Antiproliferative and Morphological Analysis Triggered by Drugs Contained in the Medicines for Malaria Venture COVID-Box Against Toxoplasma gondii Tachyzoites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs and Compounds of COVID-Box
2.2. Parasites
2.3. Antiproliferative Assays Against Tachyzoite Stage
2.4. Cytotoxicity Assay in NHDF Cell
2.5. Druggability Analysis of Drugs and Compounds
2.6. Twenty-Four Hours Antiproliferative Assay
2.7. Transmission Electron Microscopy (TEM)
2.8. Immunofluorescence Microscopy
2.9. Statistical Analysis
3. Results
3.1. Drugs of COVID-Box Showed High Activity and Selectivity Against T. gondii Tachyzoites
3.2. COVID-Box Drugs Show Potential Oral Druggability
3.3. Twenty-Four-Hour Antiproliferative Assay
3.4. Analysis of the Effect of the Drugs and Compounds of COVID-Box on the Parasite Morphology by Transmission Electron Microscopy (TEM) and Fluorescence Microscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bigna, J.J.; Tochie, J.N.; Tounouga, D.N.; Bekolo, A.O.; Ymele, N.S.; Youda, E.L.; Sime, P.S.; Nansseu, J.R. Global, Regional, and Country Seroprevalence of Toxoplasma gondii in Pregnant Women: A Systematic Review, Modelling and Meta-Analysis. Sci. Rep. 2020, 10, 12102. [Google Scholar] [CrossRef] [PubMed]
- Robert-Gangneux, F.; Dardé, M.-L. Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clin. Microbiol. Rev. 2012, 25, 264–296. [Google Scholar] [CrossRef] [PubMed]
- Zangerle, R.; Allerberger, F.; Pohl, P.; Fritsch, P.; Dierich, M.P. High Risk of Developing Toxoplasmic Encephalitis in AIDS Patients Seropositive to Toxoplasma gondii. Med. Microbiol. Immunol. 1991, 180, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos-Santos, D.V.; Machado Azevedo, D.O.; Campos, W.R.; Oréfice, F.; Queiroz-Andrade, G.M.; Carellos, É.V.M.; Castro Romanelli, R.M.; Januário, J.N.; Resende, L.M.; Martins-Filho, O.A. Congenital Toxoplasmosis in Southeastern Brazil: Results of Early Ophthalmologic Examination of a Large Cohort of Neonates. Ophthalmology 2009, 116, 2199–2205.e1. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.E. Is Ocular Toxoplasmosis Caused by Prenatal or Postnatal Infection? Br. J. Ophthalmol. 2000, 84, 224–226. [Google Scholar] [CrossRef]
- Gilbert, R.E.; Freeman, K.; Lago, E.G.; Bahia-Oliveira, L.M.G.; Tan, H.K.; Wallon, M.; Buffolano, W.; Stanford, M.R.; Petersen, E. For the European Multicentre Study on Congenital Toxoplasmosis (EMSCOT) Ocular Sequelae of Congenital Toxoplasmosis in Brazil Compared with Europe. PLoS Negl. Trop. Dis. 2008, 2, e277. [Google Scholar] [CrossRef]
- Jones, J.L.; Lopez, A.; Wilson, M.; Schulkin, J.; Gibbs, R. Congenital Toxoplasmosis: A Review. Obstet. Gynecol. Surv. 2001, 56, 296–305. [Google Scholar] [CrossRef]
- Diesel, A.A.; Zachia, S.D.A.; Müller, A.L.L.; Perez, A.V.; Uberti, F.A.D.F.; Magalhães, J.A.D.A. Follow-up of Toxoplasmosis during Pregnancy: Ten-Year Experience in a University Hospital in Southern Brazil. Rev. Bras. Ginecol. Obs. 2019, 41, 539–547. [Google Scholar] [CrossRef]
- Dunay, I.R.; Gajurel, K.; Dhakal, R.; Liesenfeld, O.; Montoya, J.G. Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. Clin. Microbiol. Rev. 2018, 31, e00057-17. [Google Scholar] [CrossRef]
