West Nile Virus: An Update Focusing on Southern Europe
Abstract
:1. Introduction
2. Update in Phylogenetics and Epidemiology of West Nile Virus
3. Vector Competence and Transmission
4. Trends of West Nile Virus in Europe
5. Clinical Outbreaks in Southern Europe
5.1. Human Outbreaks
5.2. Other Mammals’ Outbreaks
5.3. Wild Birds’ Outbreaks
6. Comparison of European Situation with Other Regions
7. Current Diagnostic Tools
8. New Insights in Treatment and Disease Control
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ECDC (European Centre for Disease Prevention and Control). Surveillance, Prevention and Control of West Nile Virus and Usutu Virus Infections in the EU/EEA. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-prevention-and-control-west-nile-virus-and-usutu-virus-infections (accessed on 28 July 2024).
- Cuervo, P.F.; Artigas, P.; Mas-Coma, S.; Bargues, M.D. West Nile virus in Spain: Forecasting the geographical distribution of risky areas with an ecological niche modelling approach. Transbound. Emerg. Dis. 2021, 69, e1113–e1129. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Sepúlveda, P.; Gómez-Martín, B.; Agüero, M.; Jiménez-Clavero, M.Á.; Fernández-Pinero, J. A new cluster of West Nile virus lineage 1 isolated from a northern goshawk in Spain. Transbound. Emerg. Dis. 2021, 69, 3121–3127. [Google Scholar] [CrossRef] [PubMed]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. 1940, 20, 471–472. [Google Scholar] [CrossRef]
- Mcvey, D.S.; Wilson, W.C.; Gay, C.G. West Nile Virus. Rev. Sci. Tech. OIE 2015, 34, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Fall, G.; Di Paola, N.; Faye, M.; Dia, M.; De Melo Freire, C.C.; Loucoubar, C.; De Andrade Zanotto, P.M.; Faye, O.; Sall, A.A. Biological and Phylogenetic Characteristics of West African Lineages of West Nile Virus. PLoS Neglected Trop. Dis. 2017, 11, e0006078. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, J.; Brito, A.F.; Swetnam, D.M.; Vogels, C.B.F.; Tokarz, R.E.; Andersen, K.G.; Smith, R.C.; Bedford, T.; Grubaugh, N.D. Twenty Years of West Nile Virus Spread and Evolution in the Americas Visualized by Nextstrain. PLoS Pathog. 2019, 15, e1008042. [Google Scholar] [CrossRef] [PubMed]
- Chancey, C.; Grinev, A.; Volkova, E.; Rios, M. The Global Ecology and Epidemiology of West Nile Virus. BioMed Res. Int. 2015, 2015, 376230. [Google Scholar] [CrossRef]
- Athanasakopoulou, Z.; Sofia, M.; Skampardonis, V.; Giannakopoulos, A.; Birtsas, P.; Tsolakos, K.; Spyrou, V.; Chatzopoulos, D.C.; Satra, M.; Diamantopoulos, V.; et al. Indication of West Nile Virus (WNV) Lineage 2 Overwintering among Wild Birds in the Regions of Peloponnese and Western Greece. Vet. Sci. 2023, 10, 661. [Google Scholar] [CrossRef]
- David, S.; Abraham, A.M. Epidemiological and Clinical Aspects on West Nile Virus, a Globally Emerging Pathogen. Infect. Dis. 2016, 48, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Marra, P.P.; Grigging, S.; Caffrey, C.L.; Kilpatrick, A.M.; McLean, R.; Brand, C.; Saito, E.M.I.; Dupuis, P.; Kramer, L.; Novak, R. West Nile Virus and Wildlife. BioScience 2004, 54, 393–402. Available online: https://repository.si.edu/handle/10088/2930 (accessed on 28 July 2024). [CrossRef]
- Sule, W.F.; Oluwayelu, D.O.; Hernández-Triana, L.M.; Fooks, A.R.; Venter, M.; Johnson, N. Epidemiology and Ecology of West Nile Virus in Sub-Saharan Africa. Parasites Vectors 2018, 11, 414. [Google Scholar] [CrossRef]
- Ronca, S.E.; Ruff, J.C.; Murray, K.O. A 20-Year Historical Review of West Nile Virus since Its Initial Emergence in North America: Has West Nile Virus Become a Neglected Tropical Disease? PLoS Neglected Trop. Dis. 2021, 15, e0009190. [Google Scholar] [CrossRef] [PubMed]
- ECDC (European Centre for Disease Prevention and Control). Epidemiological Update: West Nile Virus Transmission Season in Europe. 2023. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2023-0 (accessed on 1 September 2024).
