Transcriptomics of Besnoitia besnoiti-Infected Fibroblasts Reveals Hallmarks of Early Fibrosis and Cancer Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Line and Parasite Culture
2.2. Transcriptome Analysis
2.2.1. Experimental Design and RNA Extraction
2.2.2. Quality Control of Total RNA, Library Preparation and Sequencing
2.2.3. Computational Analysis of RNA-Seq Data
2.2.4. Functional Enrichment Analyses
2.3. Analysis of Gene Expression in the Scrotal Skin of Naturally Infected Bulls
3. Results
3.1. Quality Analysis and Mapping of RNA-Seq Data
3.2. Transcriptional Responses of B. besnoiti-Infected Fibroblasts Highlight Key Cancer and Fibrosis Pathways
3.3. PLAUR, TGFβ1 and FOSB as Potential Biomarkers of B. besnoiti Infection in Scrotal Skin of Naturally Infected Bulls
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority. Bovine Besnoitiosis: An emerging disease in Europe. EFSA J. 2010, 8, 1499. [Google Scholar] [CrossRef]
- Álvarez-García, G.; García-Lunar, P.; Gutiérrez-Expósito, D.; Shkap, V.; Ortega-Mora, L.M. Dynamics of Besnoitia besnoiti infection in cattle. Parasitology 2014, 141, 1419–1435. [Google Scholar] [CrossRef]
- Cortés, H.; Leitão, A.; Gottstein, B.; Hemphill, A. A review on bovine besnoitiosis: A disease with economic impact in herd health management, caused by Besnoitia besnoiti (Franco and Borges). Parasitology 2014, 141, 1406–1417. [Google Scholar] [CrossRef]
- González-Barrio, D.; Diezma-Díaz, C.; Tabanera, E.; Aguado-Criado, E.; Pizarro, M.; González-Huecas, M.; Ferre, I.; Jiménez-Meléndez, A.; Criado, F.; Gutiérrez-Expósito, D.; et al. Vascular wall injury and inflammation are key pathogenic mechanisms responsible for early testicular degeneration during acute besnoitiosis in bulls. Parasit. Vectors 2020, 13, 113. [Google Scholar] [CrossRef]
- González-Barrio, D.; Diezma-Díaz, C.; Gutiérrez-Expósito, D.; Tabanera, E.; Jiménez-Meléndez, A.; Pizarro, M.; González-Huecas, M.; Ferre, I.; Ortega-Mora, L.M.; Álvarez-García, G. Identification of molecular biomarkers associated with disease progression in the testis of bulls infected with Besnoitia besnoiti. Vet. Res. 2021, 52, 106. [Google Scholar] [CrossRef]
- Álvarez-García, G.; Frey, C.F.; Ortega-Mora, L.M.; Schares, G. A century of bovine besnoitiosis: An unknown disease re-emerging in Europe. Trends Parasitol. 2013, 29, 407–415. [Google Scholar] [CrossRef]
- Gutiérrez-Expósito, D.; Ferre, I.; Ortega-Mora, L.M.; Álvarez-García, G. Advances in the diagnosis of bovine besnoitiosis: Current options and applications for control. Int. J. Parasitol. 2017, 47, 737–751. [Google Scholar] [CrossRef]
- Pakshir, P.; Alizadehgiashi, M.; Wong, B.; Coelho, N.M.; Chen, X.; Gong, Z.; Shenoy, V.B.; McCulloch, C.A.; Hinz, B. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat. Commun. 2019, 10, 1850. [Google Scholar] [CrossRef]
- Xuan, Y.; Chen, C.; Wen, Z.; Wang, D.W. The roles of cardiac fibroblasts and endothelial cells in myocarditis. Front. Cardiovasc. Med. 2022, 9, 882027. [Google Scholar] [CrossRef]
- Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care 2016, 5, 119–136. [Google Scholar] [CrossRef]
- McAnulty, R.J. Fibroblasts and myofibroblasts: Their source, function and role in disease. Int. J. Biochem. Cell Biol. 2007, 39, 666–671. [Google Scholar] [CrossRef]