- Neville, A.J.; Zach, S.J.; Wang, X.; Larson, J.J.; Judge, A.K.; Davis, L.A.; Vennerstrom, J.L.; Davis, P.H. Clinically Available Medicines Demonstrating Anti-Toxoplasma Activity. Antimicrob. Agents Chemother. 2015, 59, 7161–7169. [Google Scholar] [CrossRef]
- Silva, L.A.; Reis-Cunha, J.L.; Bartholomeu, D.C.; Vítor, R.W.A. Genetic Polymorphisms and Phenotypic Profiles of Sulfadiazine-Resistant and Sensitive Toxoplasma gondii Isolates Obtained from Newborns with Congenital Toxoplasmosis in Minas Gerais, Brazil. PLoS ONE 2017, 12, e0170689. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.A.; Fernandes, M.D.; Machado, A.S.; Reis-Cunha, J.L.; Bartholomeu, D.C.; Almeida Vitor, R.W. Efficacy of Sulfadiazine and Pyrimetamine for Treatment of Experimental Toxoplasmosis with Strains Obtained from Human Cases of Congenital Disease in Brazil. Exp. Parasitol. 2019, 202, 7–14. [Google Scholar] [CrossRef] [PubMed]
- De Lima Bessa, G.; Vitor, R.W.D.A.; Lobo, L.M.S.; Rêgo, W.M.F.; De Souza, G.C.A.; Lopes, R.E.N.; Costa, J.G.L.; Martins-Duarte, E.S. In Vitro and in Vivo Susceptibility to Sulfadiazine and Pyrimethamine of Toxoplasma gondii Strains Isolated from Brazilian Free Wild Birds. Sci. Rep. 2023, 13, 7359. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef]
- Jourdan, J.-P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug Repositioning: A Brief Overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [Google Scholar] [CrossRef]
- Boyom, F.F.; Fokou, P.V.T.; Tchokouaha, L.R.Y.; Spangenberg, T.; Mfopa, A.N.; Kouipou, R.M.T.; Mbouna, C.J.; Donfack, V.F.D.; Zollo, P.H.A. Repurposing the Open Access Malaria Box To Discover Potent Inhibitors of Toxoplasma gondii and Entamoeba histolytica. Antimicrob. Agents Chemother. 2014, 58, 5848–5854. [Google Scholar] [CrossRef]
- Subramanian, G.; Belekar, M.A.; Shukla, A.; Tong, J.X.; Sinha, A.; Chu, T.T.T.; Kulkarni, A.S.; Preiser, P.R.; Reddy, D.S.; Tan, K.S.W.; et al. Targeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules. mSphere 2018, 3, e00534-17. [Google Scholar] [CrossRef]
- Varberg, J.M.; LaFavers, K.A.; Arrizabalaga, G.; Sullivan, W.J. Characterization of Plasmodium Atg3-Atg8 Interaction Inhibitors Identifies Novel Alternative Mechanisms of Action in Toxoplasma gondii. Antimicrob. Agents Chemother. 2018, 62, e01489-17. [Google Scholar] [CrossRef]
- Spalenka, J.; Escotte-Binet, S.; Bakiri, A.; Hubert, J.; Renault, J.-H.; Velard, F.; Duchateau, S.; Aubert, D.; Huguenin, A.; Villena, I. Discovery of New Inhibitors of Toxoplasma gondii via the Pathogen Box. Antimicrob. Agents Chemother. 2018, 62, e01640-17. [Google Scholar] [CrossRef]
- Radke, J.B.; Burrows, J.N.; Goldberg, D.E.; Sibley, L.D. Evaluation of Current and Emerging Antimalarial Medicines for Inhibition of Toxoplasma gondii Growth in Vitro. ACS Infect. Dis. 2018, 4, 1264–1274. [Google Scholar] [CrossRef]
- Dos Santos, M.; Oliveira Costa, A.L.; De Souza Vaz, G.H.; De Souza , G.C.A.; De Almeida Vitor , R.W.; Martins-Duarte, É.S. Medicines for Malaria Venture Pandemic Box In Vitro Screening Identifies Compounds Highly Active against the Tachyzoite Stage of Toxoplasma gondii. Trop. Med. Infect. Dis. 2023, 8, 510. [Google Scholar] [CrossRef]
