Multiple Cofactor Engineering Strategies to Enhance Pyridoxine Production in Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media, and Growth Conditions
2.2. Fermentation Conditions
2.3. Gene Overexpression, Deletion, and Site-Directed Mutagenesis
2.4. Determination of NAD+/NADH
2.5. GFP-Based Fluorescence Spectroscopy
2.6. Analytical Methods
2.7. Enzyme Engineering Optimization
2.8. Validation of Plasmid Stability
3. Results and Discussion
3.1. Precursor Supply Enhancement by the Introduction of Phosphoketolase
3.2. Improve the Catalytic Efficiency of the Rate-Limiting Enzyme pdxA through Rational Design
3.3. Cofactor Engineering by Leaky Expression of SpNox for PN Production
3.4. Synergistic Effects of the Introduction of NADPH-Dependent GapN or GapC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lunde, G.; Kringstad, H. Studies on the vitamin B complex: Experiments on the effect of isoleucine on the “pellagra-like” dermatitis in rats. Biochem. J. 1938, 32, 712–713. [Google Scholar] [CrossRef]
- Mittenhuber, G. Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J. Mol. Microbiol. Biotechnol. 2001, 3, 1–20. [Google Scholar]
- Parra, M.; Stahl, S.; Hellmann, H. Vitamin B6 and Its Role in Cell Metabolism and Physiology. Cells 2018, 7, 84. [Google Scholar] [CrossRef]
- Nagahashi, Y.; Tazoe, M.; Hoshino, T. Cloning of the pyridoxine 5′-phosphate phosphatase gene (pdxP) and vitamin B6 production in pdxP recombinant Sinorhizobium meliloti. Biosci. Biotechnol. Biochem. 2008, 72, 421–427. [Google Scholar] [CrossRef]
- Tambasco-Studart, M.; Titiz, O.; Raschle, T.; Forster, G.; Amrhein, N.; Fitzpatrick, T.B. Vitamin B6 biosynthesis in higher plants. Proc. Natl. Acad. Sci. USA 2005, 102, 13687–13692. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Bernhardt, A.; Leuendorf, J.E.; Drewke, C.; Lytovchenko, A.; Mujahed, N.; Gurgui, C.; Frommer, W.B.; Leistner, E.; Fernie, A.R.; et al. Analysis of the Arabidopsis rsr4-1/pdx1-3 mutant reveals the critical function of the PDX1 protein family in metabolism, development, and vitamin B6 biosynthesis. Plant Cell 2006, 18, 1722–1735. [Google Scholar] [CrossRef]
- Birch, T.W.; György, P.; Harris, L.J. The vitamin B2 complex. Differentiation of the antiblacktongue and the “P.-P.” factors from lactoflavin and vitamin B6 (so-called “rat pellagra” factor). Parts I-VI. Biochem. J. 1935, 29, 2830–2850. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Shahzad, K.; Wang, M. The Role of Metabolic Engineering Technologies for the Production of Fatty Acids in Yeast. Biology 2021, 10, 632. [Google Scholar] [CrossRef] [PubMed]
- Ueland, P.M.; McCann, A.; Midttun, Ø.; Ulvik, A. Inflammation, vitamin B6 and related pathways. Mol. Asp. Med. 2017, 53, 10–27. [Google Scholar] [CrossRef]
- Lopez, G.; Keiner, D.; Fasihi, M.; Koiranen, T.; Breyer, C. From fossil to green chemicals: Sustainable pathways and new carbon feedstocks for the global chemical industry. Energy Environ. Sci. 2023, 16, 2879–2909. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Gai, Y.; Tian, Z.; Wang, Y.; Wang, T.; Liu, P.; Yuan, Q.; Ma, H.; Lee, S.Y.; et al. Protein engineering and iterative multimodule optimization for vitamin B6 production in Escherichia coli. Nat. Commun. 