Use of Trichoderma in the Production of Forest Seedlings
Abstract
:1. Introduction
2. Fungi of the Genus Trichoderma: Beneficial Microorganisms
3. Interaction Process: Trichoderma spp. and Forest Species
4. Potential Mechanisms of Interaction
4.1. Solubilization and Availability of Mineral Nutrients
4.2. Production of Organic Compounds, Secondary Metabolites, and Plant Hormones
5. Promoting the Growth of Forest Species
Practical Examples of Trichoderma in the Formation of Forest Seedlings
6. Potential Microorganisms: Co-Inoculation Capacity
7. Considerations and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IBÁ. Brazilian Tree Industry: Annual Report 2022; Indústria Brasileira de Árvores-IBÁ: Brasília, Brazil, 2022; 96p. [Google Scholar]
- Maximo, Y.I.; Hassegawa, M.; Verkerk, P.J.; Missio, A.L. Forest bioeconomy in Brazil: Potential innovative products from the forest sector. Land 2022, 11, 1297. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Liu, J.; Meng, J.; Hu, X.; Tao, S. Improving the imbalanced global supply chain of phosphorus fertilizers. Earth’s Future 2019, 7, 638–651. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; Macdonald, J.E. Seedling quality: History, application, and plant attributes. Forests 2018, 9, 283. [Google Scholar] [CrossRef]
- Lopes, P.R.M.; Barretto, V.C.M.; Montagnolli, R.N.; Ferreira, P.H.F. Production of eucalyptus seedlings using alternative substrates. Rev. Eng. Agric. REVENG 2021, 29, 236–244. [Google Scholar] [CrossRef]
- Peccatti, A.; Rovedder, A.P.M.; Steffen, G.P.K.; Maldaner, J.; Missio, E.L.; Witt, C.S.; Dalcul, L.P. Effect of Trichoderma spp. on the propagation of Maytenus ilicifolia Mart. ex Reissek. J. Agric. Sci. 2019, 11, 435–442. [Google Scholar] [CrossRef]
- Riikonen, J.; Luoranen, J. Seedling production and the field performance of seedlings. Forests 2018, 9, 740. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma-plant-pathogen interactions. Soil Biol. Bioch. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Khan, M.R.; Mohiddin, F.A. Trichoderma: Its multifarious utility in crop improvement. In Crop Improvement through Microbial Biotechnology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 13, pp. 263–291. [Google Scholar] [CrossRef]
- Kashyap, P.L.; Rai, P.; Srivastava, A.K.; Kumar, S. Trichoderma for climate resilient agriculture. World J. Microbiol. Biotechnol. 2017, 33, 155. [Google Scholar] [CrossRef]
- Alfiky, A.; Weisskopf, L. Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. J. Fungi 2021, 7, 61. [Google Scholar] [CrossRef]
- Morán-Diez, M.E.; Alba, Á.E.M.; Rubio, M.B.; Hermosa, R.; Monte, E. Trichoderma and the plant heritable priming responses. J. Fungi 2021, 7, 318. [Google Scholar] [CrossRef]
- Waghunde, R.R.; Shelake, R.M.; Sabalpara, A.N. Trichoderma: A significant fungus for agriculture and environment. Afr. J. Agric. Res. 2016, 11, 1952–1965. [Google Scholar] [CrossRef]
- Banerjee, S.; Heijden, M.G.A. Soil microbiomes and one health. Nat. Rev. Microbiol. 2022, 21, 6–20. [Google Scholar] [CrossRef]
- Cai, F.; Druzhinina, I.S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021, 107, 1–69. [Google Scholar] [CrossRef]
- Osakabe, Y.; Kawaoka, A.; Nishikubo, N.; Osakabe, K. Responses to environmental stresses in woody plants: Key to survive and longevity. J. Plant Res. 2012, 125, 1–10. [Google Scholar] [CrossRef]
- Puglielli, G.; Laanisto, L.; Gori, A.; Cardoso, A.A. Woody plant adaptations to multiple abiotic stressors: Where are we? Flora 2023, 299, 152221. [Google Scholar] [CrossRef]
- Qin, X.; Xu, J.; An, X.; Yang, J.; Wang, Y.; Dou, M.; Wang, M.; Huang, F.; Fu, Y. Insight of endophytic fungi promoting the growth and development of woody plants. Crit. Rev. Biotechnol. 2023, 1, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Prudencio, O.G.R.; Castro, M.D.; Rivera, M.E.; López, M.C.G.; Moreno, S.J.; Flores, S.C. Trichoderma in the rhizosphere. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, H.B., Vaishnav, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 3–38. [Google Scholar] [CrossRef]
