COVID-19 in Relation to Chronic Antihistamine Prescription
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cases and Hospital Admissions
2.2. Socioeconomic Environment
2.3. Statistics
3. Results
3.1. Vaccination and Infections
3.2. Hospital Admission and Death
4. Discussion
4.1. Clinical Evidence
4.2. Other Evidences
4.3. Limitations of the Study
4.3.1. Comorbidity
4.3.2. Cases, Test Availability and Diagnosis Protocols
4.3.3. Socioeconomic Factors
4.4. Future Approaches and Possible COVID-19 Waves
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministerio de Ciencia, Innovación y Universidades. Instituto de Salud Carlos III. Available online: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/MoMo/Documents/informesMoMo2020/MoMo_Situacion%20a%2031%20de%20marzo_CNE.pdf (accessed on 30 June 2024).
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [PubMed]
- Bielza, R.; Sanz, J.; Zambrana, F.; Arias, E.; Malmierca, E.; Portillo, L.; Thuissard, I.J.; Lung, A.; Neira, M.; Moral, M.; et al. Clinical Characteristics, Frailty, and Mortality of Residents with COVID-19 in Nursing Homes of a Region of Madrid. J. Am. Med. Dir. Assoc. 2021, 22, 245–252. [Google Scholar]
- Heymann, D. The Elderly and the COVID-19 19 Crisis: A Chronicle of Deaths Foretold, in Isolation and Total Indifference. Front. Public Health 2020, 8, 602982. [Google Scholar] [CrossRef] [PubMed]
- Atalla, E.; Zhang, R.; Shehadeh, F.; Mylona, E.K.; Tsikala-Vafea, M.; Kalagara, S.; Henseler, L.; Chan, P.A.; Mylonakis, E. Clinical Presentation, Course, and Risk Factors Associated with Mortality in a Severe Outbreak of COVID-19 in Rhode Island, USA, April-June 2020. Pathogens 2020, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Morán Blanco, J.I.; Alvarenga Bonilla, J.A.; Homma, S.; Suzuki, K.; Fremont-Smith, P.; Villar Gómez de Las Heras, K. Antihistamines and azithromycin as a treatment for COVID-19 on primary health care—A retrospective observational study in elderly patients. Pulm. Pharmacol. Ther. 2021, 67, 101989. [Google Scholar]
- Morán Blanco, J.I.; Alvarenga Bonilla, J.A.; Fremont-Smith, P.; Villar Gómez de Las Heras, K. Antihistamines as an early treatment for COVID-19. Heliyon 2023, 9, e15772. [Google Scholar]
- Zeng, Q.; Langereis, M.A.; van Vliet, A.L.W.; Huizinga, E.G.; de Groot, R.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl. Acad. Sci. USA 2008, 105, 9065–9069. [Google Scholar]
- Tortorici, M.A.; Walls, A.C.; Lang, Y.; Wang, C.; Li, Z.; Koerhuis, D.; Boons, G.J.; Bosch, B.J.; Rey, F.A.; de Groot, R.J.; et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol. 2019, 26, 481–489. [Google Scholar] [CrossRef]
- Meng, J.; Xiao, G.; Zhang, J.; He, X.; Ou, M.; Bi, J.; Yang, R.; Di, W.; Wang, Z.; Li, Z.; et al. Renin-angiotensin System inhibitors improve the clinic outcomes of COVID-19 patients with hypertension. Emerg. Microbes Infect. 2020, 9, 757–760. [Google Scholar]
- Verdechia, P.; Angeli, F.; Reboldi, G. Angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and coronavirus. J. Hypertens. 2020, 38, 1190–1191. [Google Scholar] [CrossRef]
