Quantification of Viable Salmonella by Propidium Monoazide Real-Time PCR After Long-Term Storage of Peanut Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum
2.2. Inoculation and Storage
2.3. Salmonella Enumeration
2.3.1. Culture Method
2.3.2. PMA Treatment
2.3.3. DNA Extraction
2.3.4. Salmonella qPCR Enumeration
2.4. Standard Curve for Quantification
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Wan, Y.; Du, P.; Bai, L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog. Dis. 2020, 17, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius. Code of Hygienic Practice for Low-Moisture Foods Cxc 75-2015. In Codex Alimentarius; Adopted In 2015; Revised In 2016; Amended In 2018; Joint FAO/WHO Food Standards Program: Rome, Italy, 2018. [Google Scholar]
- EFSA. Multi-country outbreak of Salmonella Typhimurium and S. Anatum infections linked to Brazil nuts—21 October 2020. EFSA Support. Publ. 2020, 17, 1944E. [Google Scholar] [CrossRef]
- CDC. Salmonella Typhimurium Infections Linked to Dried Coconut (Final Update). 2018. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/salmonella/typhimurium-03-18/index.html (accessed on 1 December 2024).
- Medus, C.; Meyer, S.; Smith, K.; Jawahir, S.; Miller, B.; Vige, K.; Forstner, M.; Brandt, E.; Nowicki, S.; Salehi, E.; et al. Multistate Outbreak of Salmonella Infections Associated with Peanut Butter and Peanut Butter—Containing Products—United States, 2008–2009. MMWR Morb. Mortal. Wkly. Rep. 2009, 58, 85. [Google Scholar]
- Perin, A.P.; Martins, B.T.F.; Barreiros, M.A.B.; Yamatogi, R.S.; Nero, L.A.; Bersot, L.d.S. Occurrence, quantification, pulse types, and antimicrobial susceptibility of Salmonella sp. isolated from chicken meat in the state of Paraná, Brazil. Braz. J. Microbiol. 2019, 51, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Gomes, V.T.; Moreno, L.Z.; Silva, A.P.S.; Thakur, S.; La Ragione, R.M.; Mather, A.E.; Moreno, A.M. Characterization of Salmonella enterica Contamination in Pork and Poultry Meat from São Paulo/Brazil: Serotypes, Genotypes and Antimicrobial Resistance Profiles. Pathogens 2022, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.; Komitopoulou, E.; Betts, R.; Beckers, H.; Bourdichon, F.; Joosten, H.; Fanning, S.; Ter Kuile, B. Persistence and survival of pathogens in dry foods and dry food processing environments. ILSI Eur. Rep. Ser. 2011, 2011, 1–48. [Google Scholar]
- Nascimento, M.S.; Carminati, J.A.; Morishita, K.N.; Neto, D.P.A.; Pinheiro, H.P.; Maia, R.P. Long-term kinetics of Salmonella Typhimurium ATCC 14028 survival on peanuts and peanut confectionery products. PLoS ONE 2018, 13, e0192457. [Google Scholar] [CrossRef] [PubMed]
- Podolak, R.; Enache, E.; Stone, W.; Black, D.G.; Elliott, P.H. Sources and Risk Factors for Contamination, Survival, Persistence, and Heat Resistance of Salmonella in Low-Moisture Foods. J. Food Prot. 2010, 73, 1919–1936. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Zhang, W. Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol. 2012, 30, 311–315. [Google Scholar] [CrossRef]
- Gruzdev, N.; McClelland, M.; Porwollik, S.; Ofaim, S.; Pinto, R.; Saldinger-Sela, S. Global Transcriptional Analysis of Dehydrated Salmonella enterica Serovar Typhimurium. Appl. Environ. Microbiol. 2012, 78, 7866–7875. [Google Scholar] [CrossRef] [PubMed]
- Gupte, A.R.; De Rezende, C.L.E.; Joseph, S.W. Induction and Resuscitation of Viable but Nonculturable Salmonella enterica Serovar Typhimurium DT104. Appl. Environ. Microbiol. 2003, 69, 6669–6675. [Google Scholar] [CrossRef]
- Duarte, A.; Botteldoorn, N.; Coucke, W.; Denayer, S.; Dierick, K.; Uyttendaele, M. Effect of exposure to stress conditions on propidium monoazide (PMA)-qPCR based Campylobacter enumeration in broiler carcass rinses. Food Microbiol. 2015, 48, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Finn, S.; Condell, O.; McClure, P.; Amézquita, A.; Fanning, S. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Front. Microbiol. 2013, 4, 63592. [Google Scholar] [CrossRef]