- Dos Santos, B.R.; Ramos, A.B.D.S.B.; De Menezes, R.P.B.; Scotti, M.T.; Colombo, F.A.; Marques, M.J.; Reimão, J.Q. Anti- Toxoplasma gondii Screening of MMV Pandemic Response Box and Evaluation of RWJ-67657 Efficacy in Chronically Infected Mice. Parasitology 2023, 150, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Barltrop, J.A.; Owen, T.C.; Cory, A.H.; Cory, J.G. 5-(3-Carboxymethoxyphenyl)-2-(4,5-Dimethylthiazolyl)-3-(4-Sulfophenyl)Tetrazolium, Inner Salt (MTS) and Related Analogs of 3-(4,5-Dimethylthiazolyl)-2,5-Diphenyltetrazolium Bromide (MTT) Reducing to Purple Water-Soluble Formazans As Cell-Viability Indicators. Bioorganic Med. Chem. Lett. 1991, 1, 611–614. [Google Scholar] [CrossRef]
- Martins-Duarte, E.S.; de Araujo Portes, J.; de Araujo Portes, J.; da Silva, R.B.; Pires, H.S.; Garden, S.J.; de Souza, W. In Vitro Activity of N-Phenyl-1,10-Phenanthroline-2-Amines against Tachyzoites and Bradyzoites of Toxoplasma gondii. Bioorganic Med. Chem. 2021, 50, 116467. [Google Scholar] [CrossRef]
- De Araújo Jorge, T.C.; de Souza, W. Effect of Carbohydrates, Periodate and Enzymes in the Process of Endocytosis of Trypanosoma Cruzi by Macrophages. Acta Trop. 1984, 41, 17–28. [Google Scholar]
- Martins-Duarte, E.S.; Dubar, F.; Lawton, P.; França Da Silva, C.; Soeiro, M.D.N.C.; De Souza, W.; Biot, C.; Vommaro, R.C. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii. PLoS ONE 2015, 10, e0125705. [Google Scholar] [CrossRef]
- Cajazeiro, D.C.; Toledo, P.P.M.; De Sousa, N.F.; Scotti, M.T.; Reimão, J.Q. Drug Repurposing Based on Protozoan Proteome: In Vitro Evaluation of In Silico Screened Compounds against Toxoplasma gondii. Pharmaceutics 2022, 14, 1634. [Google Scholar] [CrossRef]
- Martins-Duarte, É.D.S.; De Souza, W.; Vommaro, R.C. Itraconazole Affects Toxoplasma gondii Endodyogeny. FEMS Microbiol. Lett. 2008, 282, 290–298. [Google Scholar] [CrossRef]
- Martins-Duarte, É.S.; Lemgruber, L.; De Souza, W.; Vommaro, R.C. Toxoplasma gondii: Fluconazole and Itraconazole Activity against Toxoplasmosis in a Murine Model. Exp. Parasitol. 2010, 124, 466–469. [Google Scholar] [CrossRef]
- Chang, H.R.; Comte, R.; Pechère, J.C. In Vitro and in Vivo Effects of Doxycycline on Toxoplasma gondii. Antimicrob. Agents Chemother. 1990, 34, 775–780. [Google Scholar] [CrossRef]
- McCabe, R.E.; Luft, B.J.; Remington, J.S. The Effects of Vyclosporine on Toxoplasma gondii In Vivo and In Vitro. Transplantation 1986, 41, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, A.J.; Drozda, A.A.; Blader, I.J. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth. mSphere 2016, 1, e00042-15. [Google Scholar] [CrossRef]
- Adeyemi, O.S.; Atolani, O.; Awakan, O.J.; Olaolu, D.; Nwonuma, C.O.; Alejolowo, O.; Otohinoyi, D.A.; Rotimi, D.; Owolabi, A.; Batiha, G.E.-S. In Vitro Screening to Identify Anti-Toxoplasma Compounds and In Silico Modeling for Bioactivities and Toxicity. Yale J. Biol. Med. 2019, 92, 369–383. [Google Scholar] [PubMed]
- Dos Santos, B.R.; Ramos, A.B.D.S.B.; De Menezes, R.P.B.; Scotti, M.T.; Colombo, F.A.; Marques, M.J.; Reimão, J.Q. Repurposing the Medicines for Malaria Venture’s COVID Box to Discover Potent Inhibitors of Toxoplasma gondii, and In Vivo Efficacy Evaluation of Almitrine Bismesylate (MMV1804175) in Chronically Infected Mice. PLoS ONE 2023, 18, e0288335. [Google Scholar] [CrossRef]