2023, 14, 5304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sonnenschein, N.; Pihl, T.P.B.; Pedersen, K.R.; Jensen, M.K.; Keasling, J.D. Engineering an NADPH/NADP+ redox biosensor in yeast. ACS Synth. Biol. 2016, 5, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Lindner, S.N.; Ramirez, L.C.; Krüsemann, J.L.; Yishai, O.; Belkhelfa, S.; He, H.; Bouzon, M.; Döring, V.; Bar-Even, A. NADPH-auxotrophic E. coli: A sensor strain for testing in vivo regeneration of NADPH. ACS Synth. Biol. 2018, 7, 2742–2749. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Mu, X.; Nie, Y.; Xu, Y. Improving the production of NAD+ via multi-strategy metabolic engineering in Escherichia coli. Metab. Eng. 2021, 64, 122–133. [Google Scholar] [CrossRef]
- Bao, T.; Zhang, X.; Zhao, X.; Rao, Z.; Yang, T.; Yang, S. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Biotechnol. J. 2015, 10, 1298–1306. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, R.S.; Handy, D.E.; Loscalzo, J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid. Redox Signal 2018, 28, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Trisolini, L.; Gambacorta, N.; Gorgoglione, R.; Montaruli, M.; Laera, L.; Colella, F.; Volpicella, M.; De Grassi, A.; Pierri, C.L. FAD/NADH dependent oxidoreductases: From different amino acid sequences to similar protein shapes for playing an ancient function. J. Clin. Med. 2019, 8, 2117. [Google Scholar] [CrossRef]
- Amjad, S.; Nisar, S.; Bhat, A.A.; Shah, A.R.; Frenneaux, M.P.; Fakhro, K.; Haris, M.; Reddy, R.; Patay, Z.; Baur, J.; et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol. Metab. 2021, 49, 101195. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Yao, D.; Li, D.; Xu, H.; Jia, S.; Bi, C.; Cai, J.; Zhu, X.; Zhang, X. Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate. Biotechnol. Bioeng. 2021, 118, 4699–4707. [Google Scholar] [CrossRef]
- Al-Shameri, A.; Siebert, D.L.; Sutiono, S.; Lauterbach, L.; Sieber, V. Hydrogenase-based oxidative biocatalysis without oxygen. Nat. Commun. 2023, 14, 2693. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Tiwari, M.K.; Kang, Y.C.; Lee, J.K. Characterization of H2O-forming NADH oxidase from Streptococcus pyogenes and its application in l-rare sugar production. Bioorg. Med. Chem. Lett. 2012, 22, 1931–1935. [Google Scholar] [CrossRef]
- Bao, T.; Zhang, X.; Rao, Z.; Zhao, X.; Zhang, R.; Yang, T.; Xu, Z.; Yang, S. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS ONE 2014, 9, e102951. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Sun, X.; Liu, Y.; Yang, M.; Wang, L.; Li, Y.; Wang, J. Increased NADPH supply enhances glycolysis metabolic flux and L-methionine production in Corynebacterium glutamicum. Foods 2022, 11, 1031. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q. Seamless cloning and gene fusion. Trends Biotechnol. 2005, 23, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, B.; Duan, C.; Sun, B.; Yang, J.; Yang, S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2015, 81, 2506–2514. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yuan, S.; Xiong, B.; Sun, H.; Ye, L.; Li, J.; Zhang, X.; Bi, C. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb. Cell Fact. 2016, 15, 205. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; Dalenberg, K.; Duarte, J.M.; Dutta, S.; et al. RCSB Protein Data Bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019, 47, D464–D474. [Google Scholar] [CrossRef]
- David, A.C.; Walke, R.C.; Cheatham, T.E.; Simmerling, C.; Roitberg, A.; Merz, K.M.; Li, P.; Luo, R.; Darden, T.; Sagu, C.; et al. Amber 2020; University of California: San Francisco, CA, USA, 2020. [Google Scholar]
