetes: Relevance, challenges and research interventions in industrial processes. Sci. Afr. 2021, 11, e00717. [Google Scholar] [CrossRef]
- de Souza, D.F.; da Silva, M.d.C.S.; de Paula Alves, M.; Fuentes, D.P.; Porto, L.E.O.; de Oliveira, P.V.; Kasuya, M.C.M.; Eller, M.R. By-products as substrates for production of selenium-enriched Pleurotus ostreatus mushrooms. Waste Biomass Valorization 2022, 13, 989–1001. [Google Scholar] [CrossRef]
- Amobonye, A.; Aruwa, C.E.; Aransiola, S.; Omame, J.; Alabi, T.D.; Lalung, J. The potential of fungi in the bioremediation of pharmaceutically active compounds: A comprehensive review. Front. Microbiol. 2023, 14, 1207792. [Google Scholar] [CrossRef] [PubMed]
- Ben, W.; Zhu, B.; Yuan, X.; Zhang, Y.; Yang, M.; Qiang, Z. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Res. 2018, 130, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Kalra, R.; Gaur, S.; Goel, M. Microalgae bioremediation: A perspective towards wastewater treatment along with industrial carotenoids production. J. Water Process Eng. 2021, 40, 101794. [Google Scholar] [CrossRef]
- Chen, K.F.; Chang, Y.C.; Chiou, W.T. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: A comparison study. J. Chem. Technol. Biotechnol. 2016, 91, 1877–1888. [Google Scholar] [CrossRef]
- Potin, O.; Rafin, C.; Veignie, E. Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int. Biodeterior. Biodegrad. 2004, 54, 45–52. [Google Scholar] [CrossRef]
- Yuan, S.; Liang, Y.; Liu, C.; Liu, X.; Sattar, S.; Siddiqui, S.; Shahzad, A.; Bano, A.; Naeem, M.; Hussain, R.; et al. Comparative analysis of microbial consortiums and nanoparticles for rehabilitating petroleum waste contaminated soils. Molecules 2022, 27, 1945. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Naveed, M.; Afzal, M.; Ashraf, S.; Rehman, K.; Hussain, A.; Zahir, Z.A. Bioremediation of tannery effluent by Cr- and salt-tolerant bacterial strains. Environ. Monit. Assess. 2018, 190, 716. [Google Scholar] [CrossRef] [PubMed]
- Drevinskas, T.; Mickiene, R.; Maruška, A.; Stankevičius, M.; Tiso, N.; Mikašauskaite, J.; Ragažinskiene, O.; Levišauskas, D.; Bartkuviene, V.; Snieškiene, V.; et al. Downscaling the in vitro test of fungal bioremediation of polycyclic aromatic hydrocarbons: Methodological approach. Anal. Bioanal. Chem. 2016, 408, 1043–1053. [Google Scholar] [CrossRef]
- Maruška, A.; Levišauskas, D.; Snieškienė, V.; Stankevičienė, A.; Tiso, N.; Mikašauskaitė-Tiso, J.; Drevinskas, T.; Stankevičius, M.; Mickienė, R.; Ragažinskienė, O.; et al. Influence of creosote-polluted substrate on the bioremediation-potential microscopic fungi in the rhizosphere of plants. Toxicol. Environ. Chem. 2020, 102, 224–239. [Google Scholar] [CrossRef]
- Silva, A.; Delerue-Matos, C.; Figueiredo, S.A.; Freitas, O.M. The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: A review. Water 2019, 11, 1555. [Google Scholar] [CrossRef]
- Mendonça Maciel, M.J.; Castro e Silva, A.; Camarão Telles Ribeiro, H. Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: A review. Electron. J. Biotechnol. 2010, 13, 1322. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, R.; Chen, J.; Li, N. Bioremediation of HMW-PAHs-contaminated soils by rhizosphere microbial community of Fire Phoenix plants. Chem. Eng. J. 2022, 432, 134246. [Google Scholar] [CrossRef]
