Removal of Phenol by Rhodococcus opacus 1CP after Dormancy: Insight into Enzymes’ Induction, Specificity, and Cells Viability
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Bacterial Culture and Cultivation Conditions
2.3. Obtaining Cell Preparations
2.4. Preparation of Dormant Cell for the Determination of Respiratory Activity
2.5. Preparation of Germinating Cells for the Determination of Enzymatic Activity
2.6. Preparation of Cell-Free Extracts
2.7. Determination of Enzyme Activity and Protein Amount
2.8. RNA Isolation and cDNA Synthesis
2.9. Real-Time PCR
2.10. REP-PCR
2.11. Polarographic Determination of Respiratory Activity, Benzoate 1,2-Dioxygenase (BDO) and Phenol Hydroxylase (PH) Activity
2.12. Cells Immobilization
2.13. Microscopic Techniques
2.13.1. Phase Contrast Microscopy
2.13.2. Scanning Electron Microscopy
3. Results
3.1. The Ability of R. opacus 1CP to Form Dormant Cells
3.2. REP-PCR
3.3. The Aromatic Ring-Cleavage Oxygenase Activities in Induced Germinating Cells
3.4. RT-PCR Analysis of Cells Grown on Different Substrates
3.5. The Activity of Enzymes in Phenol-Induced R. opacus 1CP Cell-Free Extract
3.6. The Decomposition of Phenol by Cells Immobilized on a Fiber
3.7. Repeated Usage of Immobilized R. opacus 1CP Cells after Storage
4. Discussion
4.1. The Ability of R. opacus 1CP to Form Dormant Cells and Survive
4.2. The Metabolic Capacity of Germinating Cells
4.3. Genetic Rearrangement in Cells after Long Storage
4.4. Monitoring Phenol Degradation by Immobilized versus Free Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BA | benzoate |
BDO | benzoate 1,2-dioxygenase |
Cat | catechol |
1,2-CDO | catechol 1,2-dioxygenase |
CLC | cyst-like cell |
2-CP | 2-chlorophenol |
3-CP | 3-chlorophenol |
4-CP | 4-chlorophenol |
2,4-DCP | 2,4-dichlorophenol |
LB medium | Luria-Bertani medium |
MLI | muconolactone isomerase |
2,4,6-TCP | 2,4,6-trichlorophenol |
PCA | protocatechuate |
PCA 3,4-PCDO | protocatechuate 3,4-dioxygenase |
PH | phenol hydroxylase |
References
- Zhu, X.; Tian, J.; Chen, L. Phenol degradation by isolated bacterial strains: Kinetics study and application in coking wastewater treatment. J. Chem. Technol. Biotechnol. 2012, 87, 123–129. [Google Scholar] [CrossRef]
- Bonfá, M.R.; Grossman, M.J.; Piubeli, F.; Mellado, E.; Durrant, L.R. Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 2013, 2411, 699–709. [Google Scholar] [CrossRef]
- Kotresha, D.; Vidyasagar, G.M. Degradation of phenol by novel strain Pseudomonas aeruginosa MTCC 4997 isolated from petrochemical industrial effluent. Int. J. Microb. Res. Technol. 2014, 2, 7–15. [Google Scholar]
- Wu, P.; Zhang, Z.; Luo, Y.; Bai, Y.; Fan, J. Bioremediation of phenolic pollutants by algae-current status and challenges. Bioresour. Technol. 2022, 350, 126930. [Google Scholar] [CrossRef]
- Singh, N.; Kumari, A.; Balomajumder, C. Modeling studies on mono and binary component biosorption of phenol and cyanide from aqueous solution onto activated carbon derived from saw dust. Saudi J. Biol. Sci. 2018, 25, 1454–1467. [Google Scholar] [CrossRef]
- Lin, J. Stress responces of Acinetobacter strain Y during phenol degradation. Arch. Microbiol. 2017, 199, 365–375. [Google Scholar] [CrossRef]