- Zhang, J.L.; Si, H.F.; Shang, X.F.; Zhang, X.K.; Li, B.; Zhou, X.Z.; Zhang, J.Y. New Life for an Old Drug: In Vitro and in Vivo Effects of the Anthelmintic Drug Niclosamide against Toxoplasma gondii RH Strain. Int. J. Parasitol. Drugs Drug Resist. 2019, 9, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Gurnett, A.M.; Dulski, P.M.; Darkin-Rattray, S.J.; Carrington, M.J.; Schmatz, D.M. Selective Labeling of Intracellular Parasite Proteins by Using Ricin. Proc. Natl. Acad. Sci. USA 1995, 92, 2388–2392. [Google Scholar] [CrossRef]
- Bilgin, M.; Yildirim, T.; Hokelek, M. In Vitro Effects ofIvermectin and Sulphadiazine on Toxoplasma gondii. Balk. Med. J. 2013, 30, 19–22. [Google Scholar] [CrossRef]
- Shang, F.-F.; Wang, M.-Y.; Ai, J.-P.; Shen, Q.-K.; Guo, H.-Y.; Jin, C.-M.; Chen, F.-E.; Quan, Z.-S.; Jin, L.; Zhang, C. Synthesis and Evaluation of Mycophenolic Acid Derivatives as Potential Anti-Toxoplasma gondii Agents. Med. Chem. Res. 2021, 30, 2228–2239. [Google Scholar] [CrossRef]
- Castro-Elizalde, K.N.; Hernández-Contreras, P.; Ramírez-Flores, C.J.; González-Pozos, S.; Gómez De León, C.T.; Mondragón-Castelán, M.; Mondragón-Flores, R. Mycophenolic Acid Induces Differentiation of Toxoplasma gondii RH Strain Tachyzoites into Bradyzoites and Formation of Cyst-like Structure in Vitro. Parasitol. Res. 2018, 117, 547–563. [Google Scholar] [CrossRef]
- Garrison, E.M.; Arrizabalaga, G. Disruption of a Mitochondrial MutS DNA Repair Enzyme Homologue Confers Drug Resistance in the Parasite Toxoplasma gondii. Mol. Microbiol. 2009, 72, 425–441. [Google Scholar] [CrossRef]
- Egawa, Y.; Oshima, S.; Umezawa, S. Studies on Cycloheximide-Related Compounds. I Esters of Cycloheximide and Their Antitoxoplasmic Activity. J. Antibiot. Ser. A 1965, 18, 171–174. [Google Scholar]
- Beckers, C.J.; Roos, D.S.; Donald, R.G.; Luft, B.J.; Schwab, J.C.; Cao, Y.; Joiner, K.A. Inhibition of Cytoplasmic and Organellar Protein Synthesis in Toxoplasma gondii. Implications for the Target of Macrolide Antibiotics. J. Clin. Investig. 1995, 95, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Fichera, M.E.; Bhopale, M.K.; Roos, D.S. In Vitro Assays Elucidate Peculiar Kinetics of Clindamycin Action against Toxoplasma gondii. Antimicrob. Agents Chemother. 1995, 39, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Lynch, T.; Price, A. The Effect of Cytochrome P450 Metabolism on Drug Response, Interactions, and Adverse Effects. Am. Fam. Physician. 2007, 76, 391–396. [Google Scholar]
- Sanchez-Covarrubias, L.; Slosky, L.; Thompson, B.; Davis, T.; Ronaldson, P. Transporters at CNS Barrier Sites: Obstacles or Opportunities for Drug Delivery? Curr. Pharm. Des. 2014, 20, 1422–1449. [Google Scholar] [CrossRef]
- Macias-Silva, M.; Vazquez-Victorio, G.; Hernandez-Damian, J. Anisomycin Is a Multifunctional Drug: More than Just a Tool to Inhibit Protein Synthesis. Curr. Chem. Biol. 2010, 4, 124–132. [Google Scholar] [CrossRef]
- Osborn, C.D.; Holloway, F.A. Can Commonly Used Antibiotics Disrupt Formation of New Memories? Bull. Psychon. Soc. 1984, 22, 356–358. [Google Scholar] [CrossRef]
- Myasnikov, A.G.; Kundhavai Natchiar, S.; Nebout, M.; Hazemann, I.; Imbert, V.; Khatter, H.; Peyron, J.-F.; Klaholz, B.P. Structure–Function Insights Reveal the Human Ribosome as a Cancer Target for Antibiotics. Nat. Commun. 2016, 7, 12856. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Poetsch, T.; Ju, J.; Eyler, D.E.; Dang, Y.; Bhat, S.; Merrick, W.C.; Green, R.; Shen, B.; Liu, J.O. Inhibition of Eukaryotic Translation Elongation by Cycloheximide and Lactimidomycin. Nat. Chem. Biol. 2010, 6, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Ch’Ih, J.J.; Duhl, D.M.; Faulkner, L.S.; Devlin, T.M. Regulation of mammalian protein synthesis In Vivo. Protein synthesis in rat liver and kidney after the administration of sublethal doses of cyclohyximide. Biochem. J. 1976, 178, 151–157. [Google Scholar]