- Guzmán, P.G.; Troncoso, M.D.P.; Monfil, V.O.; Estrella, A.H. Trichoderma species: Versatile plant symbionts. Phytopathology 2018, 109, 6–16. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, N.; Kabadwal, B.C.; Tewari, A.K.; Kumar, J. Review on Plant-Trichoderma-Pathogen Interaction. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2382–2397. [Google Scholar] [CrossRef]
- Devi, R.; Kaur, T.; Kour, D.; Rana, K.L.; Yadav, A.; Yadav, A.N. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb. Biosyst. 2020, 5, 21–47. [Google Scholar] [CrossRef]
- Soldan, A.; Watzlawick, L.F.; Botelho, R.V.; Faria, C.M.D.R.; Maia, A.J. Development of forestry species inoculated with Trichoderma spp. fertilized with rock phosphate. Floresta e Ambiente 2018, 25, e20160643. [Google Scholar] [CrossRef]
- Vassileva, M.; Mendes, G.D.O.; Deriu, M.A.; Benedetto, G.D.; Peregrin, E.F.; Mocali, S.; Martos, V.; Vassilev, N. Fungi, P-solubilization, and plant nutrition. Microorganisms 2022, 10, 1716. [Google Scholar] [CrossRef]
- Carvalho Filho, M.R.; Martins, I.; Peixoto, G.H.S.; Muniz, P.H.P.C.; Carvalho, D.D.C.; Mello, S.C.M. Biological control of leaf spot and growth promotion of eucalyptus plants by Trichoderma spp. J. Agric. Sci. 2018, 10, 459–467. [Google Scholar] [CrossRef]
- Reis, D.N.; Silva, F.G.; Santana, R.C.; Oliveira, T.C.; Freiberger, M.B.; Silva, F.B.; Müller, C. Growth, physiology and nutrient use efficiency in Eugenia dysenterica DC under varying rates of nitrogen and phosphorus. Plants 2020, 9, 722. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Poonam, A.; Ahmad, S.; Singh, R.P. Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus 2022, 7, 100133. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, J.; Yuan, J.; Hale, L.; Wen, T.; Huang, Q.; Shen, Q. Root exsudate drive soil microbe nutrient feedbacks in response to plant growth. Plant Cell Environ. 2020, 44, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Song, Y.; Zhao, L.; Chen, P.; Bu, C.; Liu, P.; Zhang, D. The genetic basis of phosphorus utilization efficiency in plants provide new insight into woody perennial plants improvement. Int. J. Mol. Sci. 2022, 23, 2353. [Google Scholar] [CrossRef]
- Divjot, K.O.U.R.; Rana, K.L.; Tanvir, K.A.U.R.; Yadav, N.; Yadav, A.N.; Kumar, M.; Saxena, A.K. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: A review. Pedosphere 2021, 31, 43–75. [Google Scholar] [CrossRef]
- Morales, M.; Medina, S.E.L.; Morán, J.N.; Quevedo, A.; Ratti, M.F. Nematophagous fungi: A review of their phosphorus solubilization potential. Microorganisms 2023, 11, 137. [Google Scholar] [CrossRef]
- Prabhu, N.; Borkar, S.; Garg, S. Phosphate solubilization by microorganisms: Overview, mechanisms, applications and advances. In Advances in Biological Science Research; Meena, S.N., Naik, M.M., Eds.; Springer: Dona Paula, Goa, India, 2019; Volume 1, pp. 161–176. [Google Scholar] [CrossRef]
- López, G.N.; Lawry, R.; Aquino, J.F.E.; Mendoza-Mendoza, A. Chemical communication between Trichoderma and plants. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, H.B., Vaishnav, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 109–139. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Q.; Gao, S.S.; Young, A.E.; Jacobsen, S.E.; Tang, Y. Genome mining and biosynthesis of a polyketide from a biofertilizer fungus that can facilitate reductive iron assimilation in plant. Proc. Natl. Acad. Sci. USA 2019, 116, 5499–5504. [Google Scholar] [CrossRef]