- Jang, K.-Y.; Cho, S.-M.; Seok, S.-J.; Kong, W.-S.; Kim, G.-H.; Sung, J.-M. Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiology 2009, 37, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Tiso, N.; Mikašauskaitė, J.; Stankevičius, M.; Snieškienė, V.; Stankevičienė, A.; Polcaro, C.; Galli, E.; Donati, E.; Zacchini, M.; Levišauskas, D.; et al. Isolation and identification of fungi tolerant to polycyclic aromatic hydrocarbons and coal tar from different habitats in Lithuania. Toxicol. Environ. Chem. 2016, 98, 77–89. [Google Scholar] [CrossRef]
- Małek, S.; Ważny, R.; Błońska, E.; Jasik, M.; Lasota, J. Soil fungal diversity and biological activity as indicators of fertilization strategies in a forest ecosystem after spruce disintegration in the Karpaty Mountains. Sci. Total Environ. 2021, 751, 142335. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Chen, B. Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium. J. Environ. Sci. 2012, 24, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Zahir, Z.A.; Nadeem, S.M.; Khan, M.Y.; Binyamin, R.; Waqas, M.R. Role of Halotolerant Microbes in Plant Growth Promotion under Salt Stress Conditions; Kumar, M., Etesami, H., Kumar, V., Eds.; Saline Soil-Based Agriculture by Halotolerant Microorganisms; Springer: Singapore, 2019; ISBN 9789811383359. [Google Scholar]
- Gleason, F.H.; Schmidt, S.K.; Marano, A.V. Can zoosporic true fungi grow or survive in extreme or stressful environments? Extremophiles 2010, 14, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Góralczyk-Bińkowska, A.; Długoński, A.; Bernat, P.; Długoński, J.; Jasińska, A. Accelerated PAH Transformation in the presence of dye industry landfill leachate combined with fungal membrane lipid changes. Int. J. Environ. Res. Public Health 2022, 19, 13997. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Llano, Y.; Rodríguez-Pupo, E.C.; Druzhinina, I.S.; Chenthamara, K.; Cai, F.; Gunde-Cimerman, N.; Zalar, P.; Gostinčar, C.; Kostanjšek, R.; Folch-Mallol, J.L.; et al. Stress reshapes the physiological response of halophile fungi to salinity. Cells 2020, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, V.; Ceci, A.; Dal Bosco, C.; Gentili, A.; Persiani, A.M. Glyphosate-eating fungi: Study on fungal saprotrophic strains’ ability to tolerate and utilise glyphosate as a nutritional source and on the ability of Purpureocillium lilacinum to degrade it. Microorganisms 2021, 9, 2179. [Google Scholar] [CrossRef] [PubMed]
- Deveau, A.; Bonito, G.; Uehling, J.; Paoletti, M.; Becker, M.; Bindschedler, S.; Hacquard, S.; Hervé, V.; Labbé, J.; Lastovetsky, O.A.; et al. Bacterial-fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiol. Rev. 2018, 42, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Ward, O.P. The industrial sustainability of bioremediation processes. J. Ind. Microbiol. Biotechnol. 2004, 31, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol. Ecol. 2004, 50, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef] [PubMed]
- In der Wiesche, C.; Martens, R.; Zadrazil, F. The effect of interaction between white-rot fungi and indigenous microorganisms on degradation of polycyclic aromatic hydrocarbons in soil. Water Air Soil Pollut. Focus 2003, 3, 73–79. [Google Scholar] [CrossRef]
- Repečkienė, J.; Salina, O.; Paškevičius, A.; Liužinas, R.; Jankevičius, K.; Bridžiuvienė, D. Effect of complex technological means on biodegradation of oil products and succession of microorganisms in polluted soil. Pol. J. Environ. Stud. 2013, 22, 831–840. [Google Scholar]