- Savarese, G.; Benson, L.; Sundström, J.; Lund, L.H. Association between renin-angiotensin-aldosterone system inhibitor use and COVID-19 hospitalization and death: A 1.4 million patient nationwide registry analysis. Eur. J. Hearth Fail. 2021, 23, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Walzer, P.; Estève, C.; Barben, J.; Menu, D.; Cuenot, C.; Manckoundia, P.; Putot, A. Impact of Influenza Vaccination on Mortality in the Oldest Old: A Propensity Score-Matched Cohort Study. Vaccines 2020, 8, 356. [Google Scholar] [CrossRef] [PubMed]
- Ragni, P.; Marino, M.; Formisano, D.; Bisaccia, E.; Scaltriti, S.; Bedeschi, E.; Grilli, R. Association between exposure to influenza vaccination and COVID-19 diagnosis and outcomes. Vaccines 2020, 8, 675. [Google Scholar] [CrossRef] [PubMed]
- Taghioff, S.M.; Slavin, B.R.; Holton, T.; Singh, D. Examining the potential benefits of the influenza vaccine against SARS-CoV-2: A retrospective cohort analysis of 75754 patients. PLoS ONE 2021, 16, e0255541. [Google Scholar] [CrossRef]
- Juanes-González, M.; Calderón-Valdiviezo, A.; Losa-Puig, H.; Valls-Foix, R.; González-Salvador, M.; León-Pérez, M.; Pueyo-Antón, L.; Lozano-Paz, C.; Franco-Romero, M.; Vidal-Alaball, J.; et al. COVID-19 First and Delta Waves in Relation to ACEI, ARB, Influenza Vaccination, and Comorbidity in a North Metropolitan Barcelona Health Consortium. medRxiv 2021. [Google Scholar] [CrossRef]
- Puigdellívol-Sánchez, A.; Juanes-González, M.; Calderón-Valdiviezo, A.; Valls-Foix, R.; González-Salvador, M.; Lozano-Paz, C.; Vidal-Alaball, J. COVID-19 in Relation to Polypharmacy and Immunization (2020–2024). Viruses 2024, 16, 1533. [Google Scholar] [CrossRef]
- Owen, R.K.; Conroy, S.P.; Taub, N.; Jones, W.J.; Bryden, D.; Pareek, M.; Faull, C.; Abrams, K.R.; Davis, D.; Banerjee, J. Comparing associations between frailty and mortality in hospitalised older adults with or without COVID-19 infection: A retrospective observational study using electronic health records. Age Ageing 2020, 50, 307–316. [Google Scholar] [CrossRef]
- Ghasemi, H.; Darvishi, N.; Salari, N.; Hosseinian-Far, A.; Akbari, H.; Mohammadi, M. Global prevalence of polypharmacy among the COVID-19 patients: A comprehensive systematic review and meta-analysis of observational studies. Trop. Med. Health 2022, 50, 60. [Google Scholar] [CrossRef]
- Aryal, K.; Mowbray, F.I.; Miroshnychenko, A.; Strum, R.P.; Dash, D.; Hillmer, M.P.; Malikov, K.; Costa, A.P.; Jones, A. Evaluating methods for risk prediction of COVID-19 mortality in nursing home residents before and after vaccine availability: A retrospective cohort study. BMC Med. Res. Methodol. 2024, 24, 77. [Google Scholar] [CrossRef]
- Generalitat de Catalunya. Available online: https://catsalut.gencat.cat/web/.content/minisite/catsalut/proveidors_professionals/registres_catalegs/documents/informe-poblacio-referencia-2024.pdf (accessed on 5 December 2024).
- Generalitat de Catalunya. Available online: https://observatorisalut.gencat.cat/ca/observatori-desigualtats-salut/dades_obertes/index.html (accessed on 5 December 2024).
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health, Versión. Available online: https://www.openepi.com/Menu/OE_Menu.htm (accessed on 15 November 2024).
