Exploring Propolis as a Sustainable Bio-Preservative Agent to Control Foodborne Pathogens in Vacuum-Packed Cooked Ham
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cooked Ham
2.1.1. Ingredients and Procedure of Elaboration
2.1.2. Nutrient Profile
2.2. Propolis
2.2.1. Propolis Origin
2.2.2. Chemical Profile and Bioactive Compounds
2.2.3. HPLC-DAD-MS Quantification
2.3. Inoculation of Strains
2.4. Experimental Design
2.5. Microbiological Analyses
2.6. Physicochemical Analyses
2.7. Sensory Analyses
2.8. Statistical Analyses
3. Results
3.1. Propolis Chemical Profile and Bioactive Characteristics
3.1.1. Physicochemical Characterization
3.1.2. Antioxidant Capacity
3.1.3. Chemical Quantification of Phenolic Profile
3.2. Antibacterial Activity of EEP
3.2.1. Inhibition Screening Test
3.2.2. MICs and MBCs Results for Each Foodborne Considered
3.3. Challenge Testing
3.3.1. Microbial Counts
3.3.2. pH and Water Activity
3.4. Sensory Analyses Results
3.4.1. Description of Cooked Ham Test
3.4.2. Triangular Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bellucci, E.R.B.; Bis-Souza, C.V.; Domínguez, R.; Bermúdez, R.; Barretto, A.C.D.S. Addition of Natural Extracts with Antioxidant Function to Preserve the Quality of Meat Products. Biomolecules 2022, 12, 1506. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An Overview of Natural Antimicrobials Role in Food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Halagarda, M.; Wójciak, K.M. Health and Safety Aspects of Traditional European Meat Products. A Review. Meat Sci. 2022, 184, 108623. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pando, G.; Ekonomou, S.I.; Stratakos, A.C.; Pintado, T. Clean Label Alternatives in Meat Products. Foods 2021, 10, 1615. [Google Scholar] [CrossRef]
- Santiesteban-López, N.A.; Gómez-Salazar, J.A.; Santos, E.M.; Campagnol, P.C.B.; Teixeira, A.; Lorenzo, J.M.; Sosa-Morales, M.E.; Domínguez, R. Natural Antimicrobials: A Clean Label Strategy to Improve the Shelf Life and Safety of Reformulated Meat Products. Foods 2022, 11, 2613. [Google Scholar] [CrossRef] [PubMed]
- Dalzini, E.; Merigo, D.; Caproli, A.; Monastero, P.; Cosciani-Cunico, E.; Losio, M.-N.; Daminelli, P. Inactivation of Listeria Monocytogenes and Salmonella Spp. in Milano-Type Salami Made with Alternative Formulations to the Use of Synthetic Nitrates/Nitrites. Microorganisms 2022, 10, 562. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Biological Hazards (BIOHAZ) Related to Clostridium Spp in Foodstuffs. EFSA J. 2005, 199, 1–65. [Google Scholar] [CrossRef]
- Pateiro, M.; Domínguez, R.; Lorenzo, J.M. Recent Research Advances in Meat Products. Foods 2021, 10, 1303. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Hogstrand, C.; (Ron) Hoogenboom, L.; Leblanc, J.; Nebbia, C.S.; et al. Risk Assessment of N-nitrosamines in Food. EFS2 2023, 21, e07884. [Google Scholar] [CrossRef]
- CFR–Code of Federal Regulations. Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=172 (accessed on 14 March 2024).
