Optimizing Poultry Nutrition to Combat Salmonella: Insights from the Literature
Abstract
1. Introduction
2. Use of Probiotics to Combat Salmonella in Poultry
3. Use of Prebiotics to Combat Salmonella in Poultry
4. Use of Organic Acids to Combat Salmonella in Poultry
5. Use of Phytochemicals to Combat Salmonella in Poultry
6. Effect of Phytochemicals on Immune Response in Poultry
7. Synergistic Effects of Nutritional Interventions for Salmonella Control
8. Challenges and Future Directions
9. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramirez-Hernandez, A.; Bugarel, M.; Kumar, S.; Thippareddi, H.; Brashears, M.M.; Sanchez-Plata, M.X. Phenotypic and Genotypic Characterization of Antimicrobial Resistance in Salmonella Strains Isolated from Chicken Carcasses and Parts Collected at Different Stages during Processing. J. Food Prot. 2019, 82, 1793–1801. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K. Some Aspects of Control of Salmonella Infection in Poultry for Minimising Contamination in the Food Chain. Worlds Poult. Sci. J. 2014, 70, 519–530. [Google Scholar] [CrossRef]
- Machado Junior, P.C.; Chung, C.; Hagerman, A. Modeling Salmonella Spread in Broiler Production: Identifying Determinants and Control Strategies. Front. Vet. Sci. 2020, 7, 564. [Google Scholar] [CrossRef]
- Raut, R.; Maharjan, P.; Fouladkhah, A.C. Practical Preventive Considerations for Reducing the Public Health Burden of Poultry-Related Salmonellosis. Int. J. Environ. Res. Public Health 2023, 20, 6654. [Google Scholar] [CrossRef] [PubMed]
- Tellez, G.; Bielke, L.R.; Hargis, B.M. Alternative Strategies for Salmonella Control in Poultry. In Salmonella—A Dangerous Foodborne Pathogen; InTech: Rijeka, Croatia, 2012; ISBN 9789533077826. [Google Scholar]
- Boiko, O.; Garkavenko, T.; Musiiets, I.; Nedosekov, V.; Kozytska, T. Salmonellosis in Ukraine: An Analysis of Food Products Contamination, Salmonella Transmission, and Serovar Diversity during 2012–2023. Ger. J. Vet. Res. 2024, 4, 65–74. [Google Scholar] [CrossRef]
- Hu, L.; Li, B. Recent and the Latest Developments in Rapid and Efficient Detection of Salmonella in Food and Water. Adv. Tech. Biol. Med. 2017, 5, 1000244. [Google Scholar] [CrossRef]
- Moon, Y.-J.; Lee, S.-Y.; Oh, S.-W. A Review of Isothermal Amplification Methods and Food-Origin Inhibitors against Detecting Food-Borne Pathogens. Foods 2022, 11, 322. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, 521–547. [Google Scholar] [CrossRef]
- Lopes, V.C.; Wedel, S.D.; Bender, J.B.; Smith, K.E.; Leano, F.T.; Boxrud, D.J.; Lauer, D.C.; Velayudhan, B.T.; Nagaraja, K.V. Emergence of Multidrug-Resistant Salmonella enterica Serotype Newport in Minnesota. Clin. Infect. Dis. 2006, 43, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Biagini, L.; Galosi, L.; Roncarati, A.; Attili, A.-R.; Mangiaterra, S.; Rossi, G. The Role of Nutraceuticals and Phytonutrients in Chickens’ Gastrointestinal Diseases. Animals 2022, 12, 892. [Google Scholar] [CrossRef] [PubMed]
- Bueno, D.J.; Latorre, J.D.; Shehata, A.A.; Eisenreich, W.; Tellez, G. Strategies to Attack Pathogenic Avian Microorganisms: From Probiotics to Postbiotics. Ger. J. Vet. Res. 2024, 4, 95–118. [Google Scholar] [CrossRef]
- Nair, D.V.; Venkitanarayanan, K.; Kollanoor Johny, A. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018, 7, 167. [Google Scholar] [CrossRef]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef]