- Rathankumar, A.K.; Saikia, K.; Cabana, H.; Kumar, V.V. Surfactant-aided mycoremediation of soil contaminated with polycyclic aromatic hydrocarbons. Environ. Res. 2022, 209, 112926. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Jadeja, R.N.; Zhou, Q.; Liu, Z. Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environ. Eng. Sci. 2012, 29, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Malina, N.; Mazlova, E.A.; Kulikova, O. Markers of polychlorinated biphenyl (PCB) degradation in highly contaminated soil of Central Russia. Environ. Sci. Pollut. Res. 2020, 27, 36587–36595. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, A.; Stepczyńska, M. Natural biocidal compounds of plant origin as biodegradable materials modifiers. J. Polym. Environ. 2022, 30, 1683–1708. [Google Scholar] [CrossRef] [PubMed]
- Juturu, V.; Wu, J.C. Microbial production of bacteriocins: Latest research development and applications. Biotechnol. Adv. 2018, 36, 2187–2200. [Google Scholar] [CrossRef] [PubMed]
- Patrinoiu, G.; Hussien, M.D.; Calderón-Moreno, J.M.; Atkinson, I.; Musuc, A.M.; Ion, R.N.; Cimpean, A.; Chifiriuc, M.C.; Carp, O. Eco-friendly synthesized spherical ZnO materials: Effect of the core-shell to solid morphology transition on antimicrobial activity. Mater. Sci. Eng. C 2019, 97, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.A.; Hossain, N.; Kchaou, M.; Nandee, R.; Ahmed Shuvho, M.B.; Sultana, S. Scope of eco-friendly nanoparticles for anti-microbial activity. Curr. Res. Green Sustain. Chem. 2021, 4, 100198. [Google Scholar] [CrossRef]
- Wolny-Koładka, K.A.; Malina, D.K. Eco-friendly approach to the synthesis of silver nanoparticles and their antibacterial activity against Staphylococcus spp. and Escherichia coli. J. Environ. Sci. Health Part A Toxic/Hazardous Subst. Environ. Eng. 2018, 53, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Zawadzka, K.; Felczak, A.; Nowak, M.; Kowalczyk, A.; Piwoński, I.; Lisowska, K. Antimicrobial activity and toxicological risk assessment of silver nanoparticles synthesized using an eco-friendly method with Gloeophyllum striatum. J. Hazard. Mater. 2021, 418, 126316. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Delgado, Y.M.; Rodríguez-Carlos, A.; Serrano, C.J.; Rivas-Santiago, B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: A mission impossible? Front. Immunol. 2023, 14, 1194923. [Google Scholar] [CrossRef] [PubMed]
- Stabel, J.R.; Turner, A.; Walker, M. An eco-friendly decontaminant to kill Mycobacterium avium subsp. paratuberculosis. J. Microbiol. Methods 2020, 176, 106001. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, J.; Han, J.; Hu, Y.; Mi, K. Distinct responses of Mycobacterium smegmatis to exposure to low and high levels of hydrogen peroxide. PLoS ONE 2015, 10, e0134595. [Google Scholar] [CrossRef] [PubMed]
- Baldin, V.P.; de Lima Scodro, R.B.; Fernandez, C.M.M.; Ieque, A.L.; Caleffi-Ferracioli, K.R.; Siqueira, V.L.D.; de Almeida, A.L.; Gonçalves, J.E.; Garcia Cortez, D.A.; Cardoso, R.F. Ginger essential oil and fractions against Mycobacterium spp. J. Ethnopharmacol. 2019, 244, 112095. [Google Scholar] [CrossRef] [PubMed]
- EC. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. In Official Journal of the European Union; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Gaddeyya, G.; Niharika, P.S.; Bharathi, P.; Kumar, P.R. Isolation and identification of soil mycoflora in different crop fields at Salur Mandal. Adv. Appl. Sci. Res. 2012, 3, 2020–2026. [Google Scholar]
- Al-Abbasi, S.H.A.; Al-Majmaei, A.A.M.; Al-Naqib, A.T.H.; Hameed, A.M.; Al-Samarraie, M.Q.; H Altaef, A. Isolation and identification of some fungi from rhizospheric soils of some wild plants at Samarra University, Iraq. Casp. J. Environ. Sci. 2021, 19, 829–839. [Google Scholar]
- National Center for Biotechnology Information. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 15 May 2020).