- Aishwarya, S.; Viswanath, H.S.; Singh, A.; Singh, R. Biosolubilization of different nutrients by Trichoderma spp. and their mechanisms involved: A Review. Int. J. Adv. Sci. Technol. 2020, 7, 34–39. [Google Scholar]
- Núñez, J.A.D.; Lobo, M.B. Application of microorganisms in forest plant. In Biofertilizers; Inamuddin, A.M.I., Boddula, R., Rezakazemi, M., Eds.; Wiley: Cambridge, MA, USA, 2021; pp. 265–287. [Google Scholar] [CrossRef]
- Prasad, A.; Dixit, M.; Meena, S.K.; Kumar, A. Qualitative and quantitative estimation for phosphate solubilizing ability of Trichoderma isolates: A natural soil health enhancer. Mater. Today Proc. 2021, 81, 360–366. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Z.; Zhang, Y.; Wang, Y.; Liu, Z. Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiol. Res. 2021, 242, 126596. [Google Scholar] [CrossRef]
- Mäkelä, P.S.; Wasonga, D.O.; Hernandez, A.S.; Santanen, A. Seedling growth and phosphorus uptake in response to different phosphorus sources. Agronomy 2020, 10, 1089. [Google Scholar] [CrossRef]
- Ali, S.; Khan, M.J.; Anjum, M.M.; Khan, G.R.; Ali, N. Trichoderma harzianum modulates phosphate and micronutrient solubilization in the rhizosphere. Gesunde Pflanz. 2022, 74, 853–862. [Google Scholar] [CrossRef]
- Silva, L.I.D.; Pereira, M.C.; Carvalho, A.M.X.D.; Buttrós, V.H.; Pasqual, M.; Dória, J. Phosphorus-solubilizing microorganisms: A key to sustainable agriculture. Agriculture 2023, 13, 462. [Google Scholar] [CrossRef]
- Yu, C.; Luo, X. Trichoderma koningiopsis controls Fusarium oxysporum causing damping-off in Pinus massoniana seedlings by regulating active oxygen metabolism, osmotic potential, and the rhizosphere microbiome. Biol. Control 2020, 150, 104352. [Google Scholar] [CrossRef]
- Cabal, C.; Martínez-García, R.; Castro Aguilar, A.; Valladares, F.; Pacala, S.W. The exploitative segregation of plant roots. Science 2020, 370, 1197–1199. [Google Scholar] [CrossRef]
- Kulmann, M.S.S.; Arruda, W.S.; Vitto, B.B.; Souza, R.O.S.; Berghetti, Á.L.P.; Tarouco, C.P.; Brunetto, G. Morphological and physiological parameters influence the use efficiency of nitrogen and phosphorus by Eucalyptus seedlings. New For. 2022, 53, 431–448. [Google Scholar] [CrossRef]
- Wang, N.Q.; Kong, C.H.; Wang, P.; Meiners, S.J. Root exsudate signals in plant—Plant interactions. Plant Cell Environ. 2021, 44, 1044–1058. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Ruocco, M.; Woo, S.; Lorito, M. Trichoderma secondary metabolites that affect plant metabolism. Nat. Prod. Commun. 2012, 7, 1934578X1200701133. [Google Scholar] [CrossRef]
- Lehner, S.M.; Atanasova, L.; Neumann, N.K.; Krska, R.; Lemmens, M.; Druzhinina, I.S.; Schuhmacher, R. Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Appl. Environ. Microbiol. 2013, 79, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennett, J.W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 2016, 3, 7. [Google Scholar] [CrossRef]
- Zeilinger, S.; Gruber, S.; Bansal, R.; Mukherjee, P.K. Secondary metabolism in Trichoderma—Chemistry meets genomics. Fungal Biol. Rev. 2016, 30, 74–90. [Google Scholar] [CrossRef]
- Salwan, R.; Rialch, N.; Sharma, V. Bioactive volatile metabolites of Trichoderma: An overview. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms; Singh, H.B., Keswani, C., Reddy, M.S., Eds.; Springer: Singapore, 2019; Volume 1, pp. 87–111. [Google Scholar] [CrossRef]
- Valdespino, C.A.R.; Flores, S.C.; Monfil, V.O. Trichoderma as a model to study effector-like molecules. Front. Microbiol. 2019, 10, 1030. [Google Scholar] [CrossRef] [PubMed]
- Kolli, S.C.; Adusumilli, N. Trichoderma-Its paramount role in agriculture. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, H.B., Vaishnav, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 69–83. [Google Scholar] [CrossRef]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Chagas, L.F.B.; Chagas Júnior, A.F.; Castro, H.G. Phosphate solubilization capacity and indole acetic acid production. Braz. J. Agric. V 2017, 92, 176–185. [Google Scholar] [CrossRef]