- Gonzálvez, M.; Franco, J.J.; Barbero-Moyano, J.; Caballero-Gómez, J.; Ruano, M.J.; Martínez, R.; Cano-Terriza, D.; García-Bocanegra, I. Monitoring the Epidemic of West Nile Virus in Equids in Spain, 2020–2021. Prev. Vet. Med. 2023, 217, 105975. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, A.; Bolzoni, L.; Chadwick, E.A.; Capelli, G.; Montarsi, F.; Grisenti, M.; De La Puente, J.M.; Muñoz, J.; Figuerola, J.; Soriguer, R.; et al. Understanding West Nile Virus Ecology in Europe: Culex Pipiens Host Feeding Preference in a Hotspot of Virus Emergence. Parasites Vectors 2015, 8, 213. [Google Scholar] [CrossRef]
- Ruiz-López, M.J.; Muñoz-Chimeno, M.; Figuerola, J.; Gavilán, A.M.; Varona, S.; Cuesta, I.; La Puente, J.M.-D.; Zaballos, Á.; Molero, F.; Soriguer, R.C.; et al. Genomic Analysis of West Nile Virus Lineage 1 Detected in Mosquitoes during the 2020–2021 Outbreaks in Andalusia, Spain. Viruses 2023, 15, 266. [Google Scholar] [CrossRef] [PubMed]
- Terrell, J.R.; Le, T.T.; Paul, A.; Brinton, M.A.; Wilson, W.D.; Poon, G.M.K.; Germann, M.W.; Siemer, J.L. Structure of an RNA G-Quadruplex from the West Nile Virus Genome. Nat. Commun. 2024, 15, 5428. [Google Scholar] [CrossRef]
- Sarkar, S.; Armitage, B.A. Targeting a Potential G-Quadruplex Forming Sequence Found in the West Nile Virus Genome by Complementary Gamma-Peptide Nucleic Acid Oligomers. ACS Infect. Dis. 2021, 7, 1445–1456. [Google Scholar] [CrossRef]
- Casimiro-Soriguer, C.S.; Perez-Florido, J.; Fernandez-Rueda, J.L.; Pedrosa-Corral, I.; Guillot-Sulay, V.; Lorusso, N.; Martinez-Gonzalez, L.J.; Navarro-Marí, J.M.; Dopazo, J.; Sanbonmatsu-Gámez, S. Phylogenetic Analysis of the 2020 West Nile Virus (WNV) Outbreak in Andalusia (Spain). Viruses 2021, 13, 836. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramírez, E.; Llorente, F.; Del Amo, J.; Fall, G.; Sall, A.A.; Lubisi, A.; Lecollinet, S.; Vázquez, A.; Jiménez-Clavero, M.Á. Pathogenicity Evaluation of Twelve West Nile Virus Strains Belonging to Four Lineages from Five Continents in a Mouse Model: Discrimination between Three Pathogenicity Categories. J. Gen. Virol. 2017, 98, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Sepúlveda, P.; Napp, S.; Llorente, F.; Solano-Manrique, C.; Molina-López, R.; Obón, E.; Solé, A.; Jiménez-Clavero, M.Á.; Fernández-Pinero, J.; Busquets, N. West Nile Virus Lineage 2 Spreads Westwards in Europe and Overwinters in North-Eastern Spain (2017–2020). Viruses 2022, 14, 569. [Google Scholar] [CrossRef] [PubMed]
- García-Bocanegra, I.; Belkhiria, J.; Napp, S.; Cano-Terriza, D.; Jiménez-Ruiz, S.; Martínez-López, B. Epidemiology and Spatio-Temporal Analysis of West Nile Virus in Horses in Spain between 2010 and 2016. Transbound. Emerg. Dis. 2017, 65, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Reisen, W.K. Present and Future Arboviral Threats. Antivir. Res. 2009, 85, 328–345. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Lühken, R.; Keller, M.; Cadar, D.; Van Der Grinten, E.; Michel, F.; Albrecht, K.; Eiden, M.; Rinder, M.; Lachmann, L.; et al. West Nile Virus Epizootic in Germany, 2018. Antivir. Res. 2018, 162, 39–43. [Google Scholar] [CrossRef]
- Moser, S.K.; Barnard, M.; Frantz, R.M.; Spencer, J.A.; Rodarte, K.A.; Crooker, I.K.; Bartlow, A.W.; Romero-Severson, E.; Manore, C.A. Scoping Review of Culex Mosquito Life History Trait Heterogeneity in Response to Temperature. Parasites Vectors 2023, 16, 200. [Google Scholar] [CrossRef]
- Marcantonio, M.; Rizzoli, A.; Metz, M.; Rosà, R.; Marini, G.; Chadwick, E.; Neteler, M. Identifying the Environmental Conditions Favouring West Nile Virus Outbreaks in Europe. PLoS ONE 2015, 10, e0121158. [Google Scholar] [CrossRef]
- Vogels, C.B.; Göertz, G.P.; Pijlman, G.P.; Koenraadt, C.J. Vector Competence of European Mosquitoes for West Nile Virus. Emerg. Microbes Infect. 2017, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ciota, A.T. West Nile Virus and Its Vectors. Curr. Opin. Insect Sci. 2017, 22, 28–36. [Google Scholar] [CrossRef]
- Rudolf, I.; Betášová, L.; Blažejová, H.; Venclíková, K.; Straková, P.; Šebesta, O.; Mendel, J.; Bakonyi, T.; Schaffner, F.; Nowotny, N.; et al. West Nile Virus in Overwintering Mosquitoes, Central Europe. Parasites Vectors 2017, 10, 452. [Google Scholar] [CrossRef]
- Cendejas, P.M.; Goodman, A.G. Vaccination and Control Methods of West Nile Virus Infection in Equids and Humans. Vaccines 2024, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Magallanes, S.; Llorente, F.; Ruiz-López, M.J.; La Puente, J.M.-D.; Soriguer, R.; Calderon, J.; Jimenez-Clavero, M.Á.; Aguilera-Sepúlveda, P.; Figuerola, J. Long-Term Serological Surveillance for West Nile and Usutu Virus in Horses in South-West Spain. One Health 2023, 17, 100578. [Google Scholar] [CrossRef] [PubMed]