- Fujiwara, K.; Yamazaki, M.; Abe, H.; Nakashima, K.; Yakabe, Y.; Otsuka, M.; Ohbayashi, Y.; Kato, Y.; Namai, K.; Toyoda, A.; et al. Effect of Bacillus Subtilis Var. Natto Fermented Soybean on Growth Performance, Microbial Activity in the Caeca and Cytokine Gene Expression of Domestic Meat Type Chickens. J. Poult. Sci. 2009, 46, 116–122. [Google Scholar] [CrossRef]
- Hoepers, P.G.; Nunes, P.L.F.; Almeida-Souza, H.O.; Martins, M.M.; Carvalho, R.D.d.O.; Dreyer, C.T.; Aburjaile, F.F.; Sommerfeld, S.; Azevedo, V.; Fonseca, B.B. Harnessing Probiotics Capability to Combat Salmonella Heidelberg and Improve Intestinal Health in Broilers. Poult. Sci. 2024, 103, 103739. [Google Scholar] [CrossRef]
- Shao, Y.; Zhen, W.; Guo, F.; Hu, Z.; Zhang, K.; Kong, L.; Guo, Y.; Wang, Z. Pretreatment with Probiotics Enterococcus faecium NCIMB 11181 Attenuated Salmonella Typhimurium-Induced Gut Injury through Modulating Intestinal Microbiome and Immune Responses with Barrier Function in Broiler Chickens. J. Anim. Sci. Biotechnol. 2022, 13, 130. [Google Scholar] [CrossRef]
- Wu, H.; Ding, C.; Ma, X.; Gao, Z.; Liu, S.; Liu, B.; Song, S. Microencapsulate Probiotics (MP) Promote Growth Performance and Inhibit Inflammatory Response in Broilers Challenged with Salmonella Typhimurium. Probiotics Antimicrob. Proteins 2024, 16, 623–635. [Google Scholar] [CrossRef]
- Enan, G.; Amen, S.; El-Badiea, A.A.; Abd El-Hack, M.E.; Abdel-Shafi, S. The Pathogen Inhibition Effects of Probiotics and Prebiotics against Salmonella spp. in Chicken. Ann. Anim. Sci. 2023, 23, 537–544. [Google Scholar] [CrossRef]
- Šefcová, M.A.; Ortega-Paredes, D.; Larrea-Álvarez, C.M.; Mina, I.; Guapás, V.; Ayala-Velasteguí, D.; Leoro-Garzón, P.; Molina-Cuasapaz, G.; Vinueza-Burgos, C.; Revajová, V.; et al. Effects of Lactobacillus Fermentum Administration on Intestinal Morphometry and Antibody Serum Levels in Salmonella-Infantis-Challenged Chickens. Microorganisms 2023, 11, 256. [Google Scholar] [CrossRef]
- Limmaneevichitr, J. Probiotics as Antibiotic Alternatives for Salmonella Control in Poultry Industry. Preprints 2023. [Google Scholar] [CrossRef]
- Peng, X.; Ed-Dra, A.; Song, Y.; Elbediwi, M.; Nambiar, R.B.; Zhou, X.; Yue, M. Lacticaseibacillus Rhamnosus Alleviates Intestinal Inflammation and Promotes Microbiota-Mediated Protection against Salmonella Fatal Infections. Front. Immunol. 2022, 13, 973224. [Google Scholar] [CrossRef]
- Dixon, B.; Kilonzo-Nthenge, A.; Nzomo, M.; Bhogoju, S.; Nahashon, S. Evaluation of Selected Bacteria and Yeast for Probiotic Potential in Poultry Production. Microorganisms 2022, 10, 676. [Google Scholar] [CrossRef]
- Xu, Y.B.; Li, D.L.; Ding, X.Q.; Wang, Y.Y.; Liang, S.; Xie, L.Y.; Zhang, Y.F.; Fu, A.K.; Yu, W.Q.; Zhan, X.A. Probiotic Characterization and Comparison of Broiler-Derived Lactobacillus Strains Based on Technique for Order Preference by Similarity to Ideal Solution Analysis. Poult. Sci. 2023, 102, 102564. [Google Scholar] [CrossRef]
- Moretti, A.F.; Gamba, R.; De Antoni, G.; Peláez, Á.L.; Golowczyc, M.A. Probiotic Characterization of Indigenous Lactic Acid Bacteria Isolates from Chickens to Be Used as Biocontrol Agents in Poultry Industry. J. Food Process. Preserv. 2022, 46, e17145. [Google Scholar] [CrossRef]
- Getabalew, M.; Alemneh, T.; Zewdie, D. Overview on Probiotics and Their Impact in Commercial Poultry Production. Microbiol. Res. Int. 2020, 8, 43–50. [Google Scholar]