- Yao, L.; Rathnakar, B.H.; Kwon, H.R.; Sakashita, H.; Kim, J.H.; Rackley, A.; Tomasek, J.J.; Berry, W.L.; Olson, L.E. Temporal control of pdgfrα regulates the fibroblast-to-myofibroblast transition in wound healing. Cell Rep. 2022, 40, 111192. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Meléndez, A.; Ramakrishnan, C.; Hehl, A.B.; Russo, G.; Álvarez-García, G. RNA-seq analyses reveal that endothelial activation and fibrosis are induced early and progressively by Besnoitia besnoiti host cell invasion and proliferation. Front. Cell Infect. 2020, 10, 218. [Google Scholar] [CrossRef]
- Jiménez-Meléndez, A.; Fernández-Álvarez, M.; Calle, A.; Ramírez, M.Á.; Diezma-Díaz, C.; Vázquez-Arbaizar, P.; Ortega-Mora, L.M.; Álvarez-García, G. Lytic cycle of Besnoitia besnoiti tachyzoites displays similar features in primary bovine endothelial cells and fibroblasts. Parasit. Vectors 2019, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Frey, C.F.; Regidor-Cerrillo, J.; Marreros, N.; García-Lunar, P.; Gutiérrez-Expósito, D.; Schares, G.; Dubey, J.P.; Gentile, A.; Jacquiet, P.; Shkap, V.; et al. Besnoitia besnoiti lytic cycle in vitro and differences in invasion and intracellular proliferation among isolates. Parasit. Vectors 2016, 9, 115. [Google Scholar] [CrossRef]
- Pérez-Zaballos, F.J.; Ortega-Mora, L.M.; Álvarez-García, G.; Collantes-Fernández, E.; Navarro-Lozano, V.; García-Villada, L.; Costas, E. Adaptation of Neospora caninum isolates to cell-culture changes: An argument in favor of its clonal population structure. J. Parasitol. 2005, 91, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Álvarez, M.; Horcajo, P.; Jiménez-Meléndez, A.; Diezma-Díaz, C.; Ferre, I.; Pastor-Fernández, I.; Ortega-Mora, L.M.; Álvarez-García, G. Transcriptional changes associated with apoptosis and type I IFN underlie the early interaction between Besnoitia Besnoiti tachyzoites and monocyte-derived macrophages. Int. J. Parasitol. 2023, 53, 505–521. [Google Scholar] [CrossRef]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Ryan, K.S.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with deseq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Horcajo, P.; Jiménez-Pelayo, L.; García-Sánchez, M.; Regidor-Cerrillo, J.; Collantes-Fernández, E.; Rozas, D.; Hambruch, N.; Pfarrer, C.; Ortega-Mora, L.M. Transcriptome modulation of bovine trophoblast cells in vitro by Neospora caninum. Int. J. Parasitol. 2017, 47, 791–799. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Puech, C.; Dedieu, L.; Chantal, I.; Rodrigues, V. Design and evaluation of a unique SYBR green real-time RT-PCR assay for quantification of five major cytokines in cattle, sheep and goats. BMC Vet. Res. 2015, 11, 65. [Google Scholar] [CrossRef]
- Jelaska, A.; Strehlow, D.; Korn, J.H. Fibroblast heterogeneity in physiological conditions and fibrotic disease. Springer Semin. Immunopathol. 2000, 21, 385–395. [Google Scholar] [CrossRef]
- Jiang, D.; Guo, R.; Machens, H.G.; Rinkevich, Y. Diversity of fibroblasts and their roles in wound healing. Cold Spring Harb. Perspect. Biol. 2022, 15, a041222. [Google Scholar] [CrossRef]
- Coelho, L.L.; Pereira, I.R.; Pereira, M.C.; Mesquita, L.; Lannes-Vieira, J.; Adesse, D.; Garzoni, L.R. Trypanosoma cruzi activates mouse cardiac fibroblasts in vitro leading to fibroblast-myofibroblast transition and increase in expression of extracellular matrix proteins. Parasit. Vectors 2018, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.M.; Liu, T.; Guevara, O.; Stevens, J.; Fanburg, B.L.; Gaestel, M.; Toksoz, D.; Kayyali, U.S. Smooth muscle α-actin expression and myofibroblast differentiation by tgfβ are dependent upon mk2. J. Cell Biochem. 2006, 100, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Osherov, N.; Ben-Ami, R. Modulation of host angiogenesis as a microbial survival strategy and therapeutic target. PLoS Pathog. 2016, 12, e100547. [Google Scholar] [CrossRef]