- Segueni, N.; Boutaghane, N.; Asma, S.T.; Tas, N.; Acaroz, U.; Arslan-Acaroz, D.; Shah, S.R.A.; Abdellatieff, H.A.; Akkal, S.; Peñalver, R.; et al. Review on Propolis Applications in Food Preservation and Active Packaging. Plants 2023, 12, 1654. [Google Scholar] [CrossRef]
- Belmehdi, O.; El Menyiy, N.; Bouyahya, A.; El Baaboua, A.; El Omari, N.; Gallo, M.; Montesano, D.; Naviglio, D.; Zengin, G.; Skali Senhaji, N.; et al. Recent Advances in the Chemical Composition and Biological Activities of Propolis. Food Rev. Int. 2022, 39, 6078–6128. [Google Scholar] [CrossRef]
- AL-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, S.; El Moghazy, G.; Elshemy, A.; Abd Allah, A.; Nader, H. Studying the Quality of Local Propolis and Evaluation of Its Effect as Antimicrobial Food Additive. Egypt J. Chem. 2022, 66, 381–389. [Google Scholar] [CrossRef]
- Marly, S.S.; Maria, L.M.F.E.; Carlos, A.L.D.C.; Karina, T.M.-G.; Rosane, F.S.; Rogeria, C.D.C.A. Propolis as Natural Additive: A Systematic Review. Afr. J. Biotechnol. 2018, 17, 1282–1291. [Google Scholar] [CrossRef]
- Rodriguez, A.R.; Areche, F.O.; Landeo, O.T.; Alejo, O.V.P.-; Montesinos, C.C.Z.; Yapias, R.J.M.; Sulca, J.Y.M.; Rivera, T.J.C.; Flores, D.D.C.; Gamarra, F.B.L.; et al. Effect of Propolis as a Preservative Applied to Alpaca (Vicugna Pacos) Meat Hamburger, Huancavelica, Peru. Curr. Res. Nutr. Food Sci. 2023, 11, 401–411. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Jácome, S.; Teixeira, P. Antimicrobial Activity of Ethanolic Extract of Propolis in “Alheira”, a Fermented Meat Sausage. Cogent Food Agric. 2016, 2, 1125773. [Google Scholar] [CrossRef]
- Osés, S.M.; Melgosa, L.; Pascual-Maté, A.; Fernández-Muiño, M.A.; Sancho, M.T. Design of a Food Product Composed of Honey and Propolis. J. Apic. Res. 2015, 54, 461–467. [Google Scholar] [CrossRef]
- El-Sakhawy, M.; Salama, A.; Mohamed, S.A.A. Propolis Applications in Food Industries and Packaging. Biomass Convers. Biorefin. 2023, 16, 1–6. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Risks for Public Health Related to the Presence of Bacillus Cereus and Other Bacillus spp. Including Bacillus Thuringiensis in Foodstuffs. EFSA J. 2016, 14, e04524. [Google Scholar] [CrossRef]
- Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; González-Paramás, A.M.; Vallejo-Pascual, M.-E.; Adanero-Jorge, F.; García-Fernández, C. Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain. Foods 2023, 12, 4337. [Google Scholar] [CrossRef]
- Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; Adanero-Jorge, F.; García-Fernandez, C. Antimicrobial Activity of Spanish Propolis against Listeria Monocytogenes and Other Listeria Strains. Microorganisms 2023, 11, 1429. [Google Scholar] [CrossRef]
- Bankova, V.; Trusheva, B.; Popova, M. Propolis Extraction Methods: A Review. J. Apic. Res. 2021, 60, 734–743. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Propolis Volatile Compounds: Chemical Diversity and Biological Activity: A Review. Chem. Cent. J. 2014, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Riego, M.; Rey, S.; Hevia, D.; Muñoz, H. Solvents’ Influence in the Measurement of Phenolic Compounds and Antioxidant Capacity in Blueberries Extracts. In Proceedings of the 13th ISANH Malta World Congress on Polyphenols Applications, Valetta, Malta, 30 September–1 October 2019. [Google Scholar]