- Li, J.; Wang, S.; Liu, C.; Li, Y.; Wei, Y.; Fu, G.; Liu, P.; Ma, H.; Huang, D.; Lin, J.; et al. Going beyond the local catalytic activity space of chitinase using a simulation-based iterative saturation mutagenesis strategy. ACS Catal. 2022, 12, 10235–10244. [Google Scholar] [CrossRef]
- Sivaraman, J.; Li, Y.; Banks, J.; Cane, D.E.; Matte, A.; Cygler, M. Crystal structure of Escherichia coli PdxA, an enzyme involved in the pyridoxal phosphate biosynthesis pathway. J. Biol. Chem. 2003, 278, 43682–43690. [Google Scholar] [CrossRef]
- Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002, 23, 1623–1641. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.; Chandrasekhar, J.; Madura, J.; Impey, R.; Klein, M. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Pearlman, D.A.; Case, D.A.; Caldwell, J.W.; Ross, W.S.; Cheatham, T.E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 1995, 91, 1–41. [Google Scholar] [CrossRef]
- Andersen, H.C. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 1983, 52, 24–34. [Google Scholar] [CrossRef]
- Chow, K.-H.; Ferguson, D.M. Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling. Comput. Phys. Commun. 1995, 91, 283–289. [Google Scholar] [CrossRef]
- Le Grand, S.; Götz, A.W.; Walker, R.C. SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013, 184, 374–380. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E., 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 2018, 361, 360–365. [Google Scholar] [CrossRef]
- Basen, M.; Kurrer, S.E. A close look at pentose metabolism of gut bacteria. FEBS J. 2021, 288, 1804–1808. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Singh, R.S.; Gupta, G.; Ahmad, T.; Kaur, B. Chapter 11—Metabolic engineering of enzyme-regulated bioprocesses. In Advances in Enzyme Technology; Singh, R.S., Singhania, R.R., Pandey, A., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 293–323. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.; Li, R.; Liu, Q.; Shao, X.; Zhu, L.; Kang, M.K.; Wei, G.; Kim, S.W.; Wang, C. Reassessing acetyl-CoA supply and NADPH availability for mevalonate biosynthesis from glycerol in Escherichia coli. Biotechnol. Bioeng. 2022, 119, 2868–2877. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, T.; Li, X.; Chen, Y.; Campbell, K.; Nielsen, J.; Chen, Y. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat. Commun. 2019, 10, 4976. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Wang, W.; Yin, R.; Zeng, M.; Tang, L.; Tang, S.; Li, M. A review of enzyme design in catalytic stability by artificial intelligence. Brief. Bioinform. 2023, 24, bbad065. [Google Scholar] [CrossRef] [PubMed]
- Slivinskaya, E.A.; Plekhanova, N.S.; Altman, I.B.; Yampolskaya, T.A. Engineering of Escherichia coli glyceraldehyde-3-phosphate dehydrogenase with dual NAD+/NADP+ cofactor pecificity for improving amino acid production. Microorganisms 2022, 10, 976. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.S.; Seo, S.W.; Kim, Y.M.; Jung, G.Y.; Park, J.M. Engineering glyceraldehyde-3-phosphate dehydrogenase for switching control of glycolysis in Escherichia coli. Biotechnol. Bioeng. 2012, 109, 2612–2619. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.; Whittam, T.S.; Selander, R.K. Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. Proc. Natl. Acad. Sci. USA 1991, 88, 6667–6671. [Google Scholar] [CrossRef] [PubMed]