- Macias, A.; Martín, P.; Pérez-Olmeda, M.; Fernández-Martínez, B.; Gómez-Barroso, D.; Fernández, E.; Ramos, J.M.; Herrero, L.; Rodríguez, S.; Delgado, E.; et al. West Nile Virus Emergence in Humans in Extremadura, Spain 2020. Front. Cell. Infect. Microbiol. 2023, 13, 1155867. [Google Scholar] [CrossRef]
- Calistri, P.; Giovannini, A.; Savini, G.; Monaco, F.; Bonfanti, L.; Ceolin, C.; Terregino, C.; Tamba, M.; Cordioli, P.; Lelli, R. West Nile Virus Transmission in 2008 in North-Eastern Italy. Zoonoses Public Health 2009, 57, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Emmerich, P.; Jakupi, X.; Sherifi, K.; Dreshaj, S.; Kalaveshi, A.; Hemmer, C.; Hajdari, D.P.; Von Possel, R.; Cadar, D.; Tomazatos, A. Serologic and Genomic Investigation of West Nile Virus in Kosovo. Viruses 2023, 16, 66. [Google Scholar] [CrossRef]
- Young, J.J.; Haussig, J.M.; Aberle, S.W.; Pervanidou, D.; Riccardo, F.; Sekulić, N.; Bakonyi, T.; Gossner, C.M. Epidemiology of Human West Nile Virus Infections in the European Union and European Union Enlargement Countries, 2010 to 2018. Eurosurveillance 2021, 26, 2001095. [Google Scholar] [CrossRef]
- Brugueras, S.; Fernández-Martínez, B.; La Puente, J.M.-D.; Figuerola, J.; Porro, T.M.; Rius, C.; Larrauri, A.; Gómez-Barroso, D. Environmental Drivers, Climate Change and Emergent Diseases Transmitted by Mosquitoes and Their Vectors in Southern Europe: A Systematic Review. Environ. Res. 2020, 191, 110038. [Google Scholar] [CrossRef] [PubMed]
- Giesen, C.; Herrador, Z.; Fernandez-Martinez, B.; Figuerola, J.; Gangoso, L.; Vazquez, A.; Gómez-Barroso, D. A Systematic Review of Environmental Factors Related to WNV Circulation in European and Mediterranean Countries. One Health 2023, 16, 100478. [Google Scholar] [CrossRef] [PubMed]
- Vilibic-Cavlek, T.; Petrovic, T.; Savic, V.; Barbic, L.; Tabain, I.; Stevanovic, V.; Klobucar, A.; Mrzljak, A.; Ilic, M.; Bogdanic, M.; et al. Epidemiology of Usutu Virus: The European Scenario. Pathogens 2020, 9, 699. [Google Scholar] [CrossRef]
- George, T.L.; Harrigan, R.J.; LaManna, J.A.; DeSante, D.F.; Saracco, J.F.; Smith, T.B. Persistent Impacts of West Nile Virus on North American Bird Populations. Proc. Natl. Acad. Sci. USA 2015, 112, 14290–14294. [Google Scholar] [CrossRef] [PubMed]
- López-Ruiz, N.; Del Carmen Montaño-Remacha, M.; Durán-Pla, E.; Pérez-Ruiz, M.; Navarro-Marí, J.M.; Salamanca-Rivera, C.; Miranda, B.; Oyonarte-Gómez, S.; Ruiz-Fernández, J. West Nile Virus Outbreak in Humans and Epidemiological Surveillance, West Andalusia, Spain, 2016. Eurosurveillance 2018, 23, 17–00261. [Google Scholar] [CrossRef]
- Busquets, N.; Laranjo-González, M.; Soler, M.; Nicolás, O.; Rivas, R.; Talavera, S.; Villalba, R.; Miguel, E.S.; Torner, N.; Aranda, C.; et al. Detection of West Nile Virus Lineage 2 in North-Eastern Spain (Catalonia). Transbound. Emerg. Dis. 2018, 66, 617–621. [Google Scholar] [CrossRef]
- Napp, S.; Petrić, D.; Busquets, N. West Nile Virus and Other Mosquito-Borne Viruses Present in Eastern Europe. Pathog. Glob. Health 2018, 112, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Barzon, L.; Pacenti, M.; Franchin, E.; Lavezzo, E.; Masi, G.; Squarzon, L.; Pagni, S.; Toppo, S.; Russo, F.; Cattai, M.; et al. Whole genome sequencing and phylogenetic analysis of West Nile virus lineage 1 and lineage 2 from human cases of infection, Italy, August 2013. Eurosurveillance 2013, 18, 20591. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, C.; Napoli, C.; Venturi, G.; Pupella, S.; Lombardini, L.; Calistri, P.; Monaco, F.; Cagarelli, R.; Angelini, P.; Bellini, R.; et al. West Nile virus transmission: Results from the integrated surveillance system in Italy, 2008 to 2015. Eurosurveillance 2016, 21, 30340. [Google Scholar] [CrossRef]
- Richter, J.; Tryfonos, C.; Tourvas, A.; Floridou, D.; Paphitou, N.I.; Christodoulou, C. Complete Genome sequence of West Nile virus (WNV) from the first human case of neuroinvasive WNV infection in Cyprus. Genome Announc. 2017, 5, 10–1128. [Google Scholar] [CrossRef]
- Lecollinet, S.; Pronost, S.; Coulpier, M.; Beck, C.; Gonzalez, G.; Leblond, A.; Tritz, P. Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe? Viruses 2019, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- ECDC (European Centre for Disease Prevention and Control). Epidemiological Update: West Nile Virus Transmission Season in Europe. 2020. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2020 (accessed on 31 July 2024).