- Martínez, F.; Pariente, I.; Brebou, C.; Molina, R.; Melero, J.A.; Bremner, D.; Mantzavinos, D. Chemical surface modified-activated carbon cloth for catalytic wet peroxide oxidation of phenol. J. Chem. Technol. Biotechnol. 2014, 89, 1182–1188. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, J.; Crittenden, J.C.; Shen, C. Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation. J. Hazard. Mater. 2017, 329, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Martínková, L.; Uhnáková, B.; Pátek, M.; Nesvera, J.; Kren, V. Biodegradation potential of the genus Rhodococcus. Environ. Int. 2009, 35, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ghoshal, A.K. Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites. J. Hazard. Mater. 2010, 176, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Wang, H.; Yan, S.; Yao, J. Biodegradation of phenol at high concentration by a novel bacterium: Gulosibacter sp. YZ4. J. Chem. Technol. Biotechnol. 2012, 87, 105–111. [Google Scholar] [CrossRef]
- Arora, P.K.; Bae, H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Factories 2014, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.K.; Srivastava, A.; Singh, V.P. Bacterial degradation of nitrophenol and their derivatives. J. Hazard. Mater. 2013, 266, 42–59. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Zhang, M.; Zhu, Y.; Zhuo, R. Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. J. Clean. Prod. 2022, 354, 131681. [Google Scholar] [CrossRef]
- Liu, S.-H.; Zeng, G.-M.; Niu, Q.-Y.; Liu, Y.; Zhou, L.; Jiang, L.-H.; Tan, X.-F.; Xu, P.; Zhang, C.; Cheng, M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour. Technol. 2017, 224, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhu, M.; Guo, X.; Yang, B.; Zhuo, R. Coupling of Fenton reaction and white rot fungi for the degradation of organic pollutants. Ecotoxicol Environ Saf. 2023, 254, 114697. [Google Scholar] [CrossRef] [PubMed]
- Arutchelvan, V.; Kanakasabai, V.; Nagarajan, S.; Muralikrishnan, V. Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J. Hazard. Mater. 2005, 127, 238–243. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, W.; Li, D.; Peng, Y.; Li, Z.; Liu, S. Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. Int. J. Environ. Res. Public Health 2016, 13, 300. [Google Scholar] [CrossRef] [PubMed]
- Kanavaki, I.; Drakonaki, A.; Geladas, E.D.; Spyros, A.; Xie, H.; Tsiotis, G. Polyhydroxyalkanoate (PHA) production in Pseudomonas sp. phDV1 strain grown on phenol as carbon sources. Microorganisms 2021, 9, 1636. [Google Scholar] [CrossRef]
- Wen, Y.; Li, C.; Song, X.; Yang, Y. Biodegradation of phenol by Rhodococcus sp. strain SKC: Characterization and kinetics study. Molecules 2020, 25, 3665. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Awasthi, M.K.; Tian, H.; Lu, M.; Megharaj, M.; Pan, Y.; He, W. Time-course transcriptome analysis reveals the mechanisms of Burkholderia sp. adaptation to high phenol concentrations. Appl. Microbiol. Biotechnol. 2020, 104, 5873–5887. [Google Scholar] [CrossRef]
- Asimakoula, S.; Marinakos, O.; Tsagogiannis, E.; Koukkou, A.I. Phenol degradation by Pseudarthrobacter phenanthrenivorans Sphe3. Microorganisms 2023, 11, 524. [Google Scholar] [CrossRef]