- Nieto-Jacobo, M.F.; Steyaert, J.M.; Salazar-Badillo, F.B.; Nguyen, D.V.; Rostás, M.; Braithwaite, M.; Mendoza-Mendoza, A. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant Sci. 2017, 8, 102. [Google Scholar] [CrossRef]
- Sharifi, R.; Ryu, C.M. Revisiting bacterial volatile-mediated plant growth promotion: Lessons from the past and objectives for the future. Ann. Bot. 2018, 122, 349–358. [Google Scholar] [CrossRef]
- Minerdi, D.; Maggini, V.; Fani, R. Volatile organic compounds: From figurants to leading actors in fungal symbiosis. FEMS Microbiol. Ecol. 2021, 97, fiab067. [Google Scholar] [CrossRef]
- Vinale, F.; Nigro, M.; Sivasithamparam, K.; Flematti, G.; Ghisalberti, E.L.; Ruocco, M.; Lorito, M. Harzianic acid: A novel siderophore from Trichoderma harzianum. FEMS Microbiol. Lett. 2013, 347, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Boonman, C.C.; Van Langevelde, F.; Oliveras, I.; Couédon, J.; Luijken, N.; Martini, D.; Veenendaal, E.M. On the importance of root traits in seedlings of tropical tree species. New Phytol. 2020, 227, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Mukherjee, P.K.; Horwitz, B.A.; Zachow, C.; Berg, G.; Zeilinger, S. Trichoderma–plant–pathogen interactions: Advances in genetics of biological control. Indian J. Microbiol. 2012, 52, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Brotman, Y.; Landau, U.; Inostroza, Á.C.; Takayuki, T.; Fernie, A.R.; Chet, I.; Willmitzer, L. Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 2013, 9, e1003221. [Google Scholar] [CrossRef]
- Brotman, Y.; Briff, E.; Viterbo, A.; Chet, I. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol. 2008, 147, 779–789. [Google Scholar] [CrossRef]
- Mendoza-Mendoza, A.; Zaid, R.; Lawry, R.; Hermosa, R.; Monte, E.; Horwitz, B.A.; Mukherjee, P.K. Molecular dialogues between Trichoderma and roots: Role of the fungal secretome. Fungal Biol. Rev. 2018, 32, 62–85. [Google Scholar] [CrossRef]
- Cornejo, H.A.; Macías-Rodríguez, L.; Del-Val, E.K.; Larsen, J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiol. Ecol. 2016, 92, fiw036. [Google Scholar] [CrossRef]
- Santoyo, G.; Guzmán-Guzmán, P.; Parra-Cota, F.I.; Santos-Villalobos, S.D.L.; Orozco-Mosqueda, M.; Glick, B.R. Plant growth stimulation by microbial consortia. Agronomy 2021, 11, 219. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D.; Abril-Urias, P. Could Trichoderma be a plant pathogen? Successful root colonization. In Trichoderma; Sharma, A., Sharma, P., Eds.; Springer: Singapore, 2020; Volume 1, pp. 35–59. [Google Scholar] [CrossRef]
- Afzal, I.; Sabir, A.; Sikandar, S. Trichoderma: Biodiversity, abundances, and biotechnological applications. In Recent Trends in Mycological Research; Yadav, A.N., Ed.; Springer: Cham, Switzerland, 2021; Volume 1, pp. 293–315. [Google Scholar] [CrossRef]
- Raghu, H.B.; Ashwin, R.; Ravi, J.E.; Bagyaraj, D.J. Enhancing plant quality and outplanting growth of Acacia auriculiformis in dry wasteland plantations by inoculating a selected microbial consortium in the nursery. Can. J. For. Res. 2020, 50, 736–741. [Google Scholar] [CrossRef]
- Sellal, Z.; Touhami, A.O.; Chliyeh, M.; Mouden, N.; Selmaoui, K.; Dahmani, J.; Douira, A. Effect of seeds treatment with Trichoderma harzianum on argan plants growth. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 69–77. [Google Scholar]
- Poveda, J. Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl. Soil Ecol. 2021, 168, 104118. [Google Scholar] [CrossRef]
- González Pérez, E.; Ortega Amaro, M.A.; Salazar Badillo, F.B.; Bautista, E.; Douterlungne, D.; Bremont, J.F.J. The Arabidopsis-Trichoderma interaction reveals that the fungal growth medium is an important factor in plant growth induction. Sci. Rep. 2018, 8, 16427. [Google Scholar] [CrossRef] [PubMed]