- Garreau De Loubresse, N.; Prokhorova, I.; Holtkamp, W.; Rodnina, M.V.; Yusupova, G.; Yusupov, M. Structural Basis for the Inhibition of the Eukaryotic Ribosome. Nature 2014, 513, 517–522. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Serricchio, M.; Striepen, B.; Bütikofer, P. Lipid Synthesis in Protozoan Parasites: A Comparison between Kinetoplastids and Apicomplexans. Prog. Lipid Res. 2013, 52, 488–512. [Google Scholar] [CrossRef]
- Martins-Duarte, É.S.; Carias, M.; Vommaro, R.; Surolia, N.; De Souza, W. Apicoplast Fatty Acid Synthesis Is Essential for Pellicle Formation at the End of Cytokinesis in Toxoplasma gondii. J. Cell Sci. 2016, 129, 3320–3331. [Google Scholar] [CrossRef]
- Martins-Duarte, E.S.; Jones, S.M.; Gilbert, I.H.; Atella, G.C.; De Souza, W.; Vommaro, R.C. Thiolactomycin Analogues as Potential Anti-Toxoplasma gondii Agents. Parasitol. Int. 2009, 58, 411–415. [Google Scholar] [CrossRef]
- Camps, M.; Arrizabalaga, G.; Boothroyd, J. An rRNA Mutation Identifies the Apicoplast as the Target for Clindamycin in Toxoplasma gondii. Mol. Microbiol. 2002, 43, 1309–1318. [Google Scholar] [CrossRef]
- Grollman, A.P. Inhibitors of Protein Biosynthesis. J. Biol. Chem. 1967, 242, 3226–3233. [Google Scholar] [CrossRef]
- Kisselev, A.F.; Callard, A.; Goldberg, A.L. Importance of the Different Proteolytic Sites of the Proteasome and the Efficacy of Inhibitors Varies with the Protein Substrate. J. Biol. Chem. 2006, 281, 8582–8590. [Google Scholar] [CrossRef] [PubMed]
- Groll, M.; Huber, R.; Moroder, L. The Persisting Challenge of Selective and Specific Proteasome Inhibition. J. Pept. Sci. 2009, 15, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Bhat, G.; Guruprasad, K. Analysis of Bortezomib Inhibitor Docked within the Catalytic Subunits of the Plasmodium falciparum 20S Proteasome. SpringerPlus 2013, 2, 566. [Google Scholar] [CrossRef] [PubMed]
- Kreidenweiss, A.; Kremsner, P.G.; Mordmüller, B. Comprehensive Study of Proteasome Inhibitors against Plasmodium falciparum Laboratory Strains and Field Isolates from Gabon. Malar. J. 2008, 7, 187. [Google Scholar] [CrossRef] [PubMed]
- Hutter, G.; Rieken, M.; Pastore, A.; Weigert, O.; Zimmermann, Y.; Weinkauf, M.; Hiddemann, W.; Dreyling, M. The Proteasome Inhibitor Bortezomib Targets Cell Cycle and Apoptosis and Acts Synergistically in a Sequence-Dependent Way with Chemotherapeutic Agents in Mantle Cell Lymphoma. Ann. Hematol. 2012, 91, 847–856. [Google Scholar] [CrossRef]
- Yin, O.Q.P.; Wang, Y.; Schran, H. A Mechanism-Based Population Pharmacokinetic Model for Characterizing Time-Dependent Pharmacokinetics of Midostaurin and Its Metabolites in Human Subjects. Clin. Pharmacokinet. 2008, 47, 807–816. [Google Scholar] [CrossRef]