- Rodríguez-Alarcón, L.G.S.M.; Fernández-Martínez, B.; Moros, M.J.S.; Vázquez, A.; Pachés, P.J.; Villacieros, E.G.; Martín, M.B.G.; Borras, J.F.; Lorusso, N.; Aceitero, J.M.R.; et al. Unprecedented Increase of West Nile Virus Neuroinvasive Disease, Spain, Summer 2020. Eurosurveillance 2021, 26, 2002010. [Google Scholar] [CrossRef]
- ECDC (European Centre for Disease Prevention and Control). Epidemiological Update: West Nile Virus Transmission Season in Europe. 2022. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2022 (accessed on 2 September 2024).
- Barzon, L.; Pacenti, M.; Ulbert, S.; Palù, G. Latest Developments and Challenges in the Diagnosis of Human West Nile Virus Infection. Expert Rev. Anti-Infect. Ther. 2015, 13, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Gervais, A.; Rovida, F.; Avanzini, M.A.; Croce, S.; Marchal, A.; Lin, S.-C.; Ferrari, A.; Thorball, C.W.; Constant, O.; Voyer, T.L.; et al. Autoantibodies Neutralizing Type I IFNs Underlie West Nile Virus Encephalitis in ∼40% of Patients. J. Exp. Med. 2023, 220, e20230661. [Google Scholar] [CrossRef] [PubMed]
- Konjevoda, S.; Dzelalija, B.; Canovic, S.; Pastar, Z.; Savic, V.; Tabain, I.; Barbic, L.; Peric, L.; Sabadi, D.; Stevanovic, V.; et al. West Nile Virus Retinitis in a Patient with Neuroinvasive Disease. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190065. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.; Sánchez-Seco, M.P.; Campelo, C.; De Ory, F.; Martin, O.; Herrero, L.; Béliz, O.J.S.; Minguito, T.; Campos, M.C.; Molero, F.; et al. Imported Human West Nile Virus Lineage 2 Infection in Spain: Neurological and Gastrointestinal Complications. Viruses 2020, 12, 156. [Google Scholar] [CrossRef] [PubMed]
- Carson, P.J.; Konewko, P.; Wold, K.S.; Mariani, P.; Goli, S.; Bergloff, P.; Crosby, R.D. Long-Term Clinical and Neuropsychological Outcomes of West Nile Virus Infection. Clin. Infect. Dis. 2006, 43, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Sejvar, J.J. The Long-Term Outcomes of Human West Nile Virus Infection. Clin. Infect. Dis. 2007, 44, 1617–1624. [Google Scholar] [CrossRef]
- Humblet, M.; Vandeputte, S.; Fecher-Bourgeois, F.; Leonard, P.; Gosset, C.; Balenghien, T.; Durand, B.; Saegerman, C. Estimating the Economic Impact of a Possible Equine and Human Epidemic of West Nile Virus Infection in Belgium. Eurosurveillance 2016, 21, 30309. [Google Scholar] [CrossRef] [PubMed]
- Piron, M.; Plasencia, A.; Fleta-Soriano, E.; Martinez, A.; Martinez, J.P.; Torner, N.; Sauleda, S.; Meyerhans, A.; Escalé, J.; Trilla, A.; et al. Low Seroprevalence of West Nile Virus in Blood Donors from Catalonia, Spain. Vector-Borne Zoonotic Dis. 2015, 15, 782–784. [Google Scholar] [CrossRef] [PubMed]
- Lustig, Y.; Sofer, D.; Bucris, E.D.; Mendelson, E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front. Microbiol. 2018, 9, 2421. [Google Scholar] [CrossRef]
- Jimenez, R.C.G.; Lieshout-Krikke, R.W.; Janssen, M.P. West Nile Virus and Blood Transfusion Safety: A European Perspective. Vox Sang. 2021, 116, 1094–1101. [Google Scholar] [CrossRef]
- García-Bocanegra, I.; Paniagua, J.; Gutiérrez-Guzmán, A.V.; Lecollinet, S.; Boadella, M.; Arenas-Montes, A.; Cano-Terriza, D.; Lowenski, S.; Gortázar, C.; Höfle, U. Spatio-Temporal Trends and Risk Factors Affecting West Nile Virus and Related Flavivirus Exposure in Spanish Wild Ruminants. BMC Vet. Res. 2016, 12, 249. [Google Scholar] [CrossRef]
- Garcia-Bocanegra, I.; Jurado-Tarifa, E.; Cano-Terriza, D.; Martinez, R.; Perez-Marin, J.E.; Lecollinet, S. Exposure to West Nile Virus and Tick-Borne Encephalitis Virus in Dogs in Spain. Transbound. Emerg. Dis. 2018, 65, 765–772. [Google Scholar] [CrossRef]
- Cavalleri, J.V.; Korbacska-Kutasi, O.; Leblond, A.; Paillot, R.; Pusterla, N.; Steinmann, E.; Tomlinson, J. European College of Equine Internal Medicine Consensus Statement on Equine Flaviviridae Infections in Europe. J. Vet. Intern. Med. 2022, 36, 1858–1871. [Google Scholar] [CrossRef]
- Williams, R.A.J.; Valencia, H.A.C.; Márquez, I.L.; González, F.G.; Llorente, F.; Jiménez-Clavero, M.Á.; Busquets, N.; Barrientos, M.M.; Ortiz-Díez, G.; Santiago, T.A. West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain. Vet. Sci. 2024, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Autorino, G.L.; Battisti, A.; Deubel, V.; Ferrari, G.; Forletta, R.; Giovannini, A.; Lelli, R.; Murri, S.; Scicluna, M.T. West Nile virus epidemic in horses, Tuscany region, Italy. Emerg. Infect. Dis. 2002, 8, 1372. [Google Scholar] [CrossRef] [PubMed]
- Monaco, F.; Lelli, R.; Teodori, L.; Pinoni, C.; Di Gennaro, A.; Polci, A.; Calistri, P.; Savini, G. Re-emergence of West Nile virus in Italy. Zoonoses Public Health 2010, 57, 476–486. [Google Scholar] [CrossRef]
- Defilippo, F.; Dottori, M.; Lelli, D.; Chiari, M.; Cereda, D.; Farioli, M.; Chianese, R.; Cerioli, M.P.; Faccin, F.; Canziani, S.; et al. Assessment of the costs related to West Nile virus monitoring in Lombardy region (Italy) between 2014 and 2018. Int. J. Environ. Res. Public Health 2022, 19, 5541. [Google Scholar] [CrossRef]
- ECDC (European Centre for Disease Prevention and Control). Epidemiological Update: West Nile Virus Transmission Season in Europe. 2024. Available online: https://www.ecdc.europa.eu/en/infectious-disease-topics/west-nile-virus-infection/surveillance-and-disease-data/monthly-updates (accessed on 4 December 2024).