- Simamora, M.; Basyuni, M.; Lisnawita, L. Potency of secondary metabolites of Trichoderma asperellum and Pseudomonas fluorescens in the growth of cocoa plants affected by vascular streak dieback. Biodiversitas J. Biol. Divers. 2021, 22, 1–6. [Google Scholar] [CrossRef]
- Suryantini, R.; Wulandari, R.S. Effectiveness of Trichoderma viride (T2) to the growth of Acacia mangium seedlings. J. Adv. Agric. Technol. 2017, 4, 1–4. [Google Scholar] [CrossRef]
- López, A.C.; Alvarenga, A.E.; Zapata, P.D.; Luna, M.F.; Villalba, L.L. Trichoderma spp. from Misiones, Argentina: Effective fungi to promote plant growth of the regional crop Ilex paraguariensis St. Hil. Mycology 2019, 10, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Liu, B.; Xu, Z. Efficacy of Trichoderma asperellum TC01 against anthracnose and growth promotion of Camellia sinensis seedlings. Biol. Control 2020, 143, 104205. [Google Scholar] [CrossRef]
- Adebayo, A.G.; Kareem, K.T.; Olatunji, M.T.; Shokalu, A.O.; Akintoye, H.A.; James, I.E. Effects of Trichoderma longibrachiatum (NGJ167) and compost on early growth of Bougainvillea spectabilis. Ornam. Hortic. 2020, 26, 614–620. [Google Scholar] [CrossRef]
- Paudzai, F.A.M.; Sundram, S.; Yusof, M.T.; Angel, L.; Hashim, A.M.; Abdullah, S.N.A. Induced systemic resistance and promotion of plant growth in oil palm seedlings by endophytic Trichoderma virens. J. Oil Palm Res. 2019, 31, 572–581. [Google Scholar] [CrossRef]
- Dini, I.; Pascale, M.; Staropoli, A.; Marra, R.; Vinale, F. Effect of selected Trichoderma strains and metabolites on olive drupes. Appl. Sci. 2021, 11, 8710. [Google Scholar] [CrossRef]
- Vaio, C.; Testa, A.; Cirillo, A.; Conti, S. Slow-release fertilization and Trichoderma harzianum-based biostimulant for the nursery production of young olive trees (Olea europaea L.). Agron. Res. 2021, 19, 1–15. [Google Scholar] [CrossRef]
- Santos, M.F.; Santos, L.E.; Costa, D.L.; Vieira, T.A.; Lustosa, D.C. Trichoderma spp. on treatment of Handroanthus serratifolius seeds: Effect on seedling germination and development. Heliyon 2020, 6, E04044. [Google Scholar] [CrossRef]
- Zin, N.A.; Badaluddin, N.A. Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 2020, 65, 168–178. [Google Scholar] [CrossRef]
- Gorai, P.S.; Barman, S.; Gond, S.K.; Mandal, N.C. Trichoderma. In Beneficial Microbes in Agro-Ecology; Amaresan, N., Annapurna, K., Sankaranarayanan, A., Kumar, M.S., Kumar, K., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 1, pp. 571–591. [Google Scholar] [CrossRef]
- Guignabert, A.; Augusto, L.; Gonzalez, M.; Chipeaux, C.; Delerue, F. Complex biotic interactions mediated by shrubs: Revisiting the stress gradient hypothesis and consequences for tree seedling survival. J. Appl. Ecol. 2020, 57, 1341–1350. [Google Scholar] [CrossRef]
- Singh, B.N.; Dwivedi, P.; Sarma, B.K.; Singh, G.S.; Singh, H.B. A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones. 3 Biotech 2019, 9, 109. [Google Scholar] [CrossRef]
- Kapri, A.; Tewari, L. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz. J. Microbiol. 2010, 41, 787–795. [Google Scholar] [CrossRef]
- Promwee, A.; Issarakraisila, M.; Intana, W.; Chamswarng, C.; Yenjit, P. Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. J. Agric. Sci. 2014, 6, 8. [Google Scholar] [CrossRef]
- Halifu, S.; Deng, X.; Song, X.; Song, R. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests 2019, 10, 758. [Google Scholar] [CrossRef]
- Santos, J.M.R.D.; Taniguchi, C.A.K.; Silva, C.D.F.B.D.; Natale, W.; Artur, A.G. Trichoderma in the promotion of growth and nutrition of dwarf cashew rootstock. Revista Ciência Agronômica 2021, 52, 1–9. [Google Scholar] [CrossRef]