- Gleixner, K.V.; Mayerhofer, M.; Aichberger, K.J.; Derdak, S.; Sonneck, K.; Böhm, A.; Gruze, A.; Samorapoompichit, P.; Manley, P.W.; Fabbro, D.; et al. PKC412 Inhibits In Vitro Growth of Neoplastic Human Mast Cells Expressing the D816V-Mutated Variant of KIT: Comparison with AMN107, Imatinib, and Cladribine (2CdA) and Evaluation of Cooperative Drug Effects. Blood 2006, 107, 752–759. [Google Scholar] [CrossRef]
- Mayol, G.F.; Revuelta, M.V.; Salusso, A.; Touz, M.C.; Rópolo, A.S. Evidence of Nuclear Transport Mechanisms in the Protozoan Parasite Giardia lamblia. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2020, 1867, 118566. [Google Scholar] [CrossRef]
- Gupta, S.; Vohra, S.; Sethi, K.; Gupta, S.; Bera, B.C.; Kumar, S.; Kumar, R. In Vitro Anti-Trypanosomal Effect of Ivermectin on Trypanosoma evansi by Targeting Multiple Metabolic Pathways. Trop. Anim. Health Prod. 2022, 54, 240. [Google Scholar] [CrossRef]
- Fraccaroli, L.; Ruiz, M.D.; Perdomo, V.G.; Clausi, A.N.; Balcazar, D.E.; Larocca, L.; Carrillo, C. Broadening the Spectrum of Ivermectin: Its Effect on Trypanosoma cruzi and Related Trypanosomatids. Front. Cell. Infect. Microbiol. 2022, 12, 885268. [Google Scholar] [CrossRef]
- Reis, T.A.R.; Oliveira-da-Silva, J.A.; Tavares, G.S.V.; Mendonça, D.V.C.; Freitas, C.S.; Costa, R.R.; Lage, D.P.; Martins, V.T.; Machado, A.S.; Ramos, F.F.; et al. Ivermectin Presents Effective and Selective Antileishmanial Activity In Vitro and in Vivo against Leishmania infantum and Is Therapeutic against Visceral Leishmaniasis. Exp. Parasitol. 2021, 221, 108059. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Kannan, G.; Coppens, I.; Wang, F.; Nguyen, H.M.; Cerutti, A.; Olafsson, E.B.; Rimple, P.A.; Schultz, T.L.; Mercado Soto, N.M.; et al. Toxoplasma TgATG9 Is Critical for Autophagy and Long-Term Persistence in Tissue Cysts. eLife 2021, 10, e59384. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liang, H.; Chen, C.; Wang, X.; Qu, F.; Wang, H.; Yang, K.; Wang, Q.; Zhao, N.; Meng, J.; et al. Ivermectin Induces Autophagy-Mediated Cell Death through the AKT/mTOR Signaling Pathway in Glioma Cells. Biosci. Rep. 2019, 39, BSR20192489. [Google Scholar] [CrossRef] [PubMed]
- Sintchak, M.D.; Nimmesgern, E. The Structure of Inosine 5′-Monophosphate Dehydrogenase and the Design of Novel Inhibitors. Immunopharmacology 2000, 47, 163–184. [Google Scholar] [CrossRef]
- Morlon-Guyot, J.; Pastore, S.; Berry, L.; Lebrun, M.; Daher, W. Toxoplasma gondii Vps11, a Subunit of HOPS and CORVET Tethering Complexes, Is Essential for the Biogenesis of Secretory Organelles. Cell Microbiol. 2015, 17, 1157–1178. [Google Scholar] [CrossRef]
- Sakura, T.; Sindikubwabo, F.; Oesterlin, L.K.; Bousquet, H.; Slomianny, C.; Hakimi, M.-A.; Langsley, G.; Tomavo, S. A Critical Role for Toxoplasma gondii Vacuolar Protein Sorting VPS9 in Secretory Organelle Biogenesis and Host Infection. Sci. Rep. 2016, 6, 38842. [Google Scholar] [CrossRef]
- Houngue, R.; Sangaré, L.O.; Alayi, T.D.; Dieng, A.; Bitard-Feildel, T.; Boulogne, C.; Slomianny, C.; Atindehou, C.M.; Fanou, L.A.; Hathout, Y.; et al. Toxoplasma Membrane Inositol Phospholipid Binding Protein TgREMIND Is Essential for Secretory Organelle Function and Host Infection. Cell Rep. 2024, 43, 113601. [Google Scholar] [CrossRef]
- Donald, R.G.K.; Carter, D.; Ullman, B.; Roos, D.S. Insertional Tagging, Cloning, and Expression of the Hypoxanthine-Xanthine-Guanine Phosphoribosyltransferase Gene. J. Biol. Chem. 1996, 271, 14010–14019. [Google Scholar] [CrossRef]