- Mammari, N.; Halabi, M.A.; Yaacoub, S.; Chlala, H.; Dardé, M.L.; Courtioux, B. Toxoplasma gondii modulates the host cell responses: An overview of apoptosis pathways. Biomed. Res. Int. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shepherd, E.G.; Nelin, L.D. MAPK phosphatases—Regulating the immune response. Nat. Rev. Immunol. 2007, 7, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Murtha, L.A.; Schuliga, M.J.; Mabotuwana, N.S.; Hardy, S.A.; Waters, D.W.; Burgess, J.K.; Knight, D.A.; Boyle, A.J. The processes and mechanisms of cardiac and pulmonary fibrosis. Front. Physiol. 2017, 8, 777. [Google Scholar] [CrossRef] [PubMed]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Corica, D.; Aversa, T.; Ruggeri, R.M.; Cristani, M.; Alibrandi, A.; Pepe, G.; De Luca, F.; Wasniewska, M. Could age/rage-related oxidative homeostasis dysregulation enhance susceptibility to pathogenesis of cardio-metabolic complications in childhood obesity? Front. Endocrinol. 2019, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Xing, R.G.; Chen, L.; Liu, C.R.; Miao, Z.G. PI3K/Akt signaling is involved in the pathogenesis of bleomycin-induced pulmonary fibrosis via regulation of epithelial-mesenchymal transition. Mol. Med. Rep. 2000, 14, 5699–5706. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, K.; Cai, X.; Yang, B.; He, Q.; Wang, J.; Weng, Q. Targeting PI3K/akt signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm. Sin. B 2022, 12, 18–32. [Google Scholar] [CrossRef]
- Kennedy, L.; Shiwen, X.; Carter, D.; Abraham, D.; Leask, A. Fibroblast adhesion results in the induction of a matrix remodeling gene expression program. Matrix Biol. 2008, 27, 274–281. [Google Scholar] [CrossRef]
- Wight, T.N.; Potter-Perigo, S. The extracellular matrix: An active or passive player in fibrosis? Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G950–G955. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, J.; Sun, H.; Zhang, Y.; Zou, D. New insights into fibrosis from the ECM degradation perspective: The macrophage-MMP-ECM interaction. Cell Biosci. 2022, 12, 117. [Google Scholar] [CrossRef]
- Leirião, P.; Albuquerque, S.S.; Corso, S.; Van Gemert, G.J.; Sauerwein, R.W.; Rodriguez, A.; Giordano, S.; Mota, M.M. HGF/Met signalling protects plasmodium-infected host cells from apoptosis. Cell Microbiol. 2005, 7, 603–609. [Google Scholar] [CrossRef]
- Ólafsson, E.B.; Barragan, A. The unicellular eukaryotic parasite toxoplasma gondii hijacks the migration machinery of mononuclear phagocytes to promote its dissemination. Biol. Cell 2020, 112, 239–250. [Google Scholar] [CrossRef]
- Piccinini, A.M.; Midwood, K.S. Illustrating the interplay between the extracellular matrix and microRNAs. Int. J. Exp. Pathol. 2014, 95, 158–180. [Google Scholar] [CrossRef]
- Walton, K.L.; Johnson, K.E.; Harrison, C.A. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front. Pharmacol. 2017, 8, 461. [Google Scholar] [CrossRef]
- Biernacka, A.; Dobaczewski, M.; Frangogiannis, N.G. TGF-β signaling in fibrosis. Growth Factors 2011, 29, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.X.; Yuan, S.L.; Dong, M.; Zhang, H.L.; Jiang, X.X.; Yan, C.L.; Ye, R.C.; Zhou, H.Q.; Chen, L.; Jiang, R.; et al. Dihydroergotamine ameliorates liver fibrosis by targeting transforming growth factor β type II receptor. World J. Gastroenterol. 2023, 29, 3103–3118. [Google Scholar] [CrossRef] [PubMed]