- Klich, M.A. Identification of Common Aspergillus Species; CBS: New York, NY, USA, 2002. [Google Scholar]
- Chen, A.J.; Frisvad, J.C.; Sun, B.D.; Varga, J.; Kocsubé, S.; Dijksterhuis, J.; Kim, D.H.; Hong, S.B.; Houbraken, J.; Samson, R.A. Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Stud. Mycol. 2016, 84, 1–118. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, J.W. Chrysosporium and some other aleuriosporic hyphomycetes. Can. J. Bot. 1962, 40, 1137–1173. [Google Scholar] [CrossRef]
- Castillo, T.; García, A.; Padilla-Córdova, C.; Díaz-Barrera, A.; Peña, C. Respiration in Azotobacter vinelandii and its relationship with the synthesis of biopolymers. Electron. J. Biotechnol. 2020, 48, 36–45. [Google Scholar] [CrossRef]
- Plunkett, M.H.; Knutson, C.M.; Barney, B.M. Key factors affecting ammonium production by an Azotobacter vinelandii strain deregulated for biological nitrogen fixation. Microb. Cell Fact. 2020, 19, 107. [Google Scholar] [CrossRef] [PubMed]
- Kusale, S.P.; Attar, Y.C.; Sayyed, R.Z.; Malek, R.A.; Ilyas, N.; Suriani, N.L.; Khan, N.; El Enshasy, H.A. Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules 2021, 26, 1894. [Google Scholar] [CrossRef] [PubMed]
- Rosenblueth, M.; Martínez, L.; Silva, J.; Martínez-Romero, E. Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst. Appl. Microbiol. 2004, 27, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhao, Y.; Yang, Y.; Zhang, M.; Mao, X.; Guo, Y.; Li, X.; Tao, B.; Qi, Y.; Ma, L.; et al. A genomic analysis of Bacillus megaterium HT517 reveals the genetic basis of its abilities to promote growth and control disease in greenhouse tomato. Int. J. Genom. 2022, 2022, 2093029. [Google Scholar] [CrossRef] [PubMed]
- Al-Enazy, A.A.R.; Al-Oud, S.S.; Al-Barakah, F.N.; Usman, A.R.A. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil. J. Sci. Food Agric. 2017, 97, 3665–3674. [Google Scholar] [CrossRef] [PubMed]
- Camele, I.; Elshafie, H.S.; Caputo, L.; Sakr, S.H.; De Feo, V. Bacillus mojavensis: Biofilm formation and biochemical investigation of its bioactive metabolites. J. Biol. Res. 2019, 92, 39–45. [Google Scholar] [CrossRef]
- Esmaeilishirazifard, E.; Dariush, A.; Moschos, S.A.; Keshavarz, T. A novel antifungal property for the Bacillus licheniformis ComX pheromone and its possible role in inter-kingdom cross-talk. Appl. Microbiol. Biotechnol. 2018, 102, 5197–5208. [Google Scholar] [CrossRef] [PubMed]
- Ul Hassan, Z.; Al Thani, R.; Alnaimi, H.; Migheli, Q.; Jaoua, S. Investigation and application of Bacillus licheniformis volatile compounds for the biological control of toxigenic Aspergillus and Penicillium spp. ACS Omega 2019, 4, 17186–17193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yu, S.; Yang, Y.; Zhang, J.; Zhao, D.; Pan, Y.; Fan, S.; Yang, Z.; Zhu, J. Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato. Front. Microbiol. 2020, 11, 1196. [Google Scholar] [CrossRef] [PubMed]
- Mardanova, A.M.; Fanisovna Hadieva, G.; Tafkilevich Lutfullin, M.; Valer’evna Khilyas, I.; Farvazovna Minnullina, L.; Gadelevna Gilyazeva, A.; Mikhailovna Bogomolnaya, L.; Rashidovna Sharipova, M. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agric. Sci. 2017, 8, 1–20. [Google Scholar] [CrossRef]