- Hsu, J.S.; Yu, T.Y.; Wei, D.J.; Jane, W.N.; Chang, Y.T. Degradation of decabro-modiphenyl ether in an aerobic clay slurry microcosm using a novel immobilization technique. Microorganisms 2022, 10, 402. [Google Scholar] [CrossRef] [PubMed]
- Partovinia, A.; Vatankhah, E. Investigating the effect of electrosprayed alginate/PVA beads size on the microbial growth kinetics: Phenol biodegradation through immobilized activated sludge. Heliyon 2023, 9, e15538. [Google Scholar] [CrossRef] [PubMed]
- Nandy, S.; Arora, U.; Tarar, P.; Viggor, S.; Jõesaar, M.; Kivisaar, M.; Kapley, A. Monitoring the growth, survival and phenol utilization of the fluorescent-tagged Pseudomonas oleovorans immobilized and free cells. Bioresour. Technol. 2021, 338, 125568. [Google Scholar] [CrossRef] [PubMed]
- Ruan, B.; Wu, P.; Chen, M.; Lai, X.; Chen, L.; Yu, L.; Gong, B.; Kang, C.; Dang, Z.; Shi, Z.; et al. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors. Ecotoxicol. Environ. Saf. 2018, 162, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, R.; Almeida, C.M.R.; Magalhães, C.; Ramos, S.; Carolas, A.L.; Ferreira, B.S.; Carvalho, M.F.; Mucha, A.P. Bioremediation of petroleum hydrocarbons in seawater: Prospects of using lyophilized native hydrocarbon-degrading bacteria. Microorganisms 2021, 9, 2285. [Google Scholar] [CrossRef] [PubMed]
- Solyanikova, I.P.; Mulyukin, A.L.; Suzina, N.E.; El-Registan, G.I.; Golovleva, L. A Improved xenobiotic-degrading activity of Rhodococcus opacus strain 1cp after dormancy. J. Environ. Sci. Health Part B 2011, 46, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Solyanikova, I.P.; Suzina, N.E.; Egozarian, N.S.; Polivtseva, V.N.; Prisyazhnaya, N.V.; El-Registan, G.I.; Mulyukin, A.L.; Golovleva, L.A. The response of soil Arthrobacter agilis Lush13 to changing conditions: Transition between vegetative and dormant state. J. Environ. Sci. Health Part B 2017, 52, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Gorlatov, S.N.; Maltseva, O.V.; Shevchenko, V.I.; Golovleva, L.A. Degradation of chlorophenols by a culture of Rhodococcus erythropolis. Mikrobiologiya 1989, 58, 647–651. [Google Scholar]
- Hegeman, G.D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida I. Synthesis of enzymes by the wild type. J. Bacteriol. 1966, 91, 1140–1154. [Google Scholar] [CrossRef]
- Crawford, R.L.; Hutton, S.W.; Chapman, P.J. Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J. Bacteriol. 1975, 121, 794–799. [Google Scholar] [CrossRef]
- Fujisawa, H.; Hayaishi, O. Protocatechuate 3,4-dioxygenase. J. Biol. Chem. 1968, 243, 2673–2681. [Google Scholar] [CrossRef]
- Ono, K.; Nozaki, M.; Hayaishi, O. Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim. Biophys. Acta 1970, 220, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Kasai, D.; Fujinami, T.; Abe, T.; Mase, K.; Katayama, Y.; Fukuda, M.; Masai, E. Uncovering the protocatechuate 2,3-cleavage pathway genes. J. Bacteriol. 2009, 191, 6758–6768. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.; Knackmuss, H.-J. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem. J. 1980, 192, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Schlömann, M.; Schmidt, E.; Knackmuss, H.-J. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J. Bacteriol. 1990, 172, 5112–5118. [Google Scholar] [CrossRef] [PubMed]