- Kapperud, G.; Gustavsen, S.; Hellesnes, I.; Hansen, A.H.; Lassen, J.; Hirn, J.; Jahkola, M.; Montenegro, M.A.; Helmuth, R. Outbreak of Salmonella typhimurium infection traced to contaminated chocolate and caused by a strain lacking the 60-megadalton virulence plasmid. J. Clin. Microbiol. 1990, 28, 2597–2601. [Google Scholar] [CrossRef] [PubMed]
- McIngvale, S.C.; Elhanafi, D.; Drake, M.A. Optimization of Reverse Transcriptase PCR To Detect Viable Shiga-Toxin-Producing Escherichia coli. Appl. Environ. Microbiol. 2002, 68, 799–806. [Google Scholar] [CrossRef]
- Yaron, S.; Matthews, K. A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: Investigation of specific target genes. J. Appl. Microbiol. 2002, 92, 633–640. [Google Scholar] [CrossRef]
- González-Escalona, N.; Hammack, T.S.; Russell, M.; Jacobson, A.P.; De Jesús, A.J.; Brown, E.W.; Lampel, K.A. Detection of Live Salmonella sp. Cells in Produce by a TaqMan-Based Quantitative Reverse Transcriptase Real-Time PCR Targeting invA mRNA. Appl. Environ. Microbiol. 2009, 75, 3714–3720. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Breidt, F. Enumeration of Viable Listeria monocytogenes Cells by Real-Time PCR with Propidium Monoazide and Ethidium Monoazide in the Presence of Dead Cells. Appl. Environ. Microbiol. 2007, 73, 8028–8031. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Cheung, C.-Y.; Camper, A.K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 2006, 67, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Merino, L.; Procura, F.; Trejo, F.M.; Bueno, D.J.; Golowczyc, M.A. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res. Int. 2019, 119, 530–540. [Google Scholar] [CrossRef]
- Nocker, A.; Sossa, K.E.; Camper, A.K. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J. Microbiol. Methods 2007, 70, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Elizaquível, P.; Sánchez, G.; Aznar, R. Quantitative detection of viable foodborne E. coli O157:H7, Listeria monocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control 2012, 25, 704–708. [Google Scholar] [CrossRef]
- Vendrame, M.; Iacumin, L.; Manzano, M.; Comi, G. Use of propidium monoazide for the enumeration of viable Oenococcus oeni in must and wine by quantitative PCR. Food Microbiol. 2013, 35, 49–57. [Google Scholar] [CrossRef]
- Shekar, A.; Babu, L.; Ramlal, S.; Sripathy, M.H.; Batra, H. Selective and concurrent detection of viable Salmonella spp., E. coli, Staphylococcus aureus, E. coli O157:H7, and Shigella spp., in low moisture food products by PMA-mPCR assay with internal amplification control. LWT 2017, 86, 586–593. [Google Scholar] [CrossRef]
- Li, F.; Li, F.; Chen, B.; Zhou, B.; Yu, P.; Yu, S.; Lai, W.; Xu, H. Sextuplex PCR combined with immunomagnetic separation and PMA treatment for rapid detection and specific identification of viable Salmonella spp., Salmonella enterica serovars Paratyphi B, Salmonella Typhimurium, and Salmonella Enteritidis in raw meat. Food Control 2017, 73, 587–594. [Google Scholar] [CrossRef]
- Fang, J.; Wu, Y.; Qu, D.; Ma, B.; Yu, X.; Zhang, M.; Han, J. Propidium monoazide real-time loop-mediated isothermal amplification for specific visualization of viable Salmonella in food. Lett. Appl. Microbiol. 2018, 67, 79–88. [Google Scholar] [CrossRef]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Sero-Typing of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- INMET IN de MEA. Gráficos. 2016. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inmet?r=home/page&page=rede_estacoes_auto_graf (accessed on 21 September 2024).