- Benjamini, Y.; Hochberg, Y. Multiple Hypotheses Testing with Weights. Scand. J. Stat. 1997, 24, 407–418. [Google Scholar] [CrossRef]
- Glueck, D.H.; Mandel, J.; Karimpour-Fard, A.; Hunter, L.; Muller, K.E. Exact Calculations of Average Power for the Benjamini-Hochberg Procedure. Int. J. Biostat. 2008, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Fadel, R.; Morrison, A.R.; Vahia, A.; Smith, A.R.; Chaudhry, Z.; Bhargava, P.; Miller, J.; Kenney, R.M.; Alangaden, G.; Ramesh, M.S. Early Short-Course Corticosteroids in Hospitalized Patients with COVID-19. Clin. Infect. Dis. 2020, 71, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Menzel, M.; Akbarshahi, H.; Bjermer, L.; Uller, L. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Sci. Rep. 2016, 6, 28698. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.H.; Sugamata, R.; Hirose, T.; Suzuki, S.; Noguchi, Y.; Sugawara, A.; Ito, F.; Yamamoto, T.; Kawachi, S.; Akagawa, K.S. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process. J. Antibiot. 2019, 72, 759–768. [Google Scholar] [CrossRef]
- Oh, K.K.; Adnan, M.; Cho, D.H. Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19. Curr. Issues Mol. Biol. 2022, 44, 1597–1609. [Google Scholar] [CrossRef]
- Saeedi-Boroujeni, A.; Nashibi, R.; Ghadiri, A.A.; Nakajima, M.; Salmanzadeh, S.; Mahmoudian-Sani, M.R.; Hanafi, M.G.; Sharhani, A.; Khodadadi, A. Tranilast as an Adjunctive Therapy in Hospitalized Patients with Severe COVID-19: A Randomized Controlled Trial. Arch. Med. Res. 2022, 53, 368–377. [Google Scholar] [CrossRef]
- Klussmann, J.P.; Grosheva, M.; Meiser, P.; Lehmann, C.; Nagy, E.; Szijártó, V.; Nagy, G.; Konrat, R.; Flegel, M.; Holzer, F.; et al. Early intervention with azelastine nasal spray may reduce viral load in SARS-CoV-2 infected patients. Sci. Rep. 2023, 13, 6839. [Google Scholar]
- Brennan, C.M.; Nadella, S.; Zhao, X.; Dima, R.J.; Jordan-Martin, N.; Demestichas, B.R.; Kleeman, S.O.; Ferrer, M.; von Gablenz, E.C.; Mourikis, N.; et al. Oral famotidine versus placebo in non-hospitalised patients with COVID-19: A randomised, double-blind, data-intense, phase 2 clinical trial. Gut 2022, 71, 879–888. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Ansari, S.; Izadi, Z.; Shobeiri, P.; Vatankhah, V.; Seifi, A.; Ghiasvand, F.; Bahrami, M.; Salehi, M.; Noorbala, A.A.; et al. Effect of famotidine on cognitive and behavioral dysfunctions induced in post-COVID-19 infection: A randomized, double-blind, and placebo-controlled study. J. Psychosom. Res. 2023, 172, 111389. [Google Scholar] [CrossRef]
- Zubiete-Franco, I.; Tonks, N.K. Famotidine increases cellular phospho-tyrosine levels. Biochem. Biophys. Res. Commun. 2024, 734, 150763. [Google Scholar] [CrossRef]
- Fung, K.W.; Baik, S.H.; Baye, F.; Zheng, Z.; Huser, V.; McDonald, C. Effect of common maintenance drugs on the risk and severity of COVID-19 in elderly patients. PLoS ONE 2022, 17, e0266922. [Google Scholar] [CrossRef]
- Reznikov, L.R.; Norris, M.H.; Vashisht, R.; Bluhm, A.P.; Li, D.; Liao, Y.S.J.; Brown, A.; Butte, A.J.; Ostrov, D.A. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem. Biophys. Res. Commun. 2021, 538, 173–179. [Google Scholar] [PubMed]
- Fischhuber, K.; Bánki, Z.; Kimpel, J.; Kragl, N.; Rössler, A.; Bolze, A.; Muellauer, B.; Angerer, J.; Nagy, G.; Nagy, E.; et al. Antiviral Potential of Azelastine against Major Respiratory Viruses. Viruses 2023, 15, 2300. [Google Scholar] [CrossRef]
- Mashauri, H.L. COVID-19 histamine theory: Why antihistamines should be incorporated as the basic component in COVID-19 management? Health Sci. Rep. 2023, 6, e1109. [Google Scholar] [CrossRef]
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L. A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing. Nature 2020, 583, 459–468. [Google Scholar] [CrossRef]
- Yu, F.; Liu, X.; Ou, H.; Li, X.; Liu, R.; Lv, X.; Xiao, X.; Hu, M.; Liang, T.; Chen, T.; et al. The histamine receptor H1 acts as an alternative receptor for SARS-CoV-2. mBio 2024, 15, e01088-24. [Google Scholar] [CrossRef]
- Zhong, G.; Li, J.; Wang, H. Identification of HRH1 as an alternative receptor for SARS-CoV-2: Insights from viral inhibition by repurposable antihistamines. mBio 2024, 15, e01697-24. [Google Scholar] [CrossRef]
- Kucirka, L.M.; Lauer, S.A.; Laeyendecker, O.; Boon, D.; Lessler, J. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Ann. Intern. Med. 2020, 173, M20–M1595. [Google Scholar]
- World Health Organization. Available online: https://iris.who.int/bitstream/handle/10665/360580/WHO-2019-nCoV-SurveillanceGuidance-2022.2-eng.pdf (accessed on 18 September 2024).
