Microorganism Strains, Environmentally Friendly and Biological Preparations Against Meloidogyne hapla Chitwood, 1949 and Their Impact on Fruit Quality and Tomato Crop Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Location
2.2. Research Objects
2.3. Artificial Infection of Tomato Plants with the Northern Root-Knot Nematode
- Control (without treatment; watering);
- Biological control (Nematophagin–Mycopro (Arthrobotrys oligospora F-1303));
- Chemical control (Vydate 5G (Oxamyl, 50 g/kg));
- Fitoverm (Aversectin S, 8 g/kg);
- Metarhizium anisopliae F-22BK/2;
- Arthrobotrys conoides F-22BK/4;
- Paecilomyces lilacinus F-22BK/6;
- Trichoderma viride F-294.
2.4. Assessment of the Effect of Microorganisms and Environmentally Friendly Biological Nematicides on the Quality of Fruits and the Structure of the Tomato Crop When Infected with M. hapla
2.5. Statistical Analysis
3. Results
3.1. The Effect of Microorganisms and Environmentally Friendly and Biological Nematicides on the Development of Tomato Plants Under Conditions of Artificial Infection with M. hapla
3.2. Effect of the Employed Methods for M. hapla Population Control on Tomato Crop Structure
3.3. Effect of M. hapla Population Control Agents on Biochemical Indicators of Tomato Fruits
3.4. Correlation Analysis in Measuring Biochemical Indicators in Tomato Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD-FAO. Agricultural Outlook 2021–2030. Available online: https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2021-2030_19428846-en.html (accessed on 3 December 2024).
- Mirzaev, U. Distribution of Nematofauna Species of Tomato by Biotopes (Samarkand Region, Uzbekistan). Sci. Rev. Biol. Sci. 2023, 1, 56–61. [Google Scholar] [CrossRef]
- Petukhova, M.S.; Orlova, N.V. Priority Directions of Scientific and Technological Development of Agricultural Plant Protection in Russia and the World. Int. Agric. J. 2021, 64, 58–68. [Google Scholar]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Schouten, R.E.; Woltering, E.J.; Tijskens, L. Sugar and Acid Interconversion in Tomato Fruits Based on Biopsy Sampling of Locule Gel and Pericarp Tissue. Postharvest Biol. Technol. 2016, 111, 83–92. [Google Scholar] [CrossRef]
- Islam, Z.; Tran, Q.T.; Kubo, M. Development of a Small-Scale Cherry Tomato Cultivation Method Using Organic Soil. Org. Agric. 2023, 13, 237–246. [Google Scholar] [CrossRef]
- Sohrabi, F.; Sheikholeslami, M.; Heydari, R.; Rezaee, S.; Sharifi, R. Investigating the Effect of Glomus Mosseae, Bacillus Subtilis and Trichoderma Harzianum on Plant Growth and Controlling Meloidogyne Javanica in Tomato. Indian Phytopathol. 2020, 73, 293–300. [Google Scholar] [CrossRef]
- Nekoval, S.N.; Chernyakovich, M.N.; Churikova, A.K. Nematicidal Fungi and Their Mechanism of Action Against Root-Knot Nematodes (Meloidogyne spp.) (Review). Achiev. Sci. Technol. Agro-Ind. Complex 2023, 37, 10–20. [Google Scholar]
- Khan, M. Current Options for Managing Nematode Pest of Crops in India; Plant Nematology in India Parasitology Lab, Department of Life Sciences, Manipur University: Imphal, India, 2006; pp. 16–50. [Google Scholar]
- Khan, A.; Ahmad, G.; Haris, M.; Khan, A.A. Bio-Organics Management: Novel Strategies to Manage Root-Knot Nematode, Meloidogyne Incognita Pest of Vegetable Crops. Gesunde Pflanz. 2023, 75, 193–209. [Google Scholar] [CrossRef]
- Loffredo, A.; Edwards, S.; Ploeg, A.; Becker, J.O. Performance of Biological and Chemical Nematicides in Different Soils to Control Meloidogyne incognita in Tomato Plants. J. Phytopathol. 2024, 172, e13250. [Google Scholar] [CrossRef]
- Zhou, L.; Yuen, G.; Wang, Y.; Wei, L.; Ji, G. Evaluation of Bacterial Biological Control Agents for Control of Root-Knot Nematode Disease on Tomato. Crop Prot. 2016, 84, 8–13. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, P.; Kumari, A.; Kumar, R.; Pathak, D. Management of Root-Knot Nematode in Different Crops Using Microorganisms. In Plant Biotic Interactions: State of the Art; Springer: Cham, Switzerland, 2019; pp. 85–99. [Google Scholar] [CrossRef]
- Choi, H.W.; Klessig, D.F. DAMPs, MAMPs, and NAMPs in Plant Innate Immunity. BMC Plant Biol. 2016, 16, 232. [Google Scholar] [CrossRef] [PubMed]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.-P.; Lutts, S. Tomato Fruit Development and Metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Kadota, Y.; Shirasu, K. Plant Immune Responses to Parasitic Nematodes. Front. Plant Sci. 2019, 10, 1165. [Google Scholar] [CrossRef] [PubMed]
- Azlay, L.; El Boukhari, M.E.M.; Mayad, E.H.; Barakate, M. Biological Management of Root-Knot Nematodes (Meloidogyne spp.): A Review. Org. Agric. 2023, 13, 99–117. [Google Scholar] [CrossRef]
- Ikram, M.; Singh, S.; Ansari, M.J.; Islam, J.; Shariq, M.; Sulaiman Alharbi, R.; Siddiqui, M.A.; Siang Tan, C.; Sayyed, R.Z.; Awad Alahmadi, T. Evaluation of Botanicals for the Management of Meloidogyne Incognita Infecting Carrot and Volatile Nematicidal Metabolite Profiling. J. King Saud Univ.—Sci. 2023, 35, 102911. [Google Scholar] [CrossRef]
- Nekoval, S.N.; Churikova, A.K.; Chernyakovich, M.N.; Pridannikov, M.V. Primary Screening of Microorganisms against Meloidogyne Hapla (Chitwood, 1949) under the