- Shmakova, A.A.; Popov, V.S.; Romanov, I.P.; Khabibullin, N.R.; Sabitova, N.R.; Karpukhina, A.A.; Kozhevnikova, Y.A.; Kurilina, E.V.; Tsokolaeva, Z.I.; Klimovich, P.S.; et al. Urokinase system in pathogenesis of pulmonary fibrosis: A hidden threat of COVID-19. Int. J. Mol. Sci. 2023, 24, 1382. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.K.; Sheppard, D.; Chapman, H.A. TGF-β1 Signaling and Tissue Fibrosis. Cold Spring Harb. Perspect. Biol. 2018, 10, a022293. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, W.; Zeng, Z.; Lin, J.; Zhang, X.; Chen, L. TGFB3 and MMP13 regulated the initiation of liver fibrosis progression as dynamic network biomarkers. J. Cell Mol. Med. 2020, 25, 867–879. [Google Scholar] [CrossRef]
- Bernstein, A.M.; Twining, S.S.; Warejcka, D.J.; Tall, E.; Masur, S.K. Urokinase receptor cleavage: A crucial step in fibroblast-to-myofibroblast differentiation. Mol. Biol. Cell 2007, 18, 2716–2727. [Google Scholar] [CrossRef]
- Schuliga, M.; Jaffar, J.; Harris, T.; Knight, D.A.; Westall, G.; Stewart, A.G. The fibrogenic actions of lung fibroblast-derived urokinase: A potential drug target in IPF. Sci. Rep. 2017, 7, 41770. [Google Scholar] [CrossRef]
- Maroni, D.; Davis, J.S. Transforming growth factor beta 1 stimulates profibrotic activities of luteal fibroblasts in cows. Biol. Reprod. 2012, 87, 1–11. [Google Scholar] [CrossRef]
- McKenzie, B.; Korfei, M.; Henneke, I.; Sibinska, Z.; Tian, X.; Hezel, S.; Dilai, S.; Wasnick, R.; Schneider, B.; Wilhelm, J.; et al. Increased FGF1-FGFRC expression in idiopathic pulmonary fibrosis. Resp. Res. 2015, 16, 83. [Google Scholar] [CrossRef]
- Tan, C.; Jiang, Y.; Shao, W.; Shi, W.; Gao, X.; Qin, W.; Jiang, T.; Wang, F.; Feng, S. Abnormal expression of FOSB correlates with tumor progression and poor survival in patients with Gastric Cancer. Int. J. Oncol. 2016, 49, 1489–1496. [Google Scholar] [CrossRef]
- Piersma, B.; Hayward, M.; Weaver, V.M. Fibrosis and cancer: A strained relationship. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188356. [Google Scholar] [CrossRef] [PubMed]
- Bellou, S.; Hink, M.A.; Bagli, E.; Panopoulou, E.; Bastiaens, P.I.H.; Murphy, C.; Fotsis, T. VEGF autoregulates its proliferative and migratory ERK1/2 and p38 cascades by enhancing the expression of DUSP1 and DUSP5 phosphatases in endothelial cells. Am. J. Physiol. Cell Physiol. 2009, 297, C1477–C1489. [Google Scholar] [CrossRef] [PubMed]
- Pasieka, T.J.; Baas, T.; Carter, V.S.; Proll, S.C.; Katze, M.G.; Leib, D.A. Functional genomic analysis of Herpes Simplex Virus Type 1 counteraction of the host innate response. J. Virol. 2006, 80, 7600–7612. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Mohr, I. Inhibition of cellular 2′-5′ oligoadenylate synthetase by the Herpes Simplex Virus Type 1 US11 protein. J. Virol. 2007, 81, 3455–3464. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.W.; Fukutani, K.F.; Andrade, B.B.; Curvelo, R.P.; Cristal, J.R.; Carvalho, A.M.; Barral, A.; Van Weyenbergh, J.; Barral-Netto, M.; de Oliveira, C.I. Gene expression profile of high IFN-γ producers stimulated with Leishmania braziliensis identifies genes associated with cutaneous leishmaniasis. PLoS Negl. Trop. Dis. 2016, 10, e0005116. [Google Scholar] [CrossRef]
- Pierog, P.L.; Zhao, Y.; Singh, S.; Dai, J.; Yap, G.S.; Fitzgerald-Bocarsly, P. Toxoplasma gondii inactivates human plasmacytoid dendritic cells by functional mimicry of IL-10. J. Immunol. 2018, 200, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Menard, K.L.; Bu, L.; Denkers, E.Y. Transcriptomics analysis of Toxoplasma gondii-infected mouse macrophages reveals coding and noncoding signatures in the presence and absence of MyD88. BMC Genom. 2021, 22, 130. [Google Scholar] [CrossRef]