- Josefsen, M.H.; Löfström, C.; Hansen, T.B.; Christensen, L.S.; Olsen, J.E.; Hoorfar, J. Rapid Quantification of Viable Campylobacter Bacteria on Chicken Carcasses, Using Real-Time PCR and Propidium Monoazide Treatment, as a Tool for Quantitative Risk Assessment. Appl. Environ. Microbiol. 2010, 76, 5097–5104. [Google Scholar] [CrossRef]
- Rahn, K.; De Grandis, S.; Clarke, R.; McEwen, S.; Galán, J.; Ginocchio, C.; Curtiss, R.; Gyles, C. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 1992, 6, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, A.; Ram, S.; Vajpayee, P.; Singh, G.; Dwivedi, P.D.; Jain, S.K.; Shanker, R. Contamination of surface and potable water in South Asia by Salmonellae: Culture-independent quantification with molecular beacon real-time PCR. Sci. Total Environ. 2010, 408, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Svec, D.; Tichopad, A.; Novosadova, V.; Pfaffl, M.W.; Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 2015, 3, 9–16. [Google Scholar] [CrossRef]
- Rudi, K.; Naterstad, K.; Dromtorp, S.; Holo, H. Detection of viable and dead Listeria monocytogenes on gouda-like cheeses by real-time PCR. Lett. Appl. Microbiol. 2005, 40, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Molinos, A.C.; Abriouel, H.; Ben Omar, N.; Martinez-Canamero, M.; Gálvez, A. A Quantitative Real-time PCR Assay for Quantification of Viable Listeria Monocytogenes Cells After Bacteriocin Injury in Food-First Insights. Curr. Microbiol. 2010, 61, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Wolffs, P.; Norling, B.; Rådström, P. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells. J. Microbiol. Methods 2005, 60, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.-G.; Li, T.-P.; Jia, Y.-F.; Song, L.-F. Quantitative study of viable Vibrio parahaemolyticus cells in raw seafood using propidium monoazide in combination with quantitative PCR. J. Microbiol. Methods 2012, 90, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Jones, T.M.; Abd, S.J.; Danyluk, M.D.; Harris, L.J. Most-Probable-Number Determination of Salmonella Levels in Naturally Contaminated Raw Almonds Using Two Sample Preparation Methods. J. Food Prot. 2010, 73, 1986–1992. [Google Scholar] [CrossRef]
- Lehmacher, A.; Bockemühl, J.; Aleksic, S. Nationwide outbreak of human salmonellosis in Germany due to contaminated paprika and paprika-powdered potato chips. Epidemiol. Infect. 1995, 115, 501–511. [Google Scholar] [CrossRef]
- Werber, D.; Dreesman, J.; Feil, F.; van Treeck, U.; Fell, G.; Ethelberg, S.; Hauri, A.M.; Roggentin, P.; Prager, R.; Fisher, I.S.; et al. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infect. Dis. 2005, 5, 1–10. [Google Scholar] [CrossRef]
- Liang, T.; Long, H.; Zhan, Z.; Zhu, Y.; Kuang, P.; Mo, N.; Wang, Y.; Cui, S.; Wu, X. Simultaneous detection of viable Salmonella spp., Escherichia coli, and Staphylococcus aureus in bird’s nest, donkey-hide gelatin, and wolfberry using PMA with multiplex real-time quantitative PCR. Food Sci. Nutr. 2022, 10, 3165–3174. [Google Scholar] [CrossRef] [PubMed]