- Campos, B.F.; Araújo, A.J.C.; Felsemburgh, C.A.; Vieira, T.A.; Lustosa, D.C. Trichoderma contributes to the germination and seedling development of açaí palm. Agriculture 2020, 10, 456. [Google Scholar] [CrossRef]
- Mo, Q.; Li, Z.A.; Sayer, E.J.; Lambers, H.; Li, Y.; Zou, B.I.; Wang, F. Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability. Funct. Ecol. 2019, 33, 503–513. [Google Scholar] [CrossRef]
- Oszako, T.; Voitka, D.; Stocki, M.; Stocka, N.; Nowakowska, J.A.; Linkiewicz, A.; Malewski, T. Trichoderma asperellum efficiently protects Quercus robur leaves against Erysiphe alphitoides. Eur. J. Plant Pathol. 2021, 159, 295–308. [Google Scholar] [CrossRef]
- Harman, G.E.; Doni, F.; Khadka, R.B.; Uphoff, N. Endophytic strains of Trichoderma increase plants’ photosynthetic capability. J. Appl. Microbiol. 2021, 130, 529–546. [Google Scholar] [CrossRef]
- West, P.W. Do increasing respiratory costs explain the decline with age of forest growth rate? J. For. Res. 2020, 31, 693–712. [Google Scholar] [CrossRef]
- Akaji, Y.; Inoue, T.; Tomimatsu, H.; Kawanishi, A. Photosynthesis, respiration, and growth patterns of Rhizophora stylosa seedlings in relation to growth temperature. Trees 2019, 33, 1041–1049. [Google Scholar] [CrossRef]
- Woo, S.L.; Hermosa, R.; Lorito, M.; Monte, E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 2022, 1, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Parkash, V.; Gaur, A.; Agnihotri, R.; Aggarwal, A. Trichoderma harzianum Rifai: A beneficial fungus for growth and development of Abroma augusta L. seedlings with other microbial bioinoculants. In Trichoderma-The Most Widely Used Fungicide; Shah, M.M., Sharif, U., Buhari, T.R., Eds.; IntechOpen: London, UK, 2019; Volume 1, p. 91. [Google Scholar] [CrossRef]
- Stewart, A.; Hill, R. Applications of Trichoderma in plant growth promotion. In Biotechnology and Biology of Trichoderma; Gupta, V.G., Schmoll, M., Estrella, A.H., Upadhyay, R.S., Druzhinina, I., Tuohy, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 415–428. [Google Scholar] [CrossRef]
- Peccatti, A.; Rovedder, A.P.M.; Steffen, G.P.K.; Maldaner, J.; Camargo, B.; Dalcul, L.P.; Neeuenschwander, F. Biological inputs in promoting the growth of Bauhinia forficata Link. seedlings. Ciência Florest. 2020, 30, 367–379. [Google Scholar] [CrossRef]
- Griebeler, A.M.; Araujo, M.M.; Tabaldi, L.A.; Steffen, G.P.; Turchetto, F.; Rorato, D.G.; Barbosa, F.M.; Berghetti, A.L.P.; Nhantumbo, L.S.; Lima, M.S. Type of container and Trichoderma spp. inoculation enhance the performance of tree species in enrichment planting. Ecol. Eng. 2021, 169, 106317. [Google Scholar] [CrossRef]
- Díaz, T.S.; González, L.C. Efecto bioestimulante de Trichoderma harzianum Rifai en posturas de Leucaena, Cedro y Samán. Colomb. For. 2018, 21, 81–90. [Google Scholar] [CrossRef]
- Batista, K.O.M.; Silva, D.V.; Nascimento, V.L.; Souza, D.J. Effects of Trichoderma strigosellum in Eucalyptus urophylla development and leaf-cutting ant behavior. J. Fungi 2022, 8, 15. [Google Scholar] [CrossRef]
- Santos, M.F.; Costa, D.L.; Vieira, T.A.; Lustosa, D.C. Effect of’ Trichoderma spp. fungus for production of seedlings in Enterolobium schomburgkii (Benth.) Benth. Aust. J. Crop Sci. 2019, 13, 1706–1711. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, Z.; Wang, Y.; Chen, X.; Yin, C.; Mao, Z. Effects of Trichoderma harzianum fertilizer on the soil environment of Malus hupehensis Rehd. seedlings under replant conditions. HortScience 2021, 56, 1073–1079. [Google Scholar] [CrossRef]
- Sousa, W.N.; Brito, N.F.; Felsemburgh, C.A.; Vieira, T.A.; Lustosa, D.C. Evaluation of Trichoderma spp. isolates in cocoa seed treatment and seedling production. Plants 2021, 10, 1964. [Google Scholar] [CrossRef]
- Grossnickle, S.C. Why seedlings survive: Influence of plant attributes. New For. 2012, 43, 711–738. [Google Scholar] [CrossRef]
