Sodium Polyoxotungstate Inhibits the Replication of Influenza Virus by Blocking the Nuclear Import of vRNP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Virus Strains
2.2. Chemicals
2.3. Antibodies
2.4. Cell Viability Assay
2.5. Antiviral Assay
2.6. Indirect Immunofluorescence Assay (IFA)
2.7. Western Blot
2.8. Time-of-Addition Assay
2.9. Virucidal Assay
2.10. Virus Attachment Assay
2.11. Neuraminidase Inhibition Assay
2.12. Virus Release Assay
2.13. Statistical Analyses
3. Results
3.1. POM-1 Inhibits the Replication of Influenza Viruses In Vitro
3.2. POM-1 Inhibits Influenza Virus Replication in the Early Stage of Its Life Cycle
3.3. POM-1 Does Not Block Virus Adsorption, Though It Triggers Virion Aggregation
3.4. POM-1 Does Not Affect Virus Endocytosis, While the Nuclear Import of vRNP Is Blocked
3.5. The Aggregation of Virions Caused by POM-1 during Adsorption Is Reversible
3.6. POM-1 Causes Virion Aggregation in the Cytoplasm and Hinders the Nuclear Import of vRNP
3.7. The Aggregation of Virions Caused by POM-1 in the Cytoplasm Is Reversible
3.8. POM-1 Has No Effect on the Release of Influenza Virions
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Influenza (Seasonal). Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 24 April 2024).
- Zheng, L.; Lin, Y.; Yang, J.; Fang, K.; Wu, J.; Zheng, M. Global variability of influenza activity and virus subtype circulation from 2011 to 2023. BMJ Open Respir. Res. 2023, 10, e001638. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. People at Higher Risk of Flu Complications. Available online: https://www.cdc.gov/flu/highrisk/index.htm (accessed on 24 April 2024).
- Uyeki, T.M. High-risk Groups for Influenza Complications. JAMA 2020, 324, 2334. [Google Scholar] [CrossRef] [PubMed]
- Buchy, P.; Badur, S. Who and when to vaccinate against influenza. Int. J. Infect. Dis. 2020, 93, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ye, H.; Li, H.; Ma, K.; Qiu, W.; Chen, Y.; Qiu, Z.; Li, B.; Jia, W.; Liang, Z.; et al. Evolution and Antigenic Drift of Influenza A (H7N9) Viruses, China, 2017–2019. Emerg. Infect. Dis. 2020, 26, 1906–1911. [Google Scholar] [CrossRef] [PubMed]
- Han, A.X.; de Jong, S.P.J.; Russell, C.A. Co-evolution of immunity and seasonal influenza viruses. Nat. Rev. Microbiol. 2023, 21, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Swierczynska, M.; Mirowska-Guzel, D.M.; Pindelska, E. Antiviral Drugs in Influenza. Int. J. Environ. Res. Public Health 2022, 19, 3018. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Sharma, S.D.; Kumar, A.; Ende, Z.; Mishina, M.; Wang, Y.; Falls, Z.; Samudrala, R.; Pohl, J.; Knight, P.R.; et al. Antiviral Approaches against Influenza Virus. Clin. Microbiol. Rev. 2023, 36, e0004022. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.L.; Prosser-McCartha, C.M. Homogeneous catalysis by transition metal oxygen anion clusters. Coord. Chem. Rev. 1995, 143, 407–455. [Google Scholar] [CrossRef]
- Müller, A.; Peters, F.; Pope, M.T.; Gatteschi, D. Polyoxometalates: Very large clusters-nanoscale magnets. Chem. Rev. 1998, 98, 239–272. [Google Scholar] [CrossRef]
- Aureliano, M.; Gumerova, N.I.; Sciortino, G.; Garribba, E.; Rompel, A.; Crans, D.C. Polyoxovanadates with emerging biomedical activities. Coord. Chem. Rev. 2021, 447, 214143. [Google Scholar] [CrossRef]
- Rhule, J.T.; Hill, C.L.; Judd, D.A.; Schinazi, R. Polyoxometalates in medicine. Chem. Rev. 1998, 98, 327–358. [Google Scholar] [CrossRef] [PubMed]
- Aureliano, M. The Future Is Bright for Polyoxometalates. BioChem 2022, 2, 8–26. [Google Scholar] [CrossRef]