- Versalovic, J.; Schneider, M.; de Bruijn, F.J.; Lupski, J.R. Genomic fingerprinting of bacteria with repetitive sequencebased polymerase chain reaction. Methods Mol. Cell Biol. 1994, 5, 25–40. [Google Scholar]
- Mohapatra, B.R.; Broersma, K.; Mazumder, A. Comparison of five rep-PCR genomic fngerprinting methods for diferentiation of fecal Escherichia coli from humans, poultry and wild birds. FEMS Microbiol. Lett. 2007, 277, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012. [Google Scholar]
- Sudo, S.Z.; Dworkin, M. Comparative biology of procaryotic resting cells. Adv. Microbiol. Physiol. 1973, 9, 153–224. [Google Scholar] [CrossRef]
- Solyanikova, I.P.; Emelyanova, E.V.; Shumkova, E.S.; Egorova, D.O.; Korsakova, E.S.; Plotnikova, E.G.; Golovleva, L.A. Peculiarities of the degradation of benzoate and its chloro- and hydroxy-substituted analogs by actinobacteria. Intern. Biodeter. Biodegr. 2015, 100, 155–164. [Google Scholar] [CrossRef]
- Solyanikova, I.P.; Emelyanova, E.V.; Borzova, O.V.; Golovleva, L.A. Benzoate degradation by Rhodococcus opacus 1CP after a dormancy: Characterization of dioxygenases involved in the process. J. Environ. Sci. Health Part B 2016, 51, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.; Roy, A.S.; Mohanty, K. Biodegradation of phenol by a native mixed bacterial culture isolated from crude oil contaminated site. Intern. Biodeter. Biodegr. 2017, 121, 107–113. [Google Scholar] [CrossRef]
- Li, F.; Song, W.; Wei, J.; Liu, C.; Yu, C. Comparative proteomic analysis of phenol degradation process by Arthrobacter. Intern. Biodeter. Biodegrad. 2016, 110, 189–198. [Google Scholar] [CrossRef]
- Nešvera, J.; Rucká, L.; Pátek, M. Catabolism of phenol and its derivatives in bacteria: Genes, their regulation, and use in the biodegradation of toxic pollutants. Adv. Appl. Microbiol. 2015, 93, 107–160. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.T.; Ventosa, A.; Mellado, E. Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol. Ecol. 2005, 54, 97–109. [Google Scholar] [CrossRef] [PubMed]
- De Lourdes, M.M.; Sánchez-Porro, C.; Piubeli, F.; Frias, L.; García, M.T.; Mellado, E. Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans. PLoS ONE 2011, 6, e21049. [Google Scholar] [CrossRef]
- Eulberg, D.; Golovleva, L.A.; Schlömann, M. Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J. Bacteriol. 1997, 179, 370–381. [Google Scholar] [CrossRef]
- Gröning, J.A.D.; Eulberg, D.; Tischler, D.; Kaschabek, S.R.; Schlömann, M. Gene redundancy of two-component (chloro)phenol hydroxylases in Rhodococcus opacus 1CP. FEMS Microbiol Lett. 2014, 361, 68–75. [Google Scholar] [CrossRef]
- Mazzoli, R.; Pessione, E.; Giuffrida, M.G.; Fattori, P.; Barello, C.; Giunta, C.; Lindley, N.D. Degradation of aromatic compounds by Acinetobacter radioresistens S13: Growth characteristics on single substrates and mixtures. Arch. Microbiol. 2007, 188, 55–68. [Google Scholar] [CrossRef]
- Saier, M.H., Jr. The bacterial chromosome. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 89–134. [Google Scholar] [CrossRef]
- Delihas, N. Impact of small repeat sequences on bacterial genome evolution. Genome Biol. Evol. 2011, 3, 959–973. [Google Scholar] [CrossRef]