- Mazanko, M.S.; Gorlov, I.F.; Prazdnova, E.V.; Makarenko, M.S.; Usatov, A.V.; Bren, A.B.; Chistyakov, V.A.; Tutelyan, A.V.; Komarova, Z.B.; Mosolova, N.I.; et al. Bacillus Probiotic Supplementations Improve Laying Performance, Egg Quality, Hatching of Laying Hens, and Sperm Quality of Roosters. Probiotics Antimicrob. Proteins 2018, 10, 367–373. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Sachan, S.; Karthik, K.; Dhama, K. The Use of Probiotics as Eco-Friendly Alternatives for Antibiotics in Poultry Nutrition. Environ. Sci. Pollut. Res. 2018, 25, 10611–10618. [Google Scholar] [CrossRef]
- Rocha, T.M.; Andrade, M.A.; e Souza, E.S.; Stringhini, J.H.; Café, M.B.; e Rezende, C.S.M.; Pôrto, R.N.G. Performance and Intestinal Health of Broilers Inoculated with Nalidixic Acid-Resistant Salmonella Typhimurium and Treated with Organic Acids. Rev. Bras. De Zootec. 2011, 40, 2776–2782. [Google Scholar] [CrossRef]
- Revolledo, L.; Ferreira, A.J.P.; Mead, G.C. Prospects in Salmonella Control: Competitive Exclusion, Probiotics, and Enhancement of Avian Intestinal Immunity. J. Appl. Poult. Res. 2006, 15, 341–351. [Google Scholar] [CrossRef]
- Richards, P.J.; Almutrafy, A.; Liang, L.; Flaujac Lafontaine, G.M.; King, E.; Fish, N.M.; Connerton, A.J.; Connerton, P.L.; Connerton, I.F. Prebiotic Galactooligosaccharide Feed Modifies the Chicken Gut Microbiota to Efficiently Clear Salmonella. mSystems 2024, 9, e0075424. [Google Scholar] [CrossRef]
- Tarabees, R.; Shehata, A.A.; Allam, T.S.; Dawood, A.; EL-Sayed, M.S.A.; Gaber, M. Effects of Probiotics and Prebiotics and Their Combinations on Growth Performance and Intestinal Microbiota of Broilers Infected with Mixed Salmonellae. Alex. J. Vet. Sci. 2023, 77, 12–20. [Google Scholar] [CrossRef]
- Morgan, N.K. Advances in Prebiotics for Poultry: Role of the Caeca and Oligosaccharides. Anim. Prod. Sci. 2023, 63, 1911–1925. [Google Scholar] [CrossRef]
- Castro, C.; Niknafs, S.; Gonzalez-Ortiz, G.; Tan, X.; Bedford, M.R.; Roura, E. Dietary Xylo-Oligosaccharides and Arabinoxylans Improved Growth Efficiency by Reducing Gut Epithelial Cell Turnover in Broiler Chickens. J. Anim. Sci. Biotechnol. 2024, 15, 35. [Google Scholar] [CrossRef]
- Ivanishcheva, A.P. The Use of Prebiotics Based on Oligo- and Disaccharides in Poultry Farming—A Mini Review. Agric. Biol. 2023, 58, 609–621. [Google Scholar] [CrossRef]
- Ferrocino, I.; Biasato, I.; Dabbou, S.; Colombino, E.; Rantsiou, K.; Squara, S.; Gariglio, M.; Capucchio, M.T.; Gasco, L.; Cordero, C.E.; et al. Lactiplantibacillus Plantarum, Lactiplantibacillus Pentosus and Inulin Meal Inclusion Boost the Metagenomic Function of Broiler Chickens. Anim. Microbiome 2023, 5, 36. [Google Scholar] [CrossRef]
- Mazanko, M.; Prazdnova, E.; Statsenko, V.; Bren, A.; Rudoy, D.; Maltseva, T.; Chistyakov, V.; Chikindas, M. Oil Cakes of Essential Oil Plants as a Source of Prebiotics for Poultry Production. Agriculture 2023, 13, 591. [Google Scholar] [CrossRef]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic Acids as Antimicrobials to Control Salmonella in Meat and Poultry Products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, L.; Guo, F.; Huang, J.; Qiao, J.; Bi, R.; Huang, J.; Zhang, K.; Guo, Y.; Wang, Z. Dietary Supplemental Coated Essential Oils and Organic Acids Mixture Improves Growth Performance and Gut Health along with Reduces Salmonella Load of Broiler Chickens Infected with Salmonella Enteritidis. J. Anim. Sci. Biotechnol. 2023, 14, 95. [Google Scholar] [CrossRef]