- Káňová, K.; Petrásková, L.; Pelantová, H.; Rybková, Z.; Malachová, K.; Cvačka, J.; Křen, V.; Valentová, K. Sulfated Metabolites of Luteolin, Myricetin, and Ampelopsin: Chemoenzymatic Preparation and Biophysical Properties. J. Agric. Food Chem. 2020, 68, 11197–11206. [Google Scholar] [CrossRef]
- Pellati, F.; Orlandini, G.; Pinetti, D.; Benvenuti, S. HPLC-DAD and HPLC-ESI-MS/MS Methods for Metabolite Profiling of Propolis Extracts. J. Pharm. Biomed. Anal. 2011, 55, 934–948. [Google Scholar] [CrossRef]
- Yetim, H.; Kayacier, A.; Kesmen, Z.; Sagdic, O. The Effects of Nitrite on the Survival of Clostridium Sporogenes and the Autoxidation Properties of the Kavurma. Meat Sci. 2006, 72, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Tu, K.; Guo, L.; Li, H.; Zhao, Y. Response Surface Model for Prediction of Growth Parameters from Spores of Clostridium Sporogenes under Different Experimental Conditions. Food Microbiol. 2007, 24, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva, C.I.B.; Danert, C.; Eberlin, M.N.; Falcão, S.I.; Isla, M.I.; Moreno, M.I.N.; et al. Standard Methods for Apis Mellifera Propolis Research. J. Apic. Res. 2019, 58, 1–49. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Herman, L.; Koutsoumanis, K.; et al. Listeria Monocytogenes Contamination of Ready-to-eat Foods and the Risk for Human Health in the EU. EFSA J. 2018, 16, 1–173. [Google Scholar] [CrossRef]
- Official Methods of Analysis, 22nd Edition (2023)–AOAC INTERNATIONAL. Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 2 November 2023).
- Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural Phenolic Compounds for the Control of Oxidation, Bacterial Spoilage, and Foodborne Pathogens in Meat. Foods 2020, 9, 794. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. New Emerging Fields of Application of Propolis. Maced. J. Chem. Chem. Eng. 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Bobiş, O. Plants: Sources of Diversity in Propolis Properties. Plants 2022, 11, 2298. [Google Scholar] [CrossRef]
- Dvykaliuk, R.; Adamchuk, L.; Antoniv, A.; Bal-Prylypko, L. Development of Safety and Quality of Propolis as a Food Raw Material. Anim. Sci. Food Technol. 2023, 14, 26–48. [Google Scholar] [CrossRef]
- Anton, D.; Koskar, J.; Raudsepp, P.; Meremäe, K.; Kaart, T.; Püssa, T.; Roasto, M. Antimicrobial and Antioxidative Effects of Plant Powders in Raw and Cooked Minced Pork. Foods 2019, 8, 661. [Google Scholar] [CrossRef]
- Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical Diversity and Challenges in Quality Control. Phytochem. Rev. 2022, 21, 1887–1911. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Gutiérrez, A.L. Antioxidant Activity and Total Phenolics of Propolis from the Basque Country (Northeastern Spain). J. Am. Oil Chem. Soc. 2011, 88, 1387–1395. [Google Scholar] [CrossRef]