- Rademaker, J.L.; Louws, V.; de Bruijn, F.J. Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In Molecular Microbial Ecology Manual; Kowalchuk, G.A., de Bruijn Frans, J., Head, I.M., Akkermans, A.D., Van Elsas, J.D., Eds.; Environmental Molecular Microbiology; Kluwer Academic Press: Dordrecht, The Netherlands, 2004; pp. 611–643. [Google Scholar]
- Jedryczka, M.; Rouxel, T.; Balesdent, M.H. Rep-PCR based genomic fingerprinting of isolates of Leptosphaeria maculans from Poland. Eur. J. Plant Pathol. 1999, 105, 813–823. [Google Scholar] [CrossRef]
- Johnson, J.R.; O’Bryan, T.T. Improved repetitive—Element PCR fingerprinting for resolving pathogenic and nonpathogenic phylogenetic groups within Escherichia coli. Clin. Diagn. Lab. Immunol. 2000, 7, 265–273. [Google Scholar] [CrossRef]
- Hasani, S.; Taghavi, S.M. Phenotype and genotype diversity of Iranian Streptomyces isolates that cause potato common scab. J. Plant Pathol. 2014, 96, 467–476. [Google Scholar] [CrossRef]
- Labba, I.M.; Andlid, T.; Lindgren, Å.; Sandberg, A.S.; Sjöberg, F. Isolation, identification, and selection of strains as candidate probiotics and starters for fermentation of Swedish legumes. Food Nutr. Res. 2020, 64, 4410. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, D.-J.; Choi, J.-W. Novel method for determination of phenol degradation kinetics. Bioprocess Biosyst. Eng. 2013, 36, 1939–1945. [Google Scholar] [CrossRef] [PubMed]
- Murialdo, S.E.; Fenoglio, R.; Haure, P.M.; González, J.F. Degradation of phenol and chlorophenols by mixed and pure cultures. Water 2003, 29, 457–464. [Google Scholar] [CrossRef]
- Nazos, T.T.; Ghanotakis, D.F. Biodegradation of phenol by alginate immobilized Chlamydomonas reinhardtii cells. Arch. Microbiol. 2021, 203, 5805–5816. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalid, T.T.; El-Naas, M.H. Transient behavior in biodegradation of 2, 4-dichlorophenol: Is it a starvation effect? Intern. J. Chem. Eng. Appl. 2013, 4, 365–368. [Google Scholar] [CrossRef]
- Nandre, V.S.; Bachate, S.P.; Salunkhe, R.C.; Bagade, A.V.; Shouche, Y.S.; Kodam, K.M. Enhanced detoxification of arsenic under carbon starvation: A new insight into microbial arsenic physiology. Curr. Microbiol. 2017, 74, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Ivshina, I.B.; Mukhutdinova, A.N.; Tyumina, H.A.; Vikhareva, H.V.; Suzina, N.E.; El-Registan, G.I.; Mulyukin, A.L. Drotaverine hydrochloride degradation using cyst-like dormant cells of Rhodococcus ruber. Curr. Microbiol. 2015, 70, 307–314. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Reverse Primer |
---|---|---|
Benzoate 1,2-dioxygenase | TACCACGTGTCCGCCACCC | CGTCGCGACGCTCGTTCAG |
Catechol 1,2-dioxygenase 2 | CACGCGCACGGGACAAATG | GCGCCATTCAACCCGTCG |
Catechol 1,2-dioxygenase 3 | CCCCTTTTTCGTCGCCGAC | CGTGCGGAATCGGGTATGG |
Catechol 1,2-dioxygenase 4 | CGCACCTACCGGAATGGAAC | CCGGCGAAGTACAGTTGGGT |
Catechol 1,2-dioxygenase 6 | GCAGTGGCTCATCGACGTG | ACCTGGCCGGAGAAGACG |
Phenol hydroxylase 1 small subunit | TGACCTACGGGTGGATGGG | ACGATGAGGCCCGAGTCG |
Phenol hydroxylase 2 small subunit | CCCGCGGATCAAAGAGATCA | CGCGGACGTACTTGTCGAGG |
Phenol hydroxylase 3 small subunit | GCCTCTACGACGCGATGCAC | ATCGTCGGAGTTCTTCGGCG |
Beta-ketoadipate enol-lactone hydrolase | TCGTCCGTTCGACCTCGACG | CGACATTCCCAGGACGTGCG |