- Sausen, L.; Signor Mendes, A.; Refatti Sikorski, R.; Uliana, R. de F.; Ferreira Zago, C.H.; Trevisan, L.R.; Evangelista Guimarães, B. Use of Organic Acid Blends to Control Spread of Salmonella Heidelberg in Broilers. Med. Vet. (UFRPE) 2022, 16, 49–58. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, H.J.; Ismail, A.; Sethukali, A.K.; Park, D.; Baek, K.H.; Jo, C. Effect of Plasma-Activated Organic Acids on Different Chicken Cuts Inoculated with Salmonella Typhimurium and Campylobacter Jejuni and Their Antioxidant Activity. Poult. Sci. 2023, 102, 103126. [Google Scholar] [CrossRef]
- Reham, A.-W.; Mervat, E.; Amina, E.-A.; Soad, E.-S. Effect of Some Organic Acids on Salmonella Typhimurium in Chicken Meat. Assiut Vet. Med. J. 2023, 69, 112–121. [Google Scholar] [CrossRef]
- da Costa, F.K.C.; Carciofi, B.A.M.; de Aragão, G.M.F.; Ienczak, J.L. Modeling the Influence of Propionic Acid Concentration and PH on the Kinetics of Salmonella Typhimurium. Int. J. Food Microbiol. 2024, 416, 110662. [Google Scholar] [CrossRef] [PubMed]
- El Baaboua, A.; El Maadoudi, M.; Bouyahya, A.; Belmehdi, O.; Kounnoun, A.; Zahli, R.; Abrini, J. Evaluation of Antimicrobial Activity of Four Organic Acids Used in Chicks Feed to Control Salmonella Typhimurium: Suggestion of Amendment in the Search Standard. Int. J. Microbiol. 2018, 2018, 7352593. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C.; Dittoe, D.K.; Richardson, K.E. Formic Acid as an Antimicrobial for Poultry Production: A Review. Front. Vet. Sci. 2020, 7, 563. [Google Scholar] [CrossRef] [PubMed]
- Wessels, K.; Rip, D.; Gouws, P. Salmonella in Chicken Meat: Consumption, Outbreaks, Characteristics, Current Control Methods and the Potential of Bacteriophage Use. Foods 2021, 10, 1742. [Google Scholar] [CrossRef] [PubMed]
- Almuzaini, A.M. Phytochemicals: Potential Alternative Strategy to Fight Salmonella Enterica Serovar Typhimurium. Front. Vet. Sci. 2023, 10, 1188752. [Google Scholar] [CrossRef]
- Sirsat, S.A.; Muthaiyan, A.; Ricke, S.C. Antimicrobials for Foodborne Pathogen Reduction in Organic and Natural Poultry Production. J. Appl. Poult. Res. 2009, 18, 379–388. [Google Scholar] [CrossRef]
- Micciche, A.; Rothrock, M.J.; Yang, Y.; Ricke, S.C. Essential Oils as an Intervention Strategy to Reduce Campylobacter in Poultry Production: A Review. Front. Microbiol. 2019, 10, 1058. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Abd El-Mageed, T.A.; Soliman, S.M.; Khafaga, A.F.; Swelum, A.A.; Ahmed, A.E.; Alshammari, F.A.; Abd El-Hack, M.E. The Control of Poultry Salmonellosis Using Organic Agents: An Updated Overview. Poult. Sci. 2022, 101, 101716. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.R.; Wu, S.; Xiao, Y.Q.; He, Q.; Shi, S.R. The Dietary Combination of Essential Oils and Organic Acids Reduces Salmonella Enteritidis in Challenged Chicks. Poult. Sci. 2019, 98, 6349–6355. [Google Scholar] [CrossRef]
- Brenes, A.; Roura, E. Essential Oils in Poultry Nutrition: Main Effects and Modes of Action. Anim. Feed. Sci. Technol. 2010, 158, 1–14. [Google Scholar] [CrossRef]
- Low, W.; Kenward, K.; Britland, S.T.; Amin, M.C.; Martin, C. Essential Oils and Metal Ions as Alternative Antimicrobial Agents: A Focus on Tea Tree Oil and Silver. Int. Wound J. 2017, 14, 369–384. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential Oil and Aromatic Plants as Feed Additives in Non-Ruminant Nutrition: A Review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar] [CrossRef]
- Yilmaz, E.; Gul, M. Effects of Essential Oils on Heat-stressed Poultry: A Review. J. Anim. Physiol. Anim. Nutr. 2024, 108, 1481–1497. [Google Scholar] [CrossRef]