- Schneider, A.G.; Abi Abdallah, D.S.; Butcher, B.A.; Denkers, E.Y. Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNΓ-induced STAT1 transcriptional activity. PLoS ONE 2013, 8, e60215. [Google Scholar] [CrossRef] [PubMed]
- Fereig, R.M.; Nishikawa, Y. From signaling pathways to distinct immune responses: Key factors for establishing or combating Neospora caninum infection in different susceptible hosts. Pathogens 2020, 9, 384. [Google Scholar] [CrossRef] [PubMed]
- Besteiro, S. Toxoplasma control of host apoptosis: The art of not biting too hard the hands that feeds you. Microb. Cell 2015, 2, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S.C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 2019, 10, 1078. [Google Scholar] [CrossRef]
- Hauck, C.R.; Agerer, F.; Muenzner, P.; Schmitter, T. Cellular adhesion molecules as targets for bacterial infection. Eur. J. Cell Biol. 2006, 85, 235–242. [Google Scholar] [CrossRef]
- Chen, D. Dually efficacious medicine against fibrosis and cancer. Med. Sci. 2019, 7, 41. [Google Scholar] [CrossRef]
- Elpek, G.Ö. Angiogenesis and liver fibrosis. World J. Hepatol. 2015, 7, 377. [Google Scholar] [CrossRef]
- Lopes-Coelho, F.; Martins, F.; Pereira, S.A.; Serpa, J. Anti-angiogenic therapy: Current challenges and future perspectives. Int. J. Mol. Sci. 2021, 22, 3765. [Google Scholar] [CrossRef]
- Kizaki, K.; Ushizawa, K.; Takahashi, T.; Yamada, O.; Todoroki, J.; Sato, T.; Ito, A.; Hashizume, K. Gelatinase (MMP-2 and -9) expression profiles during gestation in the bovine endometrium. Reprod. Biol. Endocrinol. 2008, 6, 66. [Google Scholar] [CrossRef]
- Milner, J.M.; Rowan, A.D.; Cawston, T.E.; Young, D.A. Metalloproteinase and inhibitor expression profiling of resorbing cartilage reveals pro-collagenase activation as a critical step for collagenolysis. Arthritis Res. Ther. 2006, 8, R142. [Google Scholar] [CrossRef]
- García, D.C.; Miceli, D.C.; Valdecantos, P.A.; García, E.V.; Roldán-Olarte, M. Expression of urokinase type plasminogen activator receptor (uPAR) in the bovine oviduct: Relationship with uPA effect on oviductal epithelial cells. Res. Vet. Sci. 2014, 97, 118–123. [Google Scholar] [CrossRef]
- Berisha, B.; Welter, H.; Shimizu, T.; Miyamoto, A.; Meyer, H.H.; Schams, D. Expression of fibroblast growth factor 1 (FGF1) and FGF7 in mature follicles during the periovulatory period after GnRH in the cow. J. Reprod. Dev. 2006, 52, 307–313. [Google Scholar] [CrossRef]
- Sugawara, K.; Kizaki, K.; Herath, C.B.; Hasegawa, Y.; Hashizume, K. Transforming growth factor beta family expression at the bovine feto-maternal interface. Reprod. Biol. Endocrinol. 2010, 8, 120. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, K.; Lukasik, K.; Baufeld, A.; Vanselow, J.; Moallem, U.; Meidan, R. Regulation of ovulatory genes in bovine granulosa cells: Lessons from siRNA silencing of PTGS2. Reproduction 2015, 149, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Lagrée, A.; Fasani, F.; Rouxel, C.; Pivet, M.; Pourcelot, M.; Fablet, A.; Romey, A.; Caignard, G.; Vitour, D.; Blaise-Boisseau, S.; et al. Bovine organospecific microvascular endothelial cell lines as new and relevant in vitro models to study viral infections. Int. J. Mol. Sci. 2020, 21, 5249. [Google Scholar] [CrossRef] [PubMed]
No. DEGs | Upregulated DEGs | Downregulated DEGs | Biological Processes | Molecular Function | Pathway Enrichment | ||||
---|---|---|---|---|---|---|---|---|---|
GO Term | Adjusted p-Value | GO Term | Adjusted p-Value | KEGG Term | Adjusted p-Value | ||||