- Djenane, Z.; Nateche, F.; Amziane, M.; Gomis-Cebolla, J.; El-Aichar, F.; Khorf, H.; Ferré, J. Assessment of the antimicrobial activity and the entomocidal potential of Bacillus thuringiensis isolates from Algeria. Toxins 2017, 9, 139. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.M.; El-Fatih, M.M.; Helmy, K.G. Antifungal activity of Bacillus thuringiensis strains and their efficacy against the cotton leaf worm Spodoptera littoralis. Arch. Phytopathol. Plant Prot. 2013, 46, 2420–2427. [Google Scholar] [CrossRef]
- Hernández-León, R.; Rojas-Solís, D.; Contreras-Pérez, M.; Orozco-Mosqueda, M.d.C.; Macías-Rodríguez, L.I.; Reyes-de la Cruz, H.; Valencia-Cantero, E.; Santoyo, G. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol. Control 2015, 81, 83–92. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, T.; Chen, K.; Du, M.; Chen, G.; Chen, X.; Wang, K.; Zalán, Z.; Takács, K.; Kan, J. Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus. Food Control 2021, 120, 107499. [Google Scholar] [CrossRef]
- Ambrosini, A.; Stefanski, T.; Lisboa, B.B.; Beneduzi, A.; Vargas, L.K.; Passaglia, L.M.P. Diazotrophic bacilli isolated from the sunflower rhizosphere and the potential of Bacillus mycoides B38V as biofertiliser. Ann. Appl. Biol. 2016, 168, 93–110. [Google Scholar] [CrossRef]
- Peng, Y.H.; Chou, Y.J.; Liu, Y.C.; Jen, J.F.; Chung, K.R.; Huang, J.W. Inhibition of cucumber Pythium damping-off pathogen with zoosporicidal biosurfactants produced by Bacillus mycoides. J. Plant Dis. Prot. 2017, 124, 481–491. [Google Scholar] [CrossRef]
- Brandt, M.E.; Lockhart, S.R. Recent taxonomic developments with candida and other opportunistic yeasts. Curr. Fungal Infect. Rep. 2012, 6, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Hilber-Bodmer, M.; Schmid, M.; Ahrens, C.H.; Freimoser, F.M. Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiol. 2017, 17, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.E.; Gomes, F.; Rodrigues, C.F. Candida spp./bacteria mixed biofilms. J. Fungi 2019, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- El-Neshawy, S.M. Efficacy of Candida oleophila strain 128 in preventing Penicillium expansum infection on apricot fruit. Acta Hortic. 1999, 485, 141–148. [Google Scholar] [CrossRef]
- Jaibangyang, S.; Nasanit, R.; Limtong, S. Biological control of aflatoxin-producing Aspergillus flavus by volatile organic compound-producing antagonistic yeasts. BioControl 2020, 65, 377–386. [Google Scholar] [CrossRef]
- Kieliszek, M.; Kot, A.M.; Bzducha-Wróbel, A.; BŁażejak, S.; Gientka, I.; Kurcz, A. Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biol. Rev. 2017, 31, 185–198. [Google Scholar] [CrossRef]
- Anderson, C.; Hanjalika Malambo, D.; Eliette Gonzalez Perez, M.; Nobela, H.N.; De Pooter, L.; Spit, J.; Hooijmans, C.M.; Van De Vossenberg, J.; Greya, W.; Thole, B.; et al. Lactic acid fermentation, urea and lime addition: Promising faecal sludge sanitizing methods for emergency sanitation. Int. J. Environ. Res. Public Health 2015, 12, 13871–13885. [Google Scholar] [CrossRef] [PubMed]
- Giagnoni, L.; dos Anjos Borges, L.G.; Giongo, A.; de Oliveira Silveira, A.; Ardissone, A.N.; Triplett, E.W.; Mench, M.; Renella, G. Dolomite and compost amendments enhance Cu phytostabilization and increase microbiota of the leachates from a Cu-contaminated soil. Agronomy 2020, 10, 719. [Google Scholar] [CrossRef]