- Toca, A.; Moler, E.; Nelson, A.; Jacobs, D.F. Environmental conditions in the nursery regulate root system development and architecture of forest tree seedlings: A systematic review. New For. 2022, 53, 1113–1143. [Google Scholar] [CrossRef]
- Ferreira, N.C.F.; Rocha, E.C.; Rodrigues, F.; Santos, S.X.; Oliveira, T.A.S.; Duarte, E.A.A.; Carvalho, D.D.C. Trichoderma spp. in growth promotion of Jacaranda mimosifolia D. Don. J. Agric. Stud. 2021, 9, 335–346. [Google Scholar] [CrossRef]
- Raghu, H.B.; Ashwin, R.; Ravi, J.E.; Bagyaraj, D.J. Microbial consortium improved growth and performance of teak (Tectona grandis Lf.) in nursery and field trials. Biol. Sci. 2020, 90, 903–909. [Google Scholar] [CrossRef]
- Oliveira, H.B.; Rocha, E.; Teles, T.; Florentino, L.A. Microbial activity in the agricultural and forestry system. Res. Soc. Dev. 2022, 11, e56211226184. [Google Scholar] [CrossRef]
- Chagas Júnior, A.F.; Dias, P.C.; Santos, G.R.; Ribeiro, A.S.N.; Sousa, K.Â.O.; Chagas, L.F.B. Trichoderma as a growth promoter in Astronium urundeuva (M. Allemão) Engl. Sci. Plena 2022, 18, 1–10. [Google Scholar] [CrossRef]
- Liu, W.Y.Y.; Poobathy, R. Biofertilizer utilization in forestry. In Biofertilizers; Inamuddin, A.M.I., Boddula, R., Rezakazemi, M., Eds.; Wiley: Cambridge, MA, USA, 2021; Volume 1, pp. 1–37. [Google Scholar] [CrossRef]
- Avila, G.M.A.; Gabardo, G.; Clock, D.C.; Lima Júnior, O.S. Use of efficient microorganisms in agriculture. Res. Soc. Dev. 2021, 10, e40610817515. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biol. Control 2022, 176, 105100. [Google Scholar] [CrossRef]
- Hakim, S.; Naqqash, T.; Nawaz, M.S.; Laraib, I.; Siddique, M.J.; Zia, R.; Mirza, M.S.; Imran, A. Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Front. Sustain. Food Syst. 2021, 5, 617157. [Google Scholar] [CrossRef]
- Dabrowska, G.B.; Garstecka, Z.; Trejgell, A.; Dąbrowski, H.P.; Konieczna, W.; Szyp-Borowska, I. The impact of forest fungi on promoting growth and development of Brassica napus L. Agronomy 2021, 11, 2475. [Google Scholar] [CrossRef]
- Antoszewski, M.; Mierek-Adamska, A.; Dabrowska, G.B. The importance of microorganisms for sustainable agriculture-A review. Metabolites 2022, 12, 1100. [Google Scholar] [CrossRef] [PubMed]
- Chaiya, L.; Gavinlertvatana, P.; Teaumroong, N.; Pathom-Aree, W.; Chaiyasen, A.; Sungthong, R.; Lumyong, S. Enhancing teak (Tectona grandis) seedling growth by rhizosphere microbes: A sustainable way to optimize agroforestry. Microorganisms 2021, 9, 990. [Google Scholar] [CrossRef]
- Syafiq, T.H.T.M.; Nusaibah, S.A.; Rafii, M.Y. Effectiveness of bioinoculants Bacillus cereus and Trichoderma asperellum as oil palm seedlings growth promoters. Pertanika J. Trop. Agric. Sci. 2021, 44, 157–170. [Google Scholar] [CrossRef]
- Aguirre, M.I.H.; Vega, W.O.; Peláez, J.L.D. Co-inoculation with beneficial soil microorganisms promoted growth and quality of Tabebuia rosea seedlings. For. Sci. 2022, 68, 95–103. [Google Scholar] [CrossRef]
- Bettegowda, R.H.; Nanjundappa, A.; Revanna, A.; Manchegowda, H.K.; Ravi, J.E.; Bagyaraj, D.J. Selected microbial consortia promotes Dalbergia sissoo growth in the large-scale nursery and wastelands in a semi-arid region in India. J. For. Res. 2021, 26, 448–454. [Google Scholar] [CrossRef]
- Zydlik, Z.; Zydlik, P.; Wieczorek, R. The effects of bioinoculants based on mycorrhizal and Trichoderma spp. fungi in an apple tree nursery under replantation conditions. Agronomy 2021, 11, 2355. [Google Scholar] [CrossRef]
- Macías Rodríguez, L.; Contreras Cornejo, H.A.; Adame Garnica, S.G.; Del Val, E.; Larsen, J. The interactions of Trichoderma at multiple trophic levels: Inter-kingdom communication. Microbiol. Res. 2020, 240, 126552. [Google Scholar] [CrossRef]