- Dos Santos, C.V.; De Souza, M.M.; Feitosa, A.J.G.; Bandeira, D.M.; Canton, A.G.; Mallmann, A.P.; De Souza, J.G.d.L.; Pinto, F.G.d.S. Phytochemical Determination and Antimicrobial Activity of Plant Extracts from Cinnamomum Amoenum (Ness) Kosterm. (Lauraceae) against Salmonella spp. of Poultry Importance. Contrib. A Las Cienc. Soc. 2023, 16, 29308–29322. [Google Scholar] [CrossRef]
- Thomas, R.; Singha, S.; Bharadwaj, D.; Kumar, A.; Gupta, V.K. In Silico Evaluation of Phytochemicals Present in Bambusa polymorpha and Citrus limon Extracts against Salmonella enteric Typhimurium Combined with in Vitro Antimicrobial and Acidic Stress Responsive Studies. J. Food Saf. 2023, 43, e13074. [Google Scholar] [CrossRef]
- Alvarado-Martinez, Z.; Tabashsum, Z.; Aditya, A.; Suh, G.; Wall, M.; Hshieh, K.; Biswas, D. Purified Plant-Derived Phenolic Acids Inhibit Salmonella Typhimurium without Alteration of Microbiota in a Simulated Chicken Cecum Condition. Microorganisms 2023, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Al-Mnaser, A.; Dakheel, M.; Alkandari, F.; Woodward, M. Polyphenolic Phytochemicals as Natural Feed Additives to Control Bacterial Pathogens in the Chicken Gut. Arch. Microbiol. 2022, 204, 253. [Google Scholar] [CrossRef]
- Iwiński, H.; Wódz, K.; Chodkowska, K.; Nowak, T.; Różański, H. In Vitro Evaluation of Antimicrobial Effect of Phytobiotics Mixture on Salmonella spp. Isolated from Chicken Broiler. Antibiotics 2022, 11, 868. [Google Scholar] [CrossRef]
- Wang, W.; Li, T.; Chen, J.; Ye, Y. Inhibition of Salmonella Enteritidis by Essential Oil Components and the Effect of Storage on the Quality of Chicken. Foods 2023, 12, 2560. [Google Scholar] [CrossRef]
- Kogut, M.H. Impact of Nutrition on the Innate Immune Response to Infection in Poultry. J. Appl. Poult. Res. 2009, 18, 111–124. [Google Scholar] [CrossRef]
- Santos, T.T.d.; Dassi, S.C.; Franco, C.R.C.; Costa, C.R.V.d.; Lee, S.A.; Fisher da Silva, A.V. Influence of Fibre and Betaine on Development of the Gastrointestinal Tract of Broilers between Hatch and 14 d of Age. Anim. Nutr. 2019, 5, 163–173. [Google Scholar] [CrossRef]
- Norajit, K.; Ryu, G.-H. Inhibitory Effect of Plant Extracts on Salmonella spp. In Salmonella—A Dangerous Foodborne Pathogen; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Qadri, H.; Shah, A.H.; Mir, M. Novel Strategies to Combat the Emerging Drug Resistance in Human Pathogenic Microbes. Curr. Drug Targets 2021, 22, 1424–1436. [Google Scholar] [CrossRef] [PubMed]
- Darre, M.J.; Kollanoor-Johny, A.; Venkitanarayanan, K.; Upadhyaya, I. Practical Implications of Plant-Derived Antimicrobials in Poultry Diets for the Control of Salmonella Enteritidis. J. Appl. Poult. Res. 2014, 23, 340–344. [Google Scholar] [CrossRef]
- Kimminau, E.A.; Karnezos, T.P.; Girgis, G. Applied Research Note: Combination of Probiotic and Prebiotic Impacts Salmonella Enteritidis Infection in Layer Pullets. J. Appl. Poult. Res. 2022, 31, 100286. [Google Scholar] [CrossRef]
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef]
- Aune, D.; Rosenblatt, D.A.; Chan, D.S.; Vieira, A.R.; Vieira, R.; Greenwood, D.C.; Vatten, L.J.; Norat, T. Dairy Products, Calcium, and Prostate Cancer Risk: A Systematic Review and Meta-Analysis of Cohort Studies. Am. J. Clin. Nutr. 2015, 101, 87–117. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, F.; Lopez, M.; Martinez, S.; Megias, M.D.; Catala, P.; Madrid, J. Effect of Low-Protein Diets and Single Sex on Production Performance, Plasma Metabolites, Digestibility, and Nitrogen Excretion in 1- to 48-Day-Old Broilers. Poult. Sci. 2012, 91, 683–692. [Google Scholar] [CrossRef]