- Mastrolonardo, G.; Calderaro, C.; Cocozza, C.; Hardy, B.; Dufey, J.; Cornelis, J.T. Long-term effect of charcoal accumulation in hearth soils on tree growth and nutrient cycling. Front. Environ. Sci. 2019, 7, 51. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Response of Avena sativa L. and the soil microbiota to the contamination of soil with shell diesel oil. Plant Soil Environ. 2018, 64, 102–107. [Google Scholar] [CrossRef]
- Bello, S.K.; Alayafi, A.H.; AL-Solaimani, S.G.; Abo-Elyousr, K.A.M. Mitigating soil salinity stress with gypsum and bio-organic amendments: A review. Agronomy 2021, 11, 1735. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Merloti, L.F.; Moretti, L.G.; Costa, N.R.; Tsai, S.M.; Kuramae, E.E. Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma 2020, 375, 114476. [Google Scholar] [CrossRef]
- Zoca, S.M.; Penn, C. An important tool with no instruction manual: A review of gypsum use in agriculture. Adv. Agron. 2017, 144, 1–44. [Google Scholar] [CrossRef]
- Al-Enazy, A.A.; Al-Barakah, F.; Al-Oud, S.; Usman, A. Effect of phosphogypsum application and bacteria co-inoculation on biochemical properties and nutrient availability to maize plants in a saline soil. Arch. Agron. Soil Sci. 2018, 64, 1394–1406. [Google Scholar] [CrossRef]
- Bang-Andreasen, T.; Zohaib Anwar, M.; Lanzén, A.; Lanzén, L.; Kjøller, R.; Rønn, R.; Ekelund, F.; Jacobsen, C.S. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol. Ecol. 2020, 96, 1–13. [Google Scholar] [CrossRef]
- Asare-Bediako, E.; Showemimo, F.A.; Opoku-Asiama, Y.; Amewowor, D.H.A.K. In vitro analysis of growth media and the control of yam minisett-rot. Biotechnology 2007, 6, 40–44. [Google Scholar] [CrossRef]
- World Health Organization. WHO Model Prescribing Information: Drugs Used in Skin Diseases; World Health Organization: Geneva, Switzerland, 1997; Available online: https://apps.who.int/iris/handle/10665/41975 (accessed on 4 March 2022).
- Block, S.S. Disinfection, Sterilization, and Preservation, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; ISBN 9780683307405. [Google Scholar]
- Goutam, C.; Bajpai, B. Effect of KMnO4 on seed-borne fungi of Brassica campestris (mustard). Int. J. Biotechnol. Biochem. 2019, 15, 73–79. [Google Scholar]
- Bajagain, R.; Park, Y.; Jeong, S.W. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance. Sci. Total Environ. 2018, 626, 1236–1242. [Google Scholar] [CrossRef]
- Bajagain, R.; Gautam, P.; Jeong, S.W. Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate. Environ. Geochem. Health 2020, 42, 1705–1714. [Google Scholar] [CrossRef]
- Liao, X.; Wu, Z.; Li, Y.; Cao, H.; Su, C. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs. Chemosphere 2019, 226, 483–491. [Google Scholar] [CrossRef]
- Sorokin, D.Y. Is there a limit for high-pH life? Int. J. Syst. Evol. Microbiol. 2005, 55, 1405–1406. [Google Scholar] [CrossRef]
Tested Organism | Control | A. vinelandii | B. licheniformis | B. megaterium | B. mojavensis | B. mycoides | B. subtilis | B. thuringiensis | K. variicola | P. fluorescens | Candida spp. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | Day | Day | Day | Day | Day | Day | Day | Day | Day | Day | ||||||||||||
2nd | 9th | 2nd | 9th | 2nd | 9th | 2nd | 9th | 2nd | 9th | 2nd | 9th | 2nd | 9th | 2nd | 9th | 2nd | 9th | 2nd | 9th | 2nd | 9th | |