- Martinez, I.; Zhu, J.; Lin, H.; Bennett, G.N.; San, K.Y. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH-dependent pathways. Metab. Eng. 2008, 10, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Centeno-Leija, S.; Utrilla, J.; Flores, N.; Rodriguez, A.; Gosset, G.; Martinez, A. Metabolic and transcriptional response of Escherichia coli with a NADP+-dependent glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans. Antonie Van. Leeuwenhoek 2013, 104, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Iddar, A.; Valverde, F.; Serrano, A.; Soukri, A. Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Mol. Cell Biochem. 2003, 247, 195–203. [Google Scholar] [CrossRef]
- Takeno, S.; Murata, R.; Kobayashi, R.; Mitsuhashi, S.; Ikeda, M. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl. Environ. Microbiol. 2010, 76, 7154–7160. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E. Amber 2021; University of California: San Francisco, CA, USA, 2021. [Google Scholar]
Strain | Description | Source |
---|---|---|
MG1655 | F-λ-ilvG-, rfb-50, rph-1 | Our lab |
LL006 | MG1655, ΔpdxH::pdxST-2 (Bsu), Δpta::Ptac-pdxP (Eme) | Our lab [11] |
WL01 | LL006, ΔldhA::xfp (Blo) | This study |
WL02 | LL006 harboring p15ASI-Ptac-epd (Gni)-pdxB (Eco)-dxs (Eme)-PJ231119-serC (Eco), pRSFDuet-1_P3-pdxA2-pdxJ1 | This study |
WL03 | WL01 harboring p15ASI-Ptac-epd (Gni)-pdxB (Eco)-dxs (Eme)-PJ231119-serC (Eco), pRSFDuet-1_P3-pdxA2-pdxJ1 | This study |
WL04 | WL01 harboring p15ASI-Ptac-epd (Gni)-pdxB (Eco)-dxs (Eme)-PJ231119-serC (Eco), pRSFDuet-1_P3-pdxA3 (F140I)-pdxJ1, pBAD-SpNox | This study |
WL05 | WL03 harboring pBAD-GFP | This study |
WL06 | WL01, ΔykgA::J23118-SpNox | This study |
WL07 | WL01, ΔykgA::Pro-SpNox | This study |
WL08 | WL06 harboring p15ASI-Ptac-epd (Gni)-pdxB (Eco)-dxs (Eme)-PJ231119-serC (Eco), pRSFDuet-1_P3-pdxA3 (F140I)-pdxJ1 | This study |
WL09 | WL07 harboring p15ASI-Ptac-epd (Gni)-pdxB (Eco)-dxs (Eme)-PJ231119-serC (Eco), pRSFDuet-1_P3-pdxA3 (F140I)-pdxJ1 | This study |
WL10-WL155 | PdxA mutants (details in Supplementary Data S1) | This study |
WL156 | WL07, ΔpflB::gapN | This study |
WL157 | WL07, ΔpflB::gapC | This study |
WL158 | WL156 harboring p15ASI-Ptac-epd (Gni)-pdxB (Eco)-dxs (Eme)-PJ231119-serC (Eco), pRSFDuet-1_P3-pdxA3 (F140I)-pdxJ1 | This study |
WL159 | WL157 harboring p15ASI-Ptac-epd (Gni)-pdxB (Eco)-dxs (Eme)-PJ231119-serC (Eco), pRSFDuet-1_P3-pdxA3 (F140I)-pdxJ1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Li, J.; Zhang, Y.; Tian, Z.; Jin, Z.; Liu, L.; Zhang, D. Multiple Cofactor Engineering Strategies to Enhance Pyridoxine Production in Escherichia coli. Microorganisms 2024, 12, 933. https://doi.org/10.3390/microorganisms12050933
Wu L, Li J, Zhang Y, Tian Z, Jin Z, Liu L, Zhang D. Multiple Cofactor Engineering Strategies to Enhance Pyridoxine Production in Escherichia coli. Microorganisms. 2024; 12(5):933. https://doi.org/10.3390/microorganisms12050933
Chicago/Turabian StyleWu, Lijuan, Jinlong Li, Yahui Zhang, Zhizhong Tian, Zhaoxia Jin, Linxia Liu, and Dawei Zhang. 2024. "Multiple Cofactor Engineering Strategies to Enhance Pyridoxine Production in Escherichia coli" Microorganisms 12, no. 5: 933. https://doi.org/10.3390/microorganisms12050933
APA StyleWu, L., Li, J., Zhang, Y., Tian, Z., Jin, Z., Liu, L., & Zhang, D. (2024). Multiple Cofactor Engineering Strategies to Enhance Pyridoxine Production in Escherichia coli. Microorganisms, 12(5), 933. https://doi.org/10.3390/microorganisms12050933