- Van Dongen, K.C.W.; De Lange, E.; Van Asseldonk, L.L.M.; Zoet, L.; Van Der Fels-Klerx, H.J. Safety and Transfer of Veterinary Drugs from Substrate to Black Soldier Fly Larvae. Animal 2024, 18, 101214. [Google Scholar] [CrossRef]
- Bolder, N.; Wagenaar, J.; Putirulan, F.; Veldman, K.; Sommer, M. The Effect of Flavophospholipol (Flavomycin) and Salinomycin Sodium (Sacox) on the Excretion of Clostridium perfringens, Salmonella enteritidis, and Campylobacter jejuni in Broilers after Experimental Infection. Poult. Sci. 1999, 78, 1681–1689. [Google Scholar] [CrossRef]
Plate Position | Trivial Name | Disease Area | Target | Status a | IC50 (μM) in Tachyzoites | Cytotoxicity for NHDF | Anti-T. gondii Activity c | |
---|---|---|---|---|---|---|---|---|
CC50 (μM) | SI b | |||||||
AA02 | Niclosamide | Antiparasitic | Anaerobic phosphorylation inhibitor | Approved | 0.36 ± 0.02 | 3.05 ± 0.08 | 8 | [23,35] |
AA04 | Bemcentinib | Immune agent | Tyrosine kinase | Phase II | 0.15 ± 0.03 | 0.97 ± 0.15 | 6 | [23] |
AB03 | Apilimod | Antitumor | PIKfyve inhibitor | Phase II | 0.22 ± 0.06 | 2.12 ± 0.12 | 10 | New |
AB04 | Regorafenib | Antitumor | Tyrosine kinase | Approved | 0.25 ± 0.04 | 3.03 ± 0.01 | 12 | [23] |
AC10 | LY2228820 | Antitumor agent | p38 mitogen-activated protein kinase inhibitor | Phase II, discontinued | 0.04 ± 0.00 | nd | nd | [23] |
AD02 | Digoxin | Antiarrhythmic | Na+/K+-ATPase inhibitor | Approved | 0.03 ± 0.01 | 0.34 ± 0.32 | 11 | [24] |
AE06 | Emetine | Antiparasitic | Unknown | Approved | 0.05 ± 0.01 | 1.02 ± 0.19 | 20 | [36] |
AF05 | Ivermectin | Antiparasitic | Agonist of glutamate-gated Cl−channels | Approved | 0.21 ± 0.01 | nd | nd | [37] |
AF09 | Sorafenib | Antitumor | Tyrosine kinase inhibitor | Approved | 0.56 ± 0.03 | nd | nd | [23] |
AG03 | Manidipine | Antihypertensive | Calcium channel blocker | Phase III | 0.74 ± 0.09 | nd | nd | [23] |
AG04 | Almitrine | Respiratory system | Mitochondrial ATP synthase | Approved * | 0.33 ± 0.04 | nd | n.d | [23,24] |
AG08 | Midostaurin | Antitumor | Tyrosine kinase | Approved | 0.08 ± 0.00 | 0.24 ± 0.02 | 3 | New |
AG11 | Abemaciclib | Antitumor | Cyclin-dependent kinase | Approved | 0.09 ± 0.01 | # | # | [23] |
AH03 | Tetrandrine | Antitumor | P-glycoprotein | Preclinical | 0.35 ± 0.07 | 4.77 ± 8.25 | 14 | [23] |
BA07 | Ponatinib | Antitumor | Tyrosine kinase | Approved | 0.33 ± 0.03 | 4.84 ± 0.89 | 15 | [34] |
BA09 | Berbamine | Antitumor | CAMKII inhibitor | Preclinical | 0.31 ± 0.03 | 4.61 ± 7.52 | 15 | [23] |
BB10 | Mycophenolic acid | Immunosuppressant | Inosine monophosphate dehydrogenase | Approved | 0.07 ± 0.01 | 23.81 ± 31.97 | 340 | [38,39] |
BD02 | Salinomycin | Anti-microbial agent | Alkali ion carrier | Approved | 0.07 ± 0.01 | 1.14 ± 0.17 | 16 | [40] |
BD08 | Merimepodib | Antiviral agent | Inosine monophosphate dehydrogenase | Phase II | 0.48 ± 0.08 | nd | nd | [23] |
BD11 | Cycloheximide | Agricultural agent– Fungicide | Protein synthesis inhibitor | Research | 0.02 ± 0.00 | 6.08 ± 4.63 | 304 | [41,42] |
BF06 | (-)-Anisomycin | Anti-infective agent | Protein synthesis | Approved | 0.02 ± 0.00 | 0.25 ± 0.13 | 13 | [43] |
BG06 | Bortezomib | Antitumor | Proteasome inhibitor | Approved | 0.03 ± 0.00 | 0.72 ± 0.24 | 24 | [24,34] |
BG07 | Pimozide | Antipsychotic | Dopamine receptor | Approved | 0.64 ± 0.15 | nd | nd | [24,33] |