White-rot fungi | ||||||||||||||||||||||
I. lacteus | 9 | 35 | 8 | 6 * | 7 | 6 | 10 | 8 | 10 | 7 | 3 | 30 ** | 10 | 8 | 6 | 5 | 6 | 5 | 0 | 0 | 0 | 0 |
P. ostreatus | 3 | 25 | 0 | 0 | 0 | 0 | 1 | 0 | 8 | 6 | 0 | 21 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P. eryngii | 5 | 30 | 11 | 7 | 7 | 4 | 10 | 8 | 10 | 8 | 2 | 26 | 7 | 3 | 5 | 4 | 6 | 5 | 0 | 0 | 0 | 0 |
Microfungi isolated from the biohumus and used wooden sleepers | ||||||||||||||||||||||
A. verrucosa | 3 | 17 | 11 | 8 | 5 | 3 | 8 | 7 | 10 | 8 | 4 | 15 | 13 | 10 | 6 | 3 | 2 | 14 | 0 | 0 | 0 | 0 |
A. fumigatus | 5 | 30 | 10 | 8 | 6 | 5 | 8 | 6 | 4 | 2 | 3 | 24 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 |
A. niger | 4 | 20 | 5 | 3 | 5 | 0 | 10 | 7 | 0 | 0 | 10 | 18 | 4 | 17 | 6 | 4 | 1 | 16 | 0 | 15 | 0 | 14 |
Ch. merdarium | 2 | 13 | 8 | 5 | 3 | 0 | 8 | 6 | 5 | 3 | 2 | 0 | 10 | 6 | 7 | 2 | 5 | 4 | 0 | 0 | 0 | 0 |
C. laurentii | 2 | 8 | 5 | 3 | 2 | 0 | 8 | 5 | 5 | 4 | 0 | 0 | 5 | 4 | 8 | 2 | 5 | 4 | 0 | 0 | 0 | 0 |
C. neoformans | 2 | 8 | 6 | 4 | 2 | 4 | 8 | 6 | 8 | 6 | 0 | 4 | 5 | 4 | 5 | 0 | 2 | 0 | 0 | 0 | 0 | 4 |
F. moniliforme | 6 | 45 | 6 | 4 | 8 | 38 | 5 | 3 | 4 | 3 | 4 | 36 | 10 | 34 | 7 | 39 | 2 | 40 | 0 | 0 | 0 | 43 |
M. echinata | 3 | 20 | 4 | 3 | 3 | 0 | 8 | 6 | 5 | 3 | 2 | 2 | 8 | 4 | 8 | 2 | 3 | 2 | 0 | 0 | 0 | 0 |
M. verrucaria | 6 | 30 | 10 | 8 | 0 | 26 | 8 | 7 | 5 | 4 | 1 | 29 | 8 | 3 | 7 | 5 | 4 | 3 | 0 | 0 | 0 | 24 |
P. funiculosum | 3 | 28 | 8 | 6 | 2 | 0 | 7 | 5 | 5 | 3 | 4 | 24 | 2 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
P. paxilli | 4 | 23 | 8 | 6 | 0 | 0 | 11 | 9 | 2 | 0 | 0 | 0 | 8 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Rh. pusillus | 15 | 45 | 10 | 8 | 0 | 39 | 8 | 6 | 5 | 3 | 4 | 40 | 5 | 36 | 2 | 0 | 0 | 41 | 0 | 0 | 0 | 0 |
T. harzianum | 3 | 45 | 4 | 2 | 3 | 2 | 8 | 6 | 5 | 4 | 10 | 9 | 3 | 3 | 6 | 5 | 1 | 0 | 0 | 0 | 0 | 0 |
U. chartarum | 2 | 15 | 6 | 4 | 4 | 2 | 5 | 3 | 4 | 2 | 0 | 0 | 15 | 8 | 5 | 3 | 4 | 3 | 0 | 0 | 0 | 0 |
Tested Organism | Lime | Dolomite Powder | Charcoal | Ashes | Gypsum | Phosphogypsum | H2O2, % | KMnO4, % | NaOH, % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5 | 3.0 | 0.01 | 0.1 | 0.5 | 1.0 | 0.1 | 0.5 | 1.0 | 1.5 | 2.0 | 3.0 | |||||||
White-rot fungi | ||||||||||||||||||
Irpex lacteus | + | ++ | ++ | ++ | + | ++ | - | - | ± | ± | + | + | - | - | +++ | +++ | +++ | +++ |
Pleurotus ostreatus | + | ++ | ++ | ++ | + | + | - | - | ± | ± | + | + | - | - | - | ++ | ++ | +++ |
Pleurotus eryngii | + | ++ | ++ | ++ | + | ++ | - | - | ± | ± | + | + | - | ++ | +++ | +++ | +++ | +++ |
Microfungi isolated from the biohumus and used wooden sleepers | ||||||||||||||||||
Acremoniella verrucosa | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Aspergillus fumigatus | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | + | + |
Aspergillus niger | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | + | + |
Candida spp. | ++ | - | - | - | - | - | ++ | ++ | ++ | ++ | +++ | +++ | ± | ± | ± | ± | ± | ± |
Chrysosporium merdarium | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Cryptococcus laurentii | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Cryptococcus neoformans | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Fusarium moniliforme | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Memnoniella echinata | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Myrothecium verrucaria | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Penicillium funiculosum | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | - | - |
Penicillium paxilli | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | + | + |
Rhizomucor pusillus | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Trichoderma harzianum | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Trichophyton rubrum | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Ulocladium chartarum | ++ | - | - | ± | - | - | + | + | - | - | - | - | - | - | - | - | ++ | ++ |
Bacteria isolated from the biohumus and used wooden sleepers | ||||||||||||||||||
Bacillus licheniformis | ++ | - | - | - | - | - | ++ | +++ | ++ | ++ | ++ | +++ | - | - | - | - | - | - |
Bacillus mycoides | ++ | - | - | - | - | - | +++ | +++ | ++ | ++ | +++ | +++ | - | - | ± | ± | ± | ± |
Bacillus subtilis | ++ | - | - | - | - | - | +++ | +++ | ++ | ++ | +++ | +++ | - | - | - | - | - | - |
Bacillus thuringiensis | ++ | - | - | - | - | - | +++ | +++ | ++ | ++ | ++ | ++ | - | - | - | - | - | - |
Klebsiella variicola | ++ | - | - | - | - | - | ++ | ++ | ++ | ++ | ++ | +++ | - | - | ± | +++ | +++ | +++ |
Pseudomonas fluorescens | ++ | - | - | - | - | - | ++ | +++ | ++ | ++ | +++ | +++ | - | - | - | - | ± | ± |
Rhizobacteria from rhizosphere | ||||||||||||||||||
Azotobacter vinelandii | ++ | - | - | - | - | - | ++ | ++ | ++ | ++ | ++ | ++ | - | ± | ± | ± | ± | +++ |
Bacillus megaterium | ++ | - | - | - | - | - | +++ | +++ | ++ | ++ | ++ | +++ | - | +++ | +++ | +++ | +++ | +++ |
Bacillus mojavensis | ++ | - | - | - | - | - | +++ | +++ | ++ | ++ | ++ | +++ | - | ± | +++ | +++ | +++ | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruška, A.; Mickienė, R.; Kaškonienė, V.; Grigiškis, S.; Stankevičius, M.; Drevinskas, T.; Kornyšova, O.; Donati, E.; Tiso, N.; Mikašauskaitė-Tiso, J.; et al. Searching for Chemical Agents Suppressing Substrate Microbiota in White-Rot Fungi Large-Scale Cultivation. Microorganisms 2024, 12, 1242. https://doi.org/10.3390/microorganisms12061242
Maruška A, Mickienė R, Kaškonienė V, Grigiškis S, Stankevičius M, Drevinskas T, Kornyšova O, Donati E, Tiso N, Mikašauskaitė-Tiso J, et al. Searching for Chemical Agents Suppressing Substrate Microbiota in White-Rot Fungi Large-Scale Cultivation. Microorganisms. 2024; 12(6):1242. https://doi.org/10.3390/microorganisms12061242
Chicago/Turabian StyleMaruška, Audrius, Rūta Mickienė, Vilma Kaškonienė, Saulius Grigiškis, Mantas Stankevičius, Tomas Drevinskas, Olga Kornyšova, Enrica Donati, Nicola Tiso, Jurgita Mikašauskaitė-Tiso, and et al. 2024. "Searching for Chemical Agents Suppressing Substrate Microbiota in White-Rot Fungi Large-Scale Cultivation" Microorganisms 12, no. 6: 1242. https://doi.org/10.3390/microorganisms12061242
APA StyleMaruška, A., Mickienė, R., Kaškonienė, V., Grigiškis, S., Stankevičius, M., Drevinskas, T., Kornyšova, O., Donati, E., Tiso, N., Mikašauskaitė-Tiso, J., Zacchini, M., Levišauskas, D., Ragažinskienė, O., Bimbiraitė-Survilienė, K., Kanopka, A., & Dūda, G. (2024). Searching for Chemical Agents Suppressing Substrate Microbiota in White-Rot Fungi Large-Scale Cultivation. Microorganisms, 12(6), 1242. https://doi.org/10.3390/microorganisms12061242