- Wesche, A.M.; Gurtler, J.B.; Marks, B.P.; Ryser, E.T. Stress, Sublethal Injury, Resuscitation, and Virulence of Bacterial Foodborne Pathogens. J. Food Prot. 2009, 72, 1121–1138. [Google Scholar] [CrossRef]
- Yáñez, M.A.; Nocker, A.; Soria-Soria, E.; Múrtula, R.; Martínez, L.; Catalán, V. Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR. J. Microbiol. Methods 2011, 85, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Barbau-Piednoir, E.; Mahillon, J.; Pillyser, J.; Coucke, W.; Roosens, N.H.; Botteldoorn, N. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. J. Microbiol. Methods 2014, 103, 131–137. [Google Scholar] [CrossRef]
- Liu, Y.; Mustapha, A. Detection of viable Escherichia coli O157:H7 in ground beef by propidium monoazide real-time PCR. Int. J. Food Microbiol. 2014, 170, 48–54. [Google Scholar] [CrossRef]
- Shylaja, R.; Murali, H.; Batra, H.; Bawa, A. A novel multiplex PCR system for the detection of staphylococcal enterotoxin B, tsst, nuc and fem genes of Staphylococcus aureus in food system. J. Food Saf. 2010, 30, 443–454. [Google Scholar] [CrossRef]
- Spector, M.P.; Kenyon, W.J. Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Res. Int. 2012, 45, 455–481. [Google Scholar] [CrossRef]
- Wang, G.; Nie, X.; Yang, L.; Liao, H. A comparative analysis of quantitative detection methods for viable food-borne pathogens using RT-qPCR and PMA-qPCR. Lett. Appl. Microbiol. 2023, 76, ovad120. [Google Scholar] [CrossRef] [PubMed]
Peanut Storage | Salmonella Typhimurium ATCC 14028 | ||||
---|---|---|---|---|---|
Quantification Method * | |||||
Ct qPCR | Predicted Log (Log cfu g−1) | Ct qPCR-PMA | Predicted Log (Log cfu g−1) | Culture Method | |
(Log cfu g−1) | |||||
Peanut brittle | 35.40 ± 3.75 | 2.8 a ± 1.1 | 39.64 ± 0.44 | 1.5 a ± 0.1 | Presence in 1 g (<1.0) |
Paçoca | 30.20 ± 0.95 | 4.4 a ± 0.3 | 40.69 ± 0.30 | 1.3 c ± 0.1 | 2.2 b ± 0.1 |
Pé-de-moça | 34.77 ± 0.36 | 3.0 ± 0.1 | >42.00 ± 0.00 | Undetectable | Absence in 1 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Hertwig, A.M.; Pereira, A.A.; Amorim Neto, D.P.; Nascimento, M.S. Quantification of Viable Salmonella by Propidium Monoazide Real-Time PCR After Long-Term Storage of Peanut Products. Microorganisms 2024, 12, 2640. https://doi.org/10.3390/microorganisms12122640
von Hertwig AM, Pereira AA, Amorim Neto DP, Nascimento MS. Quantification of Viable Salmonella by Propidium Monoazide Real-Time PCR After Long-Term Storage of Peanut Products. Microorganisms. 2024; 12(12):2640. https://doi.org/10.3390/microorganisms12122640
Chicago/Turabian Stylevon Hertwig, Aline M., André A. Pereira, Dionisio Pedro Amorim Neto, and Maristela S. Nascimento. 2024. "Quantification of Viable Salmonella by Propidium Monoazide Real-Time PCR After Long-Term Storage of Peanut Products" Microorganisms 12, no. 12: 2640. https://doi.org/10.3390/microorganisms12122640
APA Stylevon Hertwig, A. M., Pereira, A. A., Amorim Neto, D. P., & Nascimento, M. S. (2024). Quantification of Viable Salmonella by Propidium Monoazide Real-Time PCR After Long-Term Storage of Peanut Products. Microorganisms, 12(12), 2640. https://doi.org/10.3390/microorganisms12122640