Identification | LogP a | H-Bond Donors | H-Bond Receptors | MW b | Violations Lipinski | TPSA (Å2) c | nº Rotations | Violations Veber |
---|---|---|---|---|---|---|---|---|
Pyrimethamine | 2.84 | 2 | 4 | 248.7 | 0 | 77.83 | 2 | 0 |
Sulfadiazine | 0.86 | 3 | 5 | 250.3 | 0 | 98.57 | 3 | 0 |
Clindamycin | 0.39 | 4 | 7 | 424.9 | 0 | 102.25 | 7 | 1 |
Azithromycin | 2.50 | 5 | 14 | 749.0 | 2 | 198.54 | 7 | 1 |
Atovaquone | 5.34 | 1 | 3 | 366.8 | 1 | 54.70 | 2 | 0 |
Niclosamide | 3.85 | 2 | 4 | 327.1 | 0 | 128.62 | 3 | 0 |
Bemcentinib | 4.88 | 2 | 8 | 506.7 | 2 | 92.35 | 4 | 0 |
Apilimod | 3.08 | 1 | 8 | 418.5 | 0 | 84.77 | 8 | 0 |
Regorafenibe | 4.39 | 3 | 7 | 482.8 | 0 | 92.35 | 5 | 0 |
LY2228820 | 5.51 | 2 | 5 | 420.5 | 1 | 85.41 | 5 | 0 |
Digoxin | 2.22 | 6 | 14 | 780.9 | 3 | 203.06 | 7 | 1 |
Emetine | 3.04 | 1 | 6 | 480.7 | 0 | 52.20 | 7 | 0 |
Ivermectin | 4.37 | 3 | 14 | 875.1 | 2 | 170.06 | 8 | 1 |
Sorafenib | 4.10 | 3 | 7 | 464.8 | 0 | 92.35 | 9 | 0 |
Manidipine | 4.04 | 1 | 8 | 610.7 | 1 | 116.94 | 12 | 1 |
Almitrine | 4.34 | 2 | 6 | 477.6 | 0 | 69.21 | 10 | 0 |
Midostaurin | 4.05 | 1 | 4 | 570.6 | 1 | 77.73 | 4 | 0 |
Abemaciclib | 4.04 | 1 | 8 | 506.6 | 1 | 75.00 | 7 | 0 |
Tetrandrine | 5.49 | 0 | 8 | 622.7 | 2 | 61.86 | 4 | 0 |
Ponatinib | 4.30 | 1 | 8 | 532.6 | 1 | 65.77 | 6 | 0 |
Berbamine | 5.13 | 1 | 8 | 608.7 | 2 | 72.86 | 3 | 0 |
Mycophenolic acid | 2.72 | 2 | 6 | 320.3 | 0 | 93.07 | 6 | 0 |
Salinomycin | 4.98 | 4 | 11 | 751.0 | 2 | 161.21 | 12 | 2 |
Merimepodib | 2.36 | 3 | 7 | 452.5 | 0 | 123.96 | 11 | 1 |
Cycloheximide | 1.23 | 2 | 4 | 281.4 | 0 | 83.47 | 3 | 0 |
Anisomycin | 1.00 | 2 | 5 | 265.3 | 0 | 67.79 | 5 | 0 |
Bortezomib | 0.22 | 4 | 6 | 384.2 | 0 | 124.44 | 11 | 1 |
Pimozide | 5.67 | 1 | 5 | 461.5 | 1 | 41.29 | 7 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.L.O.; dos Santos, M.; Dantas-Vieira, G.C.; Lopes, R.E.N.; Vommaro, R.C.; Martins-Duarte, É.S. Antiproliferative and Morphological Analysis Triggered by Drugs Contained in the Medicines for Malaria Venture COVID-Box Against Toxoplasma gondii Tachyzoites. Microorganisms 2024, 12, 2602. https://doi.org/10.3390/microorganisms12122602
Costa ALO, dos Santos M, Dantas-Vieira GC, Lopes REN, Vommaro RC, Martins-Duarte ÉS. Antiproliferative and Morphological Analysis Triggered by Drugs Contained in the Medicines for Malaria Venture COVID-Box Against Toxoplasma gondii Tachyzoites. Microorganisms. 2024; 12(12):2602. https://doi.org/10.3390/microorganisms12122602
Chicago/Turabian StyleCosta, Andréia Luiza Oliveira, Mike dos Santos, Giulia Caroline Dantas-Vieira, Rosálida Estevam Nazar Lopes, Rossiane Claudia Vommaro, and Érica S. Martins-Duarte. 2024. "Antiproliferative and Morphological Analysis Triggered by Drugs Contained in the Medicines for Malaria Venture COVID-Box Against Toxoplasma gondii Tachyzoites" Microorganisms 12, no. 12: 2602. https://doi.org/10.3390/microorganisms12122602
APA StyleCosta, A. L. O., dos Santos, M., Dantas-Vieira, G. C., Lopes, R. E. N., Vommaro, R. C., & Martins-Duarte, É. S. (2024). Antiproliferative and Morphological Analysis Triggered by Drugs Contained in the Medicines for Malaria Venture COVID-Box Against Toxoplasma gondii Tachyzoites. Microorganisms, 12(12), 2602. https://doi.org/10.3390/microorganisms12122602