- Shehata, A.A.; Attia, Y.; Khafaga, A.F.; Farooq, M.Z.; El-Seedi, H.R.; Eisenreich, W.; Tellez-Isaias, G. Restoring Healthy Gut Microbiome in Poultry Using Alternative Feed Additives with Particular Attention to Phytogenic Substances: Challenges and Prospects. Ger. J. Vet. Res. 2022, 2, 32–42. [Google Scholar] [CrossRef]
Probiotics | Effects | References |
---|---|---|
Lactobacillus | Lactobacillus plantarum and Lactobacillus reuteri are noted for their high survivability in gastrointestinal conditions and antimicrobial properties against pathogens like Salmonella. | [23,24] |
Bifidobacterium | Bifidobacterium longum has shown significant attachment to the intestinal mucosa and inhibition of pathogenic microbes. | [23] |
Enterococcus | Enterococcus durans has been characterized for its potential as a probiotic candidate, demonstrating resistance to gastrointestinal conditions. | [25] |
Saccharomyces | Saccharomyces boulardii is recognized for its ability to survive under various pH levels and bile concentrations. | [23] |
Bacillus | Bacillus strains are commonly included in poultry diets for their growth-promoting effects. | [26] |
Bacillus amyloliquefaciens are root-colonizing biocontrol bacteria utilized to combat plant root pathogens in agriculture, aquaculture, and hydroponics. They also promote gut health and improve growth performance. | [27] | |
Bacillus subtilis are found in the soil and the gastrointestinal tract of ruminants and humans, play a role in enhancing laying performance and help the immune system and gut health. | [27] | |
Streptococcus faecium bacteria inhabit the gastrointestinal tracts of humans and other mammals and improve immune functions. | [28] |
Prebiotics | Effects | References |
---|---|---|
Oligosaccharides | Fructo-oligosaccharides (FOS): Derived from plants, they stimulate beneficial bacteria in the gut. | [33] |
Xylo-oligosaccharides (XOS): Xylo-oligosaccharides (XOS) are known to have a prebiotic effect that supports the growth of a healthy microbiota, making them one of the most widely used oligosaccharides in the poultry industry. | [34] | |
Galacto-oligosaccharides (GOS): Known for their ability to enhance gut health. | [33] | |
Mannooligosaccharides (MOS): Sourced from yeast, they support the growth of beneficial gut flora. | [35] | |
Inulin | A type of fructan that promotes the growth of beneficial bacteria and improves nutrient absorption. | [35,36] |
Lactulose | A synthetic disaccharide that enhances the growth of lactobacilli and bifidobacteria, improving gut health. | [35] |
Other | Psyllium seeds and apple fibre have also shown prebiotic properties. | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeem, M.; Bourassa, D. Optimizing Poultry Nutrition to Combat Salmonella: Insights from the Literature. Microorganisms 2024, 12, 2612. https://doi.org/10.3390/microorganisms12122612
Naeem M, Bourassa D. Optimizing Poultry Nutrition to Combat Salmonella: Insights from the Literature. Microorganisms. 2024; 12(12):2612. https://doi.org/10.3390/microorganisms12122612
Chicago/Turabian StyleNaeem, Muhammad, and Dianna Bourassa. 2024. "Optimizing Poultry Nutrition to Combat Salmonella: Insights from the Literature" Microorganisms 12, no. 12: 2612. https://doi.org/10.3390/microorganisms12122612
APA StyleNaeem, M., & Bourassa, D. (2024). Optimizing Poultry Nutrition to Combat Salmonella: Insights from the Literature. Microorganisms, 12(12), 2612. https://doi.org/10.3390/microorganisms12122612