- Fiebre del Nilo Occidental. Available online: https://www.mapa.gob.es/es/ganaderia/temas/sanidad-animal-higiene-ganadera/sanidad-animal/enfermedades/fiebre-nilo-occidental/F_O_Nilo.aspx (accessed on 10 September 2024).
- Guerrero-Carvajal, F.; Bravo-Barriga, D.; Martín-Cuervo, M.; Aguilera-Sepúlveda, P.; Ferraguti, M.; Jiménez-Clavero, M.Á.; Llorente, F.; Alonso, J.M.; Frontera, E. Serological Evidence of Co-circulation of West Nile and Usutu Viruses in Equids from Western Spain. Transbound. Emerg. Dis. 2020, 68, 1432–1444. [Google Scholar] [CrossRef]
- García-Carrasco, J.-M.; Muñoz, A.-R.; Olivero, J.; Segura, M.; García-Bocanegra, I.; Real, R. West Nile Virus in the Iberian Peninsula: Using Equine Cases to Identify High-Risk Areas for Humans. Eurosurveillance 2023, 28, 2200844. [Google Scholar] [CrossRef]
- Venter, M.; Steyl, J.; Human, S.; Weyer, J.; Zaayman, D.; Blumberg, L.; Leman, P.A.; Paweska, J.; Swanepoel, R. Transmission of West Nile Virus during Horse Autopsy. Emerg. Infect. Dis. 2010, 16, 573–575. [Google Scholar] [CrossRef]
- Vidaña, B.; Busquets, N.; Napp, S.; Pérez-Ramírez, E.; Jiménez-Clavero, M.Á.; Johnson, N. The Role of Birds of Prey in West Nile Virus Epidemiology. Vaccines 2020, 8, 550. [Google Scholar] [CrossRef]
- Bravo-Barriga, D.; Aguilera-Sepúlveda, P.; Guerrero-Carvajal, F.; Llorente, F.; Reina, D.; Pérez-Martín, J.E.; Jiménez-Clavero, M.Á.; Frontera, E. West Nile and Usutu Virus Infections in Wild Birds Admitted to Rehabilitation Centres in Extremadura, Western Spain, 2017–2019. Vet. Microbiol. 2021, 255, 109020. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Bergmann, F.; Fischer, D.; Müller, K.; Holicki, C.M.; Sadeghi, B.; Sieg, M.; Keller, M.; Schwehn, R.; Reuschel, M.; et al. Spread of West Nile Virus and Usutu Virus in the German Bird Population, 2019–2020. Microorganisms 2022, 10, 807. [Google Scholar] [CrossRef] [PubMed]
- Figuerola, J.; Jiménez-Clavero, M.Á.; Ruíz-López, M.J.; Llorente, F.; Ruiz, S.; Hoefer, A.; Aguilera-Sepúlveda, P.; Jiménez-Peñuela, J.; García-Ruiz, O.; Herrero, L.; et al. A One Health View of the West Nile Virus Outbreak in Andalusia (Spain) in 2020. Emerg. Microbes Infect. 2022, 11, 2570–2578. [Google Scholar] [CrossRef] [PubMed]
- Erdélyi, K.; Ursu, K.; Ferenczi, E.; Szeredi, L.; Rátz, F.; Skáre, J.; Bakonyi, T. Clinical and Pathologic Features of Lineage 2 West Nile Virus Infections in Birds of Prey in Hungary. Vector-Borne Zoonotic Dis. 2007, 7, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Gray, T.; Webb, C.E. A Review of the Epidemiological and Clinical Aspects of West Nile Virus. Int. J. Gen. Med. 2014, 7, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Valiakos, G.; Touloudi, A.; Athanasiou, L.V.; Giannakopoulos, A.; Iacovakis, C.; Birtsas, P.; Spyrou, V.; Dalabiras, Z.; Petrovska, L.; Billinis, C. Serological and molecular investigation into the role of wild birds in the epidemiology of West Nile virus in Greece. Virol. J. 2012, 9, 266. [Google Scholar] [CrossRef] [PubMed]
- Sofia, M.; Giannakopoulos, A.; Giantsis, I.A.; Touloudi, A.; Birtsas, P.; Papageorgiou, K.; Athanasakopoulu, Z.; Chatzopoulos, D.C.; Vrioni, G.; Galamatis, D.; et al. West Nile virus occurrence and ecological niche modeling in wild bird species and mosquito vectors: An active surveillance program in the Peloponnese region of Greece. Microorganisms 2022, 10, 1328. [Google Scholar] [CrossRef] [PubMed]
- Michel, F.; Fischer, D.; Eiden, M.; Fast, C.; Reuschel, M.; Müller, K.; Rinder, M.; Urbaniak, S.; Brandes, F.; Schwehn, R.; et al. West Nile Virus and Usutu Virus Monitoring of Wild Birds in Germany. Int. J. Environ. Res. Public Health 2018, 15, 171. [Google Scholar] [CrossRef]
- Alba, A.; Allepuz, A.; Napp, S.; Soler, M.; Selga, I.; Aranda, C.; Casal, J.; Pages, N.; Hayes, E.B.; Busquets, N. Ecological Surveillance for West Nile in Catalonia (Spain), Learning from a Five-Year Period of Follow-up. Zoonoses Public Health 2013, 61, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Guía sobre Vigilancia Sanitaria en Fauna Silvestre. Ministerio de Agricultura, Pesca y Alimentación (MAPA). Available online: https://www.mapa.gob.es/va/ganaderia/temas/sanidad-animal-higiene-ganadera/guiavigilanciasanitariafaunasilvestre_tcm39-511596.PDF (accessed on 14 September 2024).