- Osés, S.M.; Marcos, P.; Azofra, P.; de Pablo, A.; Fernández-Muíño, M.Á.; Sancho, M.T. Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization. Antioxidants 2020, 9, 75. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant Extracts Rich in Polyphenols: Antibacterial Agents and Natural Preservatives for Meat and Meat Products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Hintz, T.; Matthews, K.K.; Di, R. The Use of Plant Antimicrobial Compounds for Food Preservation. BioMed Res. Int. 2015, 2015, 246264. [Google Scholar] [CrossRef]
- Nefzi, N.; Pagliari, S.; Campone, L.; Megdiche-Ksouri, W.; Giarratana, F.; Cicero, N.; Ziino, G.; Nalbone, L. Chemical Composition and Comprehensive Antimicrobial Activity of an Ethanolic Extract of Propolis from Tunisia. Antibiotics 2023, 12, 802. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Gniewosz, M. Application of Propolis in Antimicrobial and Antioxidative Protection of Food Quality–A Review. Trends Food Sci. Technol. 2019, 83, 53–62. [Google Scholar] [CrossRef]
- Viera, V.B.; Piovesan, N.; Moro, K.I.B.; Rodrigues, A.S.; Scapin, G.; da Rosa, C.S.; Kubota, E.H. Preparation and Microbiological Analysis of Tuscan Sausage with Added Propolis Extract. Food Sci. Technol 2016, 36, 37–41. [Google Scholar] [CrossRef]
- Demir, Ö.E. Propolis and Potential Use in Food Products. Turk. JAF Sci. Technol. 2020, 8, 1139–1144. [Google Scholar] [CrossRef]
- Thamnopoulos, I.-A.I.; Michailidis, G.F.; Fletouris, D.J.; Badeka, A.; Kontominas, M.G.; Angelidis, A.S. Inhibitory Activity of Propolis against Listeria Monocytogenes in Milk Stored under Refrigeration. Food Microbiol. 2018, 73, 168–176. [Google Scholar] [CrossRef]
- Demir, Ö.E. The Effects of Propolis and Nisin on Listeria Monocytogenes in Contaminated Ice Cream. J. Food Process. Preserv. 2021, 45, e14598. [Google Scholar] [CrossRef]
- Correa, F.T.; de Souza, A.C.; de Souza Júnior, E.A.; Isidoro, S.R.; Piccoli, R.H.; Dias, D.R.; de Abreu, L.R. Effect of Brazilian Green Propolis on Microorganism Contaminants of Surface of Gorgonzola-Type Cheese. J. Food Sci. Technol. 2019, 56, 1978–1987. [Google Scholar] [CrossRef]
- Pereira, L.; Cunha, A.; Almeida-Aguiar, C. Portuguese Propolis from Caramulo as a Biocontrol Agent of the Apple Blue Mold. Food Control 2022, 139, 109071. [Google Scholar] [CrossRef]
- Xi, Y.; Sullivan, G.A.; Jackson, A.L.; Zhou, G.H.; Sebranek, J.G. Use of Natural Antimicrobials to Improve the Control of Listeria Monocytogenes in a Cured Cooked Meat Model System. Meat Sci. 2011, 88, 503–511. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs (Text with EEA Relevance); EUR-Lex: Brusseles, Belgium, 2005; Volume 338.
- Koskar, J.; Meremäe, K.; Püssa, T.; Anton, D.; Elias, T.; Rätsep, R.; Mäesaar, M.; Kapp, K.; Roasto, M. Microbial Growth Dynamics in Minced Meat Enriched with Plant Powders. Appl. Sci. 2022, 12, 11292. [Google Scholar] [CrossRef]
- Bernardi, S.; Favaro-Trindade, C.; Trindade, M.; Balieiro, J.; Cavenaghi, A.; Contreras-Castilo, C. Italian-Type Salami with Propolis as Antioxidant. Ital. J. Food Sci. 2013, 25, 433–440. [Google Scholar]