FI-Bb vs. FI 12 h p.i.. | 479 | 287 | 192 | Positive regulation of biological process (GO:0048518) | 2.60 × 10−18 | Molecular function regulator activity (GO:0098772) | 8.70 × 10−8 | Cytokine–cytokine receptor interaction (KEGG:04060) | 3.92 × 10−4 |
Anatomical structure development (GO:48856) | 2.43 × 10−17 | Molecular function activator activity (GO:0140677) | 9.15 × 10−8 | Pathways in cancer (KEGG:05200) | 3.94 × 10−4 | ||||
Anatomical structure morphogenesis (GO:0009653) | 6.64 × 10−17 | Protein binding (GO:0005515) | 6.01 × 10−6 | MAPK signaling pathway (KEGG:04010) | 1.32 × 10−3 | ||||
Developmental process (GO:0032502) | 1.67 × 10−16 | Signaling receptor regulator activity (GO:0030545) | 6.07 × 10−5 | Proteoglycans in cancer (KEGG:05205) | 5.32 × 10−3 | ||||
Positive regulation of cellular process (GO:0048522) | 6.89 × 10−16 | Receptor ligand activity (GO:0048018) | 1.96 × 10−4 | Axon guidance (KEGG:04360) | 3.13 × 10−2 | ||||
Multicellular organism development (GO:0007275) | 9.70 × 10−15 | Signaling receptor activator activity (GO:0030546) | 3.03 × 10−4 | TNF signaling pathway | 3.43 × 10−2 | ||||
FI-Bb vs. FI 32 h p.i. | 280 | 172 | 108 | Multicellular organism development (GO:0007275) | 1.28 × 10−16 | Protein binding (GO:0005515) | 3.47 × 10−6 | Proteoglycans in cancer (KEGG:05205) | 4.18 × 10−5 |
Anatomical structure development (GO:0048856) | 8.42 × 10−15 | Identical protein binding (GO:0042802) | 7.88 × 10−5 | Malaria (KEGG:05144) | 3.59 × 10−3 | ||||
System development (GO:0048731) | 1.22 × 10−14 | Signaling receptor binding (GO:000510) | 3.95 × 10−4 | Focal adhesion (KEGG:04510) | 7.48 × 10−3 | ||||
Developmental process (GO:0032502) | 1.88 × 10−14 | Collagen binding (GO:0005518) | 1.55 × 10−3 | Pathways in cancer (KEGG:05200) | 7.51 × 10−3 | ||||
Anatomical structure morphogenesis (GO:0009653) | 4.38 × 10−14 | Signaling receptor regulator activity (GO:0030545) | 3.63 × 10−3 | MAPK signaling pathway (KEGG:04010) | 1.08 × 10−2 | ||||
Multicellular organismal process (GO:0032501) | 1.99 × 10−12 | Receptor ligand activity (GO:0048018) | 5.99 × 10−3 | PI3K–AKT signaling pathway (KEGG: 04151) | 2.89 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Álvarez, M.; Horcajo, P.; Jiménez-Meléndez, A.; Lara, P.A.; Huertas-López, A.; Huertas-López, F.; Ferre, I.; Ortega-Mora, L.M.; Álvarez-García, G. Transcriptomics of Besnoitia besnoiti-Infected Fibroblasts Reveals Hallmarks of Early Fibrosis and Cancer Progression. Microorganisms 2024, 12, 586. https://doi.org/10.3390/microorganisms12030586
Fernández-Álvarez M, Horcajo P, Jiménez-Meléndez A, Lara PA, Huertas-López A, Huertas-López F, Ferre I, Ortega-Mora LM, Álvarez-García G. Transcriptomics of Besnoitia besnoiti-Infected Fibroblasts Reveals Hallmarks of Early Fibrosis and Cancer Progression. Microorganisms. 2024; 12(3):586. https://doi.org/10.3390/microorganisms12030586
Chicago/Turabian StyleFernández-Álvarez, María, Pilar Horcajo, Alejandro Jiménez-Meléndez, Pablo Angulo Lara, Ana Huertas-López, Francisco Huertas-López, Ignacio Ferre, Luis Miguel Ortega-Mora, and Gema Álvarez-García. 2024. "Transcriptomics of Besnoitia besnoiti-Infected Fibroblasts Reveals Hallmarks of Early Fibrosis and Cancer Progression" Microorganisms 12, no. 3: 586. https://doi.org/10.3390/microorganisms12030586
APA StyleFernández-Álvarez, M., Horcajo, P., Jiménez-Meléndez, A., Lara, P. A., Huertas-López, A., Huertas-López, F., Ferre, I., Ortega-Mora, L. M., & Álvarez-García, G. (2024). Transcriptomics of Besnoitia besnoiti-Infected Fibroblasts Reveals Hallmarks of Early Fibrosis and Cancer Progression. Microorganisms, 12(3), 586. https://doi.org/10.3390/microorganisms12030586