- Dinnes, J.; Deeks, J.J.; Berhane, S.; Taylor, M.; Adriano, A.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; et al. Cochrane COVID-19 Diagnostic Test Accuracy Group 2. Rapid point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2021, 3, CD013705. [Google Scholar]
- Cortés-Borra, A. Aranda-Abreu GE. Amantadine in the prevention of clinical symptoms caused by SARS-CoV-2. Pharmacol. Rep. 2021, 73, 962–965. [Google Scholar]
- AHarandi, A.A.; Pakdaman, H.; Medghalchi, A.; Kimia, N.; Kazemian, A.; Siavoshi, F.; Barough, S.S.; Esfandani, A.; Hosseini, M.H.; Sobhanian, S.A. A randomized open-label clinical trial on the effect of Amantadine on post COVID 19 fatigue. Sci. Rep. 2024, 14, 1343. [Google Scholar] [CrossRef]
- Generalitat de Catalunya. Sistema d’Informació per a la Vigilància d’Infeccions a Catalunya. Available online: https://sivic.salut.gencat.cat/ (accessed on 4 July 2024).
- University of Oxford-Oxford Martin School. Official Data Collated by Our World in Data—Last Updated 3 July 2024—Processed by Our World in Data. Available online: https://ourworldindata.org/grapher/current-covid-hospitalizations-per-million (accessed on 4 July 2024).
- Ariza, M.; Cano, N.; Segura, B.; Adan, A.; Bargalló, N.; Caldú, X.; Campabadal, A.; Jurado, M.A.; Mataró, M.; Pueyo, R.; et al. Neuropsychological impairment in post-COVID-19 condition individuals with and without cognitive complaents. Front. Aging Neurosci. 2022, 14, 1029842. [Google Scholar] [CrossRef]
Basic Healthcare Area (ABS) | Population 2024 (COV Infection) | Life Expectancy (2015) | Incomes <18,000 € | Incomes >100,000 € | Incomplete Primary Education | VAC in >60 + ≥2 nT |
---|---|---|---|---|---|---|
El Prat de Llobregat 3 | 12.996 | 79.0 | 66.8% | 0.1% | 32.6% | |
St Adrià del Besós 2 | 17.579 | 79.2 | 71.5% | 0.1% | 34.5% | |
St Quirze de Besora | 4.834 | 79.7 | 72.6% | 0.4% | 20.1% | |
CST ABS | ||||||
TERRASSA B | 28,399 (24%) | 81.7 | 69.6% | 0.04% | 26.6% | 90.7% |
RUBI 3 | 17,796 (21%) | 82.0 | 63.1% | 0.3% | 22.3% | 94.2% |
TERRASSA F (+Matadapera) | 37,164 (22 + 24%) | 83.1 | 67.6% | 1.4% | 24.1% | 93.3% (+92.5%) |
RUBÍ 2 (+Castellbisbal) | 41,100 (27 + 24%) | 83.3 | 65.2% | 0.3% | 21.8% | 92.7% (+93.3%) |
TERRASSA A | 22,972 (23%) | 83.8 | 58.8% | 1.1% | 16.9% | 92.3% |
Sta Perpètua de Mogoda | 25,821 | 86.7 | 62.2% | 0.27% | 25.1% | |
Barcelona 8-C: Turó de la Peira | 23,968 | 86.7 | 69.4% | 0.2% | 27.1% | |
Sant Cugat del Vallès 2 | 33,911 | 87.0 | 45.0% | 7.8% | 5.8% |
No AntiHm | AntiHm | |||||||
---|---|---|---|---|---|---|---|---|
0–59 | ≥60 | 0–59 | ≥60 | |||||
MAN | Mean | +/− | Mean | +/− | Mean | +/− | Mean | +/− |