- Jonaidi Jafari, N.; Kargozari, M.; Ranjbar, R.; Rostami, H.; Hamedi, H. The Effect of Chitosan Coating Incorporated with Ethanolic Extract of Propolis on the Quality of Refrigerated Chicken Fillet. J. Food Process. Preserv. 2018, 42, e13336. [Google Scholar] [CrossRef]
ABTS | DPPH | CEAC | FRAP |
---|---|---|---|
1653.46 ± 0.07 | 1115.38 ± 4.11 | 3800.44 ± 0.05 | 4188 ± 0.03 |
µM Trolox | µM Trolox | µM Vit C | µM Eq Galic acid 1 |
Peak | Component | RT (min.) | [M - H] (m/z) | MS2 (m/z) | Amount |
---|---|---|---|---|---|
7 | Methylluteolin | 19.4 | 299 | 284, 255, 227 | 0.90 ± 0.12 |
8 | Dimethylquercetin | 21.3 | 329 | 315, 299, 285 | 0.80 ± 0.15 |
9 | Quercetin | 22.4 | 301 | 179, 151 | 4.10 ± 0.52 |
12 | Methylquercetin | 24.4 | 315 | 301, 271, 255 | 3.40 ± 0.34 |
16 | Apigenin | 29.5 | 269 | 225, 180, 149, 117 | 2.60 ± 0.34 |
18 | Kaempferol | 32.2 | 285 | 257, 229, 151 | 5.80 ± 0.78 |
19 | Methylquercetin | 32.8 | 315 | 301, 151 | 4.50 ± 0.66 |
21 | Methylluteolin (Luteolin-Methyl-Ether) | 34.1 | 299 | 284, 255, 227 | 2.10 ± 0.35 |
22 | Methoxykaempferol 3-Methyl Ether | 35.6 | 329 | 314, 299, 285 | 2.00 ± 0.39 |
25 | Quercetin-7-Methyl-Ether | 41.5 | 315 | 301, 193, 165, 121 | 3.70 ± 0.66 |
26 | Quercetin-Dimethyl-Ether | 45.5 | 329 | 315, 299, 271 | 3.50 ± 0.71 |
32 | Galangin | 52.8 | 269 | 227, 197 | 19.30 ± 4.32 |
37 | Galangin-5-Methyl-Ether | 59.5 | 283 | 268, 177, 133 | 1.50 ± 0.83 |
42 | Luteolin 6-C-Pentoside (Arabinoside) | 63.2 | 421 | 313, 299 | 1.00 ± 0.29 |
48 | Galangin-5-Methyl-Ether | 68.1 | 283 | 268, 239 | <DL |
Total Flavonols Content | 56.10 ± 10.02 |
Peak | Component | RT (min.) | [M - H] (m/z) | MS2 (m/z) | Amount |
---|---|---|---|---|---|
1 | Caffeic Acid | 6.4 | 179 | 135 | 3.80 ± 0.19 |
2 | p-Coumaric Acid | 9.5 | 163 | 119 | 7.60 ± 0.58 |
3 | Ferulic Acid | 10.5 | 193 | 178, 149, 134 | 0.90 ± 0.08 |
4 | Isoferulic Acid | 11.1 | 193 | 178, 134 | 1.50 ± 0.10 |
6 | 3,4-Dimethyl-Caffeic Acid (DMCA) | 18.3 | 207 | 163, 133 | 3.50 ± 0.23 |
24 | Coumaric Acid Derivative | 38.8 | 301 | 165, 135 | 5.70 ± 0.77 |
28 | Caffeic Acid Prenyl Ester (CAPE) | 48.2 | 247 | 179, 135 | 5.60 ± 0.28 |
29 | Caffeic Acid Benzyl Ester | 49.7 | 269 | 168, 161, 134 | 11.30 ± 1.11 |
33a | Caffeic Acid Phenylethyl Ester (CAPE) | 53.8 | 283 | 179, 161, 135 | 6.00 ± 1.13 |
35 | Caffeic Acid Cinnamyl Ester | 58.5 | 295 | 178, 134 | 5.90 ± 1.23 |
36 | Caffeic Acid Methyl Phenetyl Ester | 59.0 | 297 | 179, 161, 135 | <QL |
38 | CAPE Derivative | 59.8 | 551 | 429, 283, 267, 255 | 4.40 ± 0.89 |
40 | Coumaric Acid Derivative | 61.0 | 267 | 163, 145, 119 | 1.30 ± 0.19 |
41 | Methoxychrysin Derivative | 62.4 | 301 | 283, 269, 253, 152 | 1.80 ± 0.36 |
44 | P-Coumaric Cinnamyl Ester | 64.8 | 279 | 235, 195, 118 | 3.40 ± 1.04 |
Total Hidroxicinamics Acids Content | 62.6 ± 7.82 |
Peak | Component | RT (min.) | [M - H] (m/z) | MS2 (m/z) | Amount |
---|---|---|---|---|---|
5 | Genistein glucoside | 17.4 | 431 | 268, 239 | <LD |
10 | Methylpinobanksin | 23.7 | 285 | 267, 253 | 5.40 ± 0.31 |
11 | Sakuranetin | 23.8 | 285 | 267, 251 | 9.00 ± 0.60 |