- McLean, R.G.; Ubico, S.R.; Bourne, D.; Komar, N. West Nile Virus in Livestock and Wildlife. Curr. Top. Microbiol. Immunol. 2002, 267, 271–308. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Clavero, M.Á. Animal Viral Diseases and Global Change: Bluetongue and West Nile Fever as Paradigms. Front. Genet. 2012, 3, 105. [Google Scholar] [CrossRef] [PubMed]
- Medrouh, B.; Lafri, I.; Beck, C.; Leulmi, H.; Akkou, M.; Abbad, L.; Lafri, M.; Bitam, I.; Lecollinet, S. First Serological Evidence of West Nile Virus Infection in Wild Birds in Northern Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101415. [Google Scholar] [CrossRef] [PubMed]
- Egizi, A.M.; Farajollahi, A.; Fonseca, D.M. Diverse Host Feeding on Nesting Birds May Limit Early-Season West Nile Virus Amplification. Vector-Borne Zoonotic Dis. 2014, 14, 447–453. [Google Scholar] [CrossRef]
- La Puente, J.M.-D.; Ferraguti, M.; Ruiz, S.; Roiz, D.; Llorente, F.; Pérez-Ramírez, E.; Jiménez-Clavero, M.Á.; Soriguer, R.; Figuerola, J. Mosquito Community Influences West Nile Virus Seroprevalence in Wild Birds: Implications for the Risk of Spillover into Human Populations. Sci. Rep. 2018, 8, 2599. [Google Scholar] [CrossRef]
- Georgopoulou, I.; Tsiouris, V. The potential role of migratory birds in the transmission of zoonoses. Vet. Ital. 2008, 44, 671–677. [Google Scholar] [PubMed]
- Mencattelli, G.; Ndione, M.H.D.; Rosà, R.; Marini, G.; Diagne, C.T.; Diagne, M.M.; Fall, G.; Faye, O.; Diallo, M.; Faye, O.; et al. Epidemiology of West Nile virus in Africa: An underestimated threat. PLoS Neglected Trop. Dis. 2022, 16, e0010075. [Google Scholar] [CrossRef]
- Ndione, M.H.D.; Ndiaye, E.H.; Faye, M.; Diagne, M.M.; Diallo, D.; Diallo, A.; Sall, A.A.; Loucoubar, C.; Faye, O.; Diallo, M.; et al. Re-introduction of West Nile virus lineage 1 in Senegal from Europe and subsequent circulation in human and mosquito populations between 2012 and 2021. Viruses 2022, 14, 2720. [Google Scholar] [CrossRef]
- Fall, G.; Diallo, M.; Loucoubar, C.; Faye, O.; Sall, A.A. Vector competence of Culex neavei and Culex quinquefasciatus (Diptera: Culicidae) from Senegal for lineages 1, 2, Koutango and a putative new lineage of West Nile virus. Am. J. Trop. Med. Hyg. 2014, 90, 747. [Google Scholar] [CrossRef]
- Fros, J.J.; Geertsema, C.; Vogels, C.B.; Roosjen, P.P.; Failloux, A.B.; Vlak, J.M.; Koenraadt, C.J.; Takken, W.; Pijlman, G.P. West Nile virus: High transmission rate in north-western European mosquitoes indicates its epidemic potential and warrants increased surveillance. PLoS Neglected Trop. Dis. 2015, 9, e0003956. [Google Scholar] [CrossRef]
- Fiacre, L.; Pagès, N.; Albina, E.; Richardson, J.; Lecollinet, S.; Gonzalez, G. Molecular determinants of West Nile virus virulence and pathogenesis in vertebrate and invertebrate hosts. Int. J. Mol. Sci. 2020, 21, 9117. [Google Scholar] [CrossRef]
- Lwande, O.W.; Lutomiah, J.; Obanda, V.; Gakuya, F.; Mutisya, J.; Mulwa, F.; Michuki, G.; Chepkorir, E.; Fischer, A.; Venter, M.; et al. Isolation of tick and mosquito-borne arboviruses from ticks sampled from livestock and wild animal hosts in Ijara District, Kenya. Vector-Borne Zoonotic Dis. 2013, 13, 637–642. [Google Scholar] [CrossRef]
- Hubálek, Z.; Halouzka, J. West Nile fever--a reemerging mosquito-borne viral disease in Europe. Emerg. Infect. Dis. 1999, 5, 643. [Google Scholar] [CrossRef]
- Taylor, R.M.; Work, T.H.; Hurlbut, H.S.; Rizk, F. A study of the ecology of West Nile virus in Egypt. Am. J. Trop. Med. Hyg. 1956, 5, 579–620. [Google Scholar] [CrossRef]
- Maquart, M.; Boyer, S.; Rakotoharinome, V.M.; Ravaomanana, J.; Tantely, M.L.; Heraud, J.M.; Cardinale, E. High prevalence of West Nile virus in domestic birds and detection in 2 new mosquito species in Madagascar. PLoS ONE 2016, 11, e0147589. [Google Scholar] [CrossRef] [PubMed]
- Venter, M.; Pretorius, M.; Fuller, J.A.; Botha, E.; Rakgotho, M.; Stivaktas, V.; Weyer, C.; Romito, M.; Williams, J. West Nile virus lineage 2 in horses and other animals with neurologic disease, South Africa, 2008–2015. Emerg. Infect. Dis. 2017, 23, 2060. [Google Scholar] [CrossRef] [PubMed]