NoVAC pre-infection | 31.2 | 16.7 | 67.6 | 16.6 | 36.7 | 19.4 | 69.6 | 15.5 |
0 nT | 28.5 | 16.3 | 64.7 | |||||
1 nT | 40.5 | 13.6 | 64.6 | 14.9 | 30.5 | 14.3 | 63.5 | 14.4 |
2–7 nT | 45.3 | 11.3 | 68.2 | 15.2 | 38.8 | 15.1 | 68.3 | 13.6 |
≥8 nT | 50.0 | 8.5 | 74.4 | 14.1 | 51.1 | 14.2 | 73.4 | 14.4 |
VAC pre-infection | 32.6 | 18.2 | 70.4 | 19.1 | 40.9 | 23.6 | 70.4 | 18.8 |
0 nT | 25.9 | 16.6 | 66.5 | 19.0 | ||||
1 nT | 42.0 | 14.6 | 67.2 | 17.2 | 33.5 | 18.0 | 66.5 | 17.3 |
2–7 nT | 48.6 | 11.0 | 70.4 | 18.0 | 41.7 | 15.1 | 69.1 | 17.4 |
≥8 nT | 52.4 | 7.0 | 74.1 | 11.5 | 51.4 | 11.1 | 72.4 | 11.9 |
WOMAN | ||||||||
NoVAC | 30.6 | 17.1 | 69.2 | 8.9 | 39.8 | 12.5 | 69.4 | 9.4 |
Pre-infection | ||||||||
0 nT | 26.8 | 16.9 | 66.2 | 7.2 | ||||
1 nT | 37.8 | 13.0 | 65.7 | 6.3 | 33.4 | 13.5 | 62.0 | 2.9 |
2–7 nT | 44.2 | 11.3 | 69.2 | 8.6 | 40.7 | 117 | 67.8 | 8.2 |
≥8 nT | 51.2 | 7.2 | 76.0 | 9.3 | 49.3 | 7.5 | 72.2 | 10.2 |
VAC | 33.6 | 17.3 | 72.0 | 8.4 | 41.2 | 13.7 | 71.1 | 7.8 |
pre-infection | ||||||||
0 nT | 26.7 | 16.1 | 67.2 | 7.2 | ||||
1 nT | 38.8 | 14.2 | 67.9 | 7.0 | 32.0 | 14.3 | 68.6 | 8.2 |
2–7 nT | 47.2 | 11.0 | 71.7 | 8.2 | 42.1 | 12.9 | 69.8 | 7.3 |
≥8 nT | 52.2 | 7.2 | 75.9 | 8.1 | 51.2 | 7.8 | 72.8 | 8.0 |
Males | Females | |||||
---|---|---|---|---|---|---|
No Vaccine Record | Vaccinated | % | No Vaccine Record | Vaccinated | % | |
No AntiHm | ||||||
0–59 | ||||||
0 nT | 28,905 | 13,757 | 32.2% | 21,372 | 14,321 | 40.1% |
1 nT | 2869 | 2185 | 43.2% | 3667 | 3444 | 48.4% |
2–7 nT | 3217 | 3899 | 54.8% | 3537 | 5267 | 59.8% |
>8 nT | 115 | 383 | 76.9% | 106 | 431 | 80.3% |
≥60 | ||||||
0 nT | 511 | 1159 | 69.4% | 486 | 1136 | 70.0% |
1 nT | 185 | 994 | 84.3% | 203 | 1069 | 84.0% |
2–7 nT | 545 | 6401 | 92.2% | 747 | 8078 | 91.5% |
>8 nT | 127 | 2034 | 94.1% | 159 | 2993 | 95.0% |
AntiHm | ||||||
0–59 | ||||||
1 nT | 150 | 100 | 40.0% | 154 | 161 | 51.1% |
2–7 nT | 332 | 385 | 53.7% | 490 | 662 | 57.5% |
>8 nT | 12 | 39 | 76.5% | 41 | 93 | 69.4% |
≥60 | ||||||
1 nT | 4 | 6 | 60.0% | 5 | 16 | 76.2% |
2–7 nT | 15 | 218 | 93.6% | 28 | 374 | 93.0% |
>8 nT | 10 | 146 | 93.6% | 21 | 310 | 93.7% |
Other mortality (2585) |
NOAntiHm | AntiHm | ||||||
---|---|---|---|---|---|---|---|
No Infection Record | Infection | Suspected or Later dx | No Infection Record | Infection | Suspected or Later dx | OR NOAntiHm/ AntiHm | |
NoVAC pre-infection | |||||||
0 | 36,857 | 15,389 | 2636 | ||||
1 | 4653 | 2402 | 660 | 228 | 95 | 26 | 1.14 |
2–4 | 4617 | 2449 | 885 | 480 | 259 | 72 | 0.96 |
5–7 | 956 | 723 | 293 | 114 | 82 | 29 | 1.01 |
≥8 | 271 | 437 | 225 | 50 | 62 | 29 | 1.07 * |