- Maalaoui, A.; Agwamba, E.C.; Louis, H.; Mathias, G.E.; Rzaigui, M.; Akriche, S. Combined Experimental and Computational Study of V-Substituted Lindqvist Polyoxotungstate: Screening by Docking for Potential Antidiabetic Activity. Inorg. Chem. 2023, 62, 14279–14290. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Sun, H.; Dong, K.; Ren, J.; Duan, T.; Xu, C.; Qu, X. Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer’s disease. Nat. Commun. 2014, 5, 3422. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, S.; Zhao, C.; Li, X.; Jin, J.; Shi, X.; Su, Z.; Li, J.; Wang, J. Promising application of polyoxometalates in the treatment of cancer, infectious diseases and Alzheimer’s disease. J. Biol. Inorg. Chem. 2022, 27, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Shigeta, S.; Mori, S.; Yamase, T.; Yamamoto, N.; Yamamoto, N. Anti-RNA virus activity of polyoxometalates. Biomed. Pharmacother. 2006, 60, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Huffman, J.; Sidwell, R.; Barnard, D.L.; Morrison, A.; Otto, M.; Hill, C.; Schinazi, R. Influenza virus-inhibitory effects of a series of germanium-and silicon-centred polyoxometalates. Antivir. Chem. Chemother. 1997, 8, 75–83. [Google Scholar] [CrossRef]
- Wang, J.; Qu, X.; Qi, Y.; Li, J.; Song, X.; Li, L.; Yin, D.; Xu, K.; Li, J. Pharmacokinetics of anti-HBV polyoxometalate in rats. PLoS ONE 2014, 9, e98292. [Google Scholar] [CrossRef]
- Qi, Y.; Xiang, Y.; Wang, J.; Qi, Y.; Li, J.; Niu, J.; Zhong, J. Inhibition of hepatitis C virus infection by polyoxometalates. Antivir. Res. 2013, 100, 392–398. [Google Scholar] [CrossRef]
- Ikeda, S.; Neyts, J.; Yamamoto, N.; Murrer, B.; Theobald, B.; Bossard, G.; Henson, G.; Abrams, M.; Picker, D.; De Clercq, E. In vitro activity of a novel series of polyoxosilicotungstates against human myxo-, herpes-and retroviruses. Antivir. Chem. Chemother. 1993, 4, 253–262. [Google Scholar] [CrossRef]
- Shigeta, S.; Mori, S.; Kodama, E.; Kodama, J.; Takahashi, K.; Yamase, T. Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates. Antivir. Res. 2003, 58, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, W.; Hu, Q.; Yan, H.; Zeng, Y. Synthesis and evaluation of pyridinium polyoxometalates as anti-HIV-1 agents. Bioorg. Med. Chem. Lett. 2017, 27, 2357–2359. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, J.; Zhang, W.; Li, B.; Zhu, Y.; Hu, Q.; Yang, Y.; Zhang, X.; Yan, H.; Zeng, Y. Inhibition of Human Immunodeficiency Virus Type 1 Entry by a Keggin Polyoxometalate. Viruses 2018, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Dan, K.; Yamase, T. Prevention of the interaction between HVEM, herpes virus entry mediator, and gD, HSV envelope protein, by a Keggin polyoxotungstate, PM-19. Biomed. Pharmacother. 2006, 60, 169–173. [Google Scholar] [CrossRef]
- Shigeta, S.; Mori, S.; Watanabe, J.; Yamase, T.; Schinazi, R. In-vitro anti Myxovirus Activity and Mechanism of Antiinfluenzavirus Activity of Polyoxometalates PM-504 and PM-523. Antivir. Chem. Chemother. 1996, 7, 346–352. [Google Scholar] [CrossRef]