- Mostashari, F.; Bunning, M.L.; Kitsutani, P.T.; Singer, D.A.; Nash, D.; Cooper, M.J.; Katz, N.; Liljebjelke, K.A.; Biggerstaff, B.J.; Fine, A.D.; et al. Epidemic West Nile encephalitis, New York, 1999: Results of a household-based seroepidemiological survey. Lancet 2001, 358, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Komar, N. West Nile virus: Epidemiology and ecology in North America. Adv. Virus Res. 2003, 61, 185–234. [Google Scholar] [CrossRef] [PubMed]
- LaDeau, S.L.; Kilpatrick, A.M.; Marra, P.P. West Nile virus emergence and large-scale declines of North American bird populations. Nature 2007, 447, 710–713. [Google Scholar] [CrossRef] [PubMed]
- CDC (Centers for Disease Control and Prevention). Outbreak of West Nile-like viral encephalitis—New York, 1999. Morb. Mortal. Wkly. Rep. 1999, 48, 845–849. [Google Scholar] [PubMed]
- Eidson, M.; Komar, N.; Sorhage, F.; Nelson, R.; Talbot, T.; Mostashari, F.; McLean, R.; West Nile Virus Avian Mortality Surveillance Group. Crow deaths as a sentinel surveillance system for West Nile virus in the northeastern United States, 1999. Emerg. Infect. Dis. 2001, 7, 615. [Google Scholar] [CrossRef]
- Nielsen, C.F.; Armijos, M.V.; Wheeler, S.; Carpenter, T.E.; Boyce, W.M.; Kelley, K.; Brown, D.; Scott, T.W.; Reisen, W.K. Risk factors associated with human infection during the 2006 West Nile virus outbreak in Davis, a residential community in northern California. Am. J. Trop. Med. Hyg. 2008, 78, 53. [Google Scholar] [CrossRef]
- Murray, K.O.; Mertens, E.; Desprès, P. West Nile virus and its emergence in the United States of America. Vet. Res. 2010, 41, 67. [Google Scholar] [CrossRef] [PubMed]
- Castro-Jorge, L.A.D.; Siconelli, M.J.L.; Ribeiro, B.D.S.; Moraes, F.M.D.; Moraes, J.B.D.; Agostinho, M.R.; Klein, T.M.; Floriano, V.G.; Fonseca, B.A.L.D. West Nile virus infections are here! Are we prepared to face another flavivirus epidemic? Rev. Soc. Bras. Med. Trop. 2019, 52, e20190089. [Google Scholar] [CrossRef]
- Elizondo-Quiroga, D.; Elizondo-Quiroga, A. West Nile virus and its theories, a big puzzle in Mexico and Latin America. J. Glob. Infect. Dis. 2013, 5, 168–175. [Google Scholar] [CrossRef]
- Gubler, D.J. The continuing spread of West Nile virus in the western hemisphere. Clin. Infect. Dis. 2007, 45, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Keesing, F.; Ostfeld, R.S. Dilution effects in disease ecology. Ecol. Lett. 2021, 24, 2490–2505. [Google Scholar] [CrossRef]
- ECDC (European Centre for Disease Prevention and Control) Factsheet About West Nile Virus Infection. Available online: https://www.ecdc.europa.eu/en/west-nile-fever/facts (accessed on 12 September 2024).
- Nagy, A.; Bán, E.; Nagy, O.; Ferenczi, E.; Farkas, Á.; Bányai, K.; Farkas, S.; Takács, M. Detection and Sequencing of West Nile Virus RNA from Human Urine and Serum Samples during the 2014 Seasonal Period. Arch. Virol. 2016, 161, 1797–1806. [Google Scholar] [CrossRef]
- Nath, A.; Tyler, K.L. Novel Approaches and Challenges to Treatment of Central Nervous System Viral Infections. Ann. Neurol. 2013, 74, 412–422. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, Y.; Wang, H.; Qiu, B.; Cao, Z.; Li, Q.; Zhang, Y.; Yan, F.; Jin, H.; Wang, T.; et al. Equine Immunoglobulin and Equine Neutralizing F(Ab′)2 Protect Mice from West Nile Virus Infection. Viruses 2016, 8, 332. [Google Scholar] [CrossRef] [PubMed]
- Gould, C.V.; Staples, J.E.; Huang, C.Y.H.; Brault, A.C.; Nett, R.J. Combating West Nile Virus Disease—Time to Revisit Vaccination. N. Engl. J. Med. 2023, 388, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, C.; Ruiz, M.; McLafferty, S. Mosquito politics: Local vector control policies and the spread of West Nile Virus in the Chicago region. Health Place 2010, 16, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Baz, M.M.; Selim, A.M.; Radwan, I.T.; Alkhaibari, A.M.; Gattan, H.S.; Alruhaili, M.H.; Alasmari, S.M.; Gad, M.E. Evaluating Larvicidal, Ovicidal and Growth Inhibiting Activity of Five Medicinal Plant Extracts on Culex Pipiens (Diptera: Culicidae), the West Nile Virus Vector. Sci. Rep. 2024, 14, 19660. [Google Scholar] [CrossRef]
- EMCA (European Mosquito Control Association); WHO (World Health Organization). Guidelines for the Control of Mosquitoes of Public Health Importance in Europe. 2011. Available online: https://www.emca-online.eu/assets/PDFs/EMCA_WHOEURO-Guidelines_Control_Mosquitoes_PH_Importance_Europe-2013.pdf (accessed on 10 September 2024).