13 | Methylapigenin (Ej. Hispidulin) | 27.8 | 299 | 270, 255 | 2.50 ± 0.42 |
14 | Methylchrysin | 28.2 | 267 | 252, 224, 180 | <LD |
15 | Pinobanksin Derivative | 29.1 | 271 | 177, 151, 119 | <LD |
17 | Pinobanksin | 30.8 | 271 | 253, 197 | 3.70 ± 0.47 |
23 | Methoxy-Chrysin | 38.1 | 283 | 268, 239, 211 | <LD |
27 | Pinobanksin-5-Methyl-Ether | 47.0 | 287 | 193, 181, 166 | 0.90 ± 0.33 |
30 | Chrysin | 50.5 | 253 | 209, 167 | 13.60 ± 3.27 |
31 | Pinocembrin | 51.7 | 257 | 255, 213, 151 | 16.40 ± 4.38 |
33b | Pinobanksin-3-O-Acetate | 53.8 | 313 | 271, 253 | 13.60 ± 2.88 |
34 | Methoxy-Chrysin | 55.6 | 283 | 268, 239 | 0.80 ± 0.16 |
39 | Pinobanksin-5-Methyl-Ether-3-O-Acetate | 60.9 | 327 | 271, 253 | <LD |
43 | Pinobanksin | 63.5 | 271 | 253, 165, 152 | 3.70 ± 0.97 |
46 | Pinocembrin Derivative | 66.7 | 363 | 269, 257 | |
49 | Naringenin | 68.3 | 521, 271 | 283, 269 | <LD |
50 | Pinobanksin-3-O-Pentanoate or 2-Methylbutyrate | 69.8 | 355 | 271, 255 | <LD |
Total Flavones and Flavanones | 73.30 ± 13.70 |
Microorganisms | Strains | Halo (mm) | MIC (µg/mL) | MBC (µg/mL) |
---|---|---|---|---|
Listeria monocytogenes | 10 | 17 | 312.50 | 625.00 |
74 | 17 | 156.25 | 312.25 | |
4032 | 18 | 156.25 | 312.25 | |
Staphylococcus aureus | 5190 | 25 | 625.00 | 625.00 |
Clostridium sporogenes | 485 | 27 | 156.25 | 312.50 |
892 | 26 | 625.00 | 625.00 | |
Bacillus cereus | 495 | 22 | 312.50 | 625.00 |
553 | 21 | 312.50 | 1250.00 | |
613 | 20 | 312.50 | 625.00 | |
635 | 18 | 312.50 | 625.00 | |
8168 | 25 | 312.50 | 625.00 |
Participants | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Triangular Test | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Dish 1 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ⊠ | ☑ | ☑ |
Dish 2 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ⊠ | ⊠ | ⊠ | ☑ |
Dish 3 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; González-Paramás, A.M.; Adanero-Jorge, F.; García-Fernández, C. Exploring Propolis as a Sustainable Bio-Preservative Agent to Control Foodborne Pathogens in Vacuum-Packed Cooked Ham. Microorganisms 2024, 12, 914. https://doi.org/10.3390/microorganisms12050914
Rendueles E, Mauriz E, Sanz-Gómez J, González-Paramás AM, Adanero-Jorge F, García-Fernández C. Exploring Propolis as a Sustainable Bio-Preservative Agent to Control Foodborne Pathogens in Vacuum-Packed Cooked Ham. Microorganisms. 2024; 12(5):914. https://doi.org/10.3390/microorganisms12050914
Chicago/Turabian StyleRendueles, Eugenia, Elba Mauriz, Javier Sanz-Gómez, Ana M. González-Paramás, Félix Adanero-Jorge, and Camino García-Fernández. 2024. "Exploring Propolis as a Sustainable Bio-Preservative Agent to Control Foodborne Pathogens in Vacuum-Packed Cooked Ham" Microorganisms 12, no. 5: 914. https://doi.org/10.3390/microorganisms12050914
APA StyleRendueles, E., Mauriz, E., Sanz-Gómez, J., González-Paramás, A. M., Adanero-Jorge, F., & García-Fernández, C. (2024). Exploring Propolis as a Sustainable Bio-Preservative Agent to Control Foodborne Pathogens in Vacuum-Packed Cooked Ham. Microorganisms, 12(5), 914. https://doi.org/10.3390/microorganisms12050914