Protocatechuate 3,4-dioxygenase alpha subunit | ACCCGGTCTTCGCCAAGAGC | GACACGTCGATTCGTCCCGG |
Chlorocatechol 1,2-dioxygenase | CATGATCAGCGTCGGCGAGG | GAACGGTCCTTGGATCGCACTG |
Muconolactone delta-isomerase | AGGCCGAGGGCAAGATCGTG | TCACCGGCGTGACCTCAACG |
RNA polymerase beta subunit | GTGTACTCCTCGCCTGCCG | GATCGTCGCCTGACGCTTC |
16S RNA | ATGCAAGTCGAGCGGTAAG | ATGCAGCCGAAGGTCATATC |
Genes Coding Following Enzyme | Growth Substrate | Gene’s Location * | |
---|---|---|---|
Benzoate * | Phenol * | ||
Benzoate 1,2-dioxygenase | 263.60 ± 34.11 | 6.04 ± 1.83 | chr |
Catechol 1,2-dioxygenase 2 | 1.44 ± 0.61 | 1.47 ± 0.26 | pR1CP1 |
Catechol 1,2-dioxygenase 3 | 3.07 ± 0.92 | 1.10 ± 0.17 | chr |
Catechol 1,2-dioxygenase 4 | 1.29 ± 0.12 | 2.57 ± 0.36 | chr |
Catechol 1,2-dioxygenase 6 | 29.65 ± 5.13 | 157.07 ± 20.22 | chr |
Phenol hydroxylase 1 | 3.84 ± 0.86 | 301.34 ± 33.18 | pR1CP1 |
Phenol hydroxylase 2 | 1.71 ± 0.21 | 216.05 ± 10.19 | chr |
Phenol hydroxylase 3 | 4.72 ± 0.95 | 1917.80 ± 98.19 | chr |
Beta-ketoadipate enol-lactone hydrolase | 1.73 ± 0.31 | 1.43 ± 0.23 | chr |
Protocatechuate 3,4-dioxygenase | 23.75 ± 3.16 | 88.35 ± 14.16 | chr |
Chlorocatechol 1,2-dioxygenase | 1.21 ± 0.54 | 1.24 ± 0.25 | pR1CP1 |
Muconolactone delta-isomerase | 1.04 ± 0.15 | 1.56 ± 0.61 | chr |
Enzymes | Growth Substrate | |
---|---|---|
Benzoate | Phenol | |
Catechol 1,2-dioxygenase | 0.2224 ± 0.0151 | 0.0288 ± 0.0011 |
Muconate cycloisomerase | 0.0175 ± 0.0023 | 0.0565 ± 0.0017 |
Catechol 2,3-dioxygenase | 0 | 0 |
Protocatechuate 2,3-dioxygenase | 0 | 0 |
Protocatechuate 3,4-dioxygenase | 0.0935 ± 0.0037 | 0.195 ± 0.009 |
Protocatechuate 4,5-dioxygenase | 0 | 0 |
Gentisate 1,2-dioxygenase | 0 | 0 |
Phenol hydroxylase | 0 | 0 |
Salicylate hydroxylase | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egozarian, N.S.; Emelyanova, E.V.; Suzina, N.E.; Sazonova, O.I.; Polivtseva, V.N.; Anokhina, T.O.; Wu, Y.; Solyanikova, I.P. Removal of Phenol by Rhodococcus opacus 1CP after Dormancy: Insight into Enzymes’ Induction, Specificity, and Cells Viability. Microorganisms 2024, 12, 597. https://doi.org/10.3390/microorganisms12030597
Egozarian NS, Emelyanova EV, Suzina NE, Sazonova OI, Polivtseva VN, Anokhina TO, Wu Y, Solyanikova IP. Removal of Phenol by Rhodococcus opacus 1CP after Dormancy: Insight into Enzymes’ Induction, Specificity, and Cells Viability. Microorganisms. 2024; 12(3):597. https://doi.org/10.3390/microorganisms12030597
Chicago/Turabian StyleEgozarian, Natalia S., Elena V. Emelyanova, Nataliya E. Suzina, Olesya I. Sazonova, Valentina N. Polivtseva, Tatiana O. Anokhina, Yonghong Wu, and Inna P. Solyanikova. 2024. "Removal of Phenol by Rhodococcus opacus 1CP after Dormancy: Insight into Enzymes’ Induction, Specificity, and Cells Viability" Microorganisms 12, no. 3: 597. https://doi.org/10.3390/microorganisms12030597
APA StyleEgozarian, N. S., Emelyanova, E. V., Suzina, N. E., Sazonova, O. I., Polivtseva, V. N., Anokhina, T. O., Wu, Y., & Solyanikova, I. P. (2024). Removal of Phenol by Rhodococcus opacus 1CP after Dormancy: Insight into Enzymes’ Induction, Specificity, and Cells Viability. Microorganisms, 12(3), 597. https://doi.org/10.3390/microorganisms12030597