- Schachter, J.; Delgado, K.V.; Barreto-de-Souza, V.; Bou-Habib, D.C.; Persechini, P.M.; Meyer-Fernandes, J.R. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages. Immunobiology 2015, 220, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Ivachtchenko, A.V.; Ivanenkov, Y.A.; Mitkin, O.D.; Yamanushkin, P.M.; Bichko, V.V.; Leneva, I.A.; Borisova, O.V. A novel influenza virus neuraminidase inhibitor AV5027. Antivir. Res. 2013, 100, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.J.; Wigmore, G.; Lopatář, J.; Frenguelli, B.G.; Dale, N. The novel NTPDase inhibitor sodium polyoxotungstate (POM-1) inhibits ATP breakdown but also blocks central synaptic transmission, an action independent of NTPDase inhibition. Neuropharmacology 2008, 55, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Shigeta, S.; Mori, S.; Watanabe, J.; Baba, M.; Khenkin, A.; Hill, C.; Schinazi, R. In vitro antimyxovirus and anti-human immunodeficiency virus activities of polyoxometalates. Antivir. Chem. Chemother. 1995, 6, 114–122. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Amini, E.; Kheiri, M.T.; Mehrbod, P.; Shahidi, M.; Zabihi, E. Anti-influenza activity of a novel polyoxometalate derivative (POM-4960). Int. J. Mol. Cell. Med. 2012, 1, 21. [Google Scholar]
- Arefian, M.; Mirzaei, M.; Eshtiagh-Hosseini, H.; Frontera, A. A survey of the different roles of polyoxometalates in their interaction with amino acids, peptides and proteins. Dalton Trans. 2017, 46, 6812–6829. [Google Scholar] [CrossRef] [PubMed]
- Lentink, S.; Salazar Marcano, D.E.; Moussawi, M.A.; Parac-Vogt, T.N. Exploiting interactions between polyoxometalates and proteins for applications in (bio) chemistry and medicine. Angew. Chem. Int. Ed. 2023, 62, e202303817. [Google Scholar] [CrossRef] [PubMed]
- Prudent, R.; Moucadel, V.; Laudet, B.; Barette, C.; Lafanechère, L.; Hasenknopf, B.; Li, J.; Bareyt, S.; Lacôte, E.; Thorimbert, S.J.C. Identification of polyoxometalates as nanomolar noncompetitive inhibitors of protein kinase CK2. Chem. Biol. 2008, 15, 683–692. [Google Scholar] [CrossRef]
- Fabbian, S.; Giachin, G.; Bellanda, M.; Borgo, C.; Ruzzene, M.; Spuri, G.; Campofelice, A.; Veneziano, L.; Bonchio, M.; Carraro, M. Mechanism of CK2 inhibition by a ruthenium-based polyoxometalate. Front. Mol. Biosci. 2022, 9, 906390. [Google Scholar] [CrossRef] [PubMed]
- Chi, G.; Shuai, D.; Li, J.; Chen, X.; Yang, H.; Zhao, M.; Jiang, Z.; Wang, L.; Chen, B. Mechanism of melanogenesis inhibition by Keggin-type polyoxometalates. Nanoscale 2023, 15, 14543–14550. [Google Scholar] [CrossRef]
- Müller, C.E.; Iqbal, J.; Baqi, Y.; Zimmermann, H.; Röllich, A.; Stephan, H. Polyoxometalates—A new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 5943–5947. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Duan, Y.; Yu, Y.; Su, Y.; Zhang, M.; Gao, Y.; Jiang, L.; Zhang, H.; Lian, X.; Zhu, X.; et al. Sodium Polyoxotungstate Inhibits the Replication of Influenza Virus by Blocking the Nuclear Import of vRNP. Microorganisms 2024, 12, 1017. https://doi.org/10.3390/microorganisms12051017
Li Z, Duan Y, Yu Y, Su Y, Zhang M, Gao Y, Jiang L, Zhang H, Lian X, Zhu X, et al. Sodium Polyoxotungstate Inhibits the Replication of Influenza Virus by Blocking the Nuclear Import of vRNP. Microorganisms. 2024; 12(5):1017. https://doi.org/10.3390/microorganisms12051017
Chicago/Turabian StyleLi, Zhuogang, Yuanyuan Duan, Yang Yu, Yue Su, Mingxin Zhang, Yarou Gao, Lefang Jiang, Haonan Zhang, Xiaoqin Lian, Xingjian Zhu, and et al. 2024. "Sodium Polyoxotungstate Inhibits the Replication of Influenza Virus by Blocking the Nuclear Import of vRNP" Microorganisms 12, no. 5: 1017. https://doi.org/10.3390/microorganisms12051017
APA StyleLi, Z., Duan, Y., Yu, Y., Su, Y., Zhang, M., Gao, Y., Jiang, L., Zhang, H., Lian, X., Zhu, X., Ke, J., Peng, Q., & Chen, X. (2024). Sodium Polyoxotungstate Inhibits the Replication of Influenza Virus by Blocking the Nuclear Import of vRNP. Microorganisms, 12(5), 1017. https://doi.org/10.3390/microorganisms12051017