VAC pre-infection | |||||||
0 | 19,738 | 5629 | 1398 | ||||
1 | 4965 | 1328 | 608 | 153 | 68 | 27 | 0.70 * |
2–4 | 10,594 | 1934 | 1362 | 620 | 161 | 83 | 0.75 * |
5–7 | 6117 | 841 | 920 | 448 | 86 | 70 | 0.75 * |
≥8 | 4128 | 570 | 717 | 402 | 66 | 63 | 0.85 * |
Other mortality (2585) |
NoVAC Pre-infection | VAC Pre-infection | No Antihm/Antihm | ||||
---|---|---|---|---|---|---|
NoAntiHm | AntiHm | NoAntiHm | AntiHm | OR noVAC | OR Vac | |
0 nT | 54,882 | 26,765 | ||||
Hospital admission | 220 | 31 | ||||
Survival | 216 | 30 | ||||
CoV death | 4 | 1 | ||||
No admission | 54,662 | 26,734 | ||||
1 nT | 7715 | 349 | 6901 | 248 | ||
Hospital admission | 103 | 4 | 25 | 1 | 1.16 | 0.90 |
Survival | 100 | 4 | 25 | 1 | ||
CoV death | 3 | 0 | 0 | 0 | ||
No admission | 7612 | 345 | 6876 | 247 | ||
2–7 nT | 9923 | 1036 | 21,768 | 1468 | ||
Hospital admission | 389 | 16 | 187 | 6 | 2.54 | 2.10 |
Survival | 311 | 14 | 166 | 5 | (p < 0.0008) *+ | (p < 0.03) * |
CoV death | 78 | 2 | 21 | 1 | 4.07 | 1.42 |
No admission | 9534 | 1020 | 21,581 | 1462 | (p < 0.03) *+ | |
≥8 nT | 933 | 141 | 5415 | 531 | ||
Hospital admission | 255 | 24 | 186 | 13 | 1.61 | 1.41 |
Survival | 145 | 16 | 125 | 8 | (p < 0.03) *+ | (p < 0.11) |
CoV death | 110 | 8 | 61 | 5 | 2.08 | 1.20 |
No admission | 678 | 117 | 5229 | 518 | (p < 0.01) *+ | |
Other mortality (2585) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puigdellívol-Sánchez, A.; Juanes-González, M.; Calderón-Valdiviezo, A.; Losa-Puig, H.; Valls-Foix, R.; González-Salvador, M.; Lozano-Paz, C.; Vidal-Alaball, J. COVID-19 in Relation to Chronic Antihistamine Prescription. Microorganisms 2024, 12, 2589. https://doi.org/10.3390/microorganisms12122589
Puigdellívol-Sánchez A, Juanes-González M, Calderón-Valdiviezo A, Losa-Puig H, Valls-Foix R, González-Salvador M, Lozano-Paz C, Vidal-Alaball J. COVID-19 in Relation to Chronic Antihistamine Prescription. Microorganisms. 2024; 12(12):2589. https://doi.org/10.3390/microorganisms12122589
Chicago/Turabian StylePuigdellívol-Sánchez, Anna, Marta Juanes-González, Ana Calderón-Valdiviezo, Helena Losa-Puig, Roger Valls-Foix, Marta González-Salvador, Celia Lozano-Paz, and Josep Vidal-Alaball. 2024. "COVID-19 in Relation to Chronic Antihistamine Prescription" Microorganisms 12, no. 12: 2589. https://doi.org/10.3390/microorganisms12122589
APA StylePuigdellívol-Sánchez, A., Juanes-González, M., Calderón-Valdiviezo, A., Losa-Puig, H., Valls-Foix, R., González-Salvador, M., Lozano-Paz, C., & Vidal-Alaball, J. (2024). COVID-19 in Relation to Chronic Antihistamine Prescription. Microorganisms, 12(12), 2589. https://doi.org/10.3390/microorganisms12122589