- Chaskopoulou, A.; L’Ambert, G.; Petric, D.; Bellini, R.; Zgomba, M.; Groen, T.A.; Marrama, L.; Bicout, D.J. Ecology of West Nile virus across four European countries: Review of weather profiles, vector population dynamics and vector control response. Parasites Vectors 2016, 9, 482. [Google Scholar] [CrossRef]
- Bellini, R.; Zeller, H.; Van Bortel, W. A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe. Parasites Vectors 2014, 7, 323. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, W.A.; Nurjadi, D.; Velavan, T.P. Addressing the rise of autochthonous vector-borne diseases in a warming Europe. Int. J. Infect. Dis. 2024, 149, 107275. [Google Scholar] [CrossRef]
- Odigie, A.E.; Stufano, A.; Schino, V.; Zarea, A.A.K.; Ndiana, L.A.; Mrenoshki, D.; Ugochukwu, I.C.I.; Lovreglio, P.; Greco, G.; Pratelli, A.; et al. West Nile Virus Infection in Occupational Settings—A Systematic Review. Pathogens 2024, 13, 157. [Google Scholar] [CrossRef] [PubMed]
- Faverjon, C.; Vial, F.; Andersson, M.G.; Lecollinet, S.; Leblond, A. Early Detection of West Nile Virus in France: Quantitative Assessment of Syndromic Surveillance System Using Nervous Signs in Horses. Epidemiol. Infect. 2016, 145, 1044–1057. [Google Scholar] [CrossRef] [PubMed]
Lineage | Clade | Distribution | Hosts | Observations | References |
---|---|---|---|---|---|
1 | 1a | Global | Birds, mammals, and arthropods | [5,7,9,10,11,13,16] | |
1b | Oceania | Birds, mammals, and arthropods | Also named Kunjin virus | [5,7,9,10,11,13,16] | |
2 | Sub-Saharan Africa, Europe | Birds, mammals, and arthropods | [5,7,8,9,10,11,13,16] | ||
3 | Czech Republic | Arthropods | Also named Rabensburg virus | [6,8,9] | |
4 | 4a | Russia | Amphibians and arthropods | Also named Krasnodar virus | [6,8,9] |
5 | India | Birds, mammals, and arthropods | Potential clade 1c | [6,8,9] | |
6 | Spain | Mosquitoes | Potential clade 4b | [6,8,9] | |
7 | Senegal | Rodents and arthropods | Also named Koutango virus | [6,8,9] | |
8 | Senegal | [6,8,9] | |||
9 | Austria | Mosquitoes | Potential clade 4c | [6,8,9] |
European Countries | Outbreaks in 2022 | Outbreaks in 2023 | Outbreaks in 2024 |
---|---|---|---|
Austria | 1 | 1 | 54 |
Croatia | 0 | 0 | 8 |
Czechia | 33 | 0 | 0 |
France | 9 | 44 | 79 |
Germany | 17 | 14 | 174 |
Greece | 12 | 0 | 3 |
Hungary | 0 | 26 | 41 |
Italy | 82 | 25 | 34 |
Poland | 0 | 0 | 6 |
Portugal | 3 | 5 | 17 |
Spain | 9 | 38 | 67 |
TOTAL | 166 | 153 | 483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco, L.; Utrilla, M.J.; Fuentes-Romero, B.; Fernandez-Novo, A.; Martin-Maldonado, B. West Nile Virus: An Update Focusing on Southern Europe. Microorganisms 2024, 12, 2623. https://doi.org/10.3390/microorganisms12122623
Carrasco L, Utrilla MJ, Fuentes-Romero B, Fernandez-Novo A, Martin-Maldonado B. West Nile Virus: An Update Focusing on Southern Europe. Microorganisms. 2024; 12(12):2623. https://doi.org/10.3390/microorganisms12122623
Chicago/Turabian StyleCarrasco, Lara, Maria Jose Utrilla, Beatriz Fuentes-Romero, Aitor Fernandez-Novo, and Barbara Martin-Maldonado. 2024. "West Nile Virus: An Update Focusing on Southern Europe" Microorganisms 12, no. 12: 2623. https://doi.org/10.3390/microorganisms12122623
APA StyleCarrasco, L., Utrilla, M. J., Fuentes-Romero, B., Fernandez-Novo, A., & Martin-Maldonado, B. (2024). West Nile Virus: An Update Focusing on Southern Europe. Microorganisms, 12(12), 2623. https://doi.org/10.3390/microorganisms12122623