- Chaudhary, P.; Xu, M.; Ahamad, L.; Chaudhary, A.; Kumar, G.; Adeleke, B.S.; Verma, K.K.; Hu, D.-M.; Širić, I.; Kumar, P.; et al. Application of synthetic consortia for improvement of soil fertility, pollution remediation, and agricultural productivity: A Review. Agronomy 2023, 13, 643. [Google Scholar] [CrossRef]
- Zhang, Z.; Mallik, A.; Zhang, J.; Huang, Y.; Zhou, L. Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates. Soil Tillage Res. 2019, 194, 104340. [Google Scholar] [CrossRef]
- Zhang, P.; Dumroese, R.K.; Pinto, J.R. Organic or inorganic nitrogen and rhizobia inoculation provide synergistic growth response of a leguminous forb and tree. Front. Plant Sci. 2019, 10, 1308. [Google Scholar] [CrossRef] [PubMed]
- Chaín, J.M.; Tubert, E.; Graciano, C.; Castagno, L.N.; Recchi, M.; Pieckenstain, F.L.; Estrella, M.J.; Gudesblat, G.; Amodeo, G.; Baroli, I. Growth promotion and protection from drought in Eucalyptus grandis seedlings inoculated with beneficial bacteria embedded in a superabsorbent polymer. Sci. Rep. 2020, 10, 18221. [Google Scholar] [CrossRef] [PubMed]
Species | Chemical Production | Activity | References |
---|---|---|---|
T. asperellum; T. harzianum; T. viride; T. koningii | Siderophores | Fe chelating agents, in this process, Fe3+ siderophores are recognized and absorbed by plants, adopting a key role in the availability of the micronutrient | [46,47,48] |
T. harzianum | Terpenes | Provides signals to plants that trigger changes in growth | [49,50,51] |
T. harzianum | Metabolites of isocyanate | Positive impact on the symbiosis process | [50] |
T. harzianum; T. koningii; T. viride | Pyrones | 6-pentyl-2H-Piran-2-one (6-PP): chemical signaling via induction of auxin and ethylene formation, which modulates root architecture (formation of root hairs) Promotes seed germination and seedling development | [52,53,54] |
T. asperellum; T. harzianum; T. koningii; T. viride | Synthesis of phytohormones | High rhizosphere competence. Performs the biosynthesis of indole-3-acetic acid (IAA), capable of modifying the root architecture and increasing root mass and rate of absorption of nutrients by the plant | [23,55] |
Trichoderma sp. | Forest Species | Effects | References |
---|---|---|---|
T. harzianum | Abroma augusta | Height and stem diameter | [97] |
T. harzianum; T. lignorum; T. koningii | Acacia mangium | Height, stem diameter; biomass and root volume | [98] |
T. asperelloides; T. harzianum | Bauhinia forficata | Height, stem diameter, and chlorophyll content | [99] |
T. asperelloides | Cabralea canjerana | Height, biomass, and root system | [100] |
T. harzianum | Cedrela fissilis | Height, biomass, and root system | [101] |
T. strigosellum | E. urophylla | Height, number of leaves, and biomass | [102] |
T. asperellum | Enterolobium schomburgkii | Height and stem diameter | [103] |
T. harzianum | Malus hupehensis | Biomass and root system | [104] |
T. asperellum | Theobroma cacao | Height and root system | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, N.C.d.F.; Ramos, M.L.G.; Gatto, A. Use of Trichoderma in the Production of Forest Seedlings. Microorganisms 2024, 12, 237. https://doi.org/10.3390/microorganisms12020237
Ferreira NCdF, Ramos MLG, Gatto A. Use of Trichoderma in the Production of Forest Seedlings. Microorganisms. 2024; 12(2):237. https://doi.org/10.3390/microorganisms12020237
Chicago/Turabian StyleFerreira, Natália Cássia de Faria, Maria Lucrecia Gerosa Ramos, and Alcides Gatto. 2024. "Use of Trichoderma in the Production of Forest Seedlings" Microorganisms 12, no. 2: 237. https://doi.org/10.3390/microorganisms12020237
APA StyleFerreira, N. C. d. F., Ramos, M. L. G., & Gatto, A. (2024). Use of Trichoderma in the Production of Forest Seedlings. Microorganisms, 12(2), 237. https://doi.org/10.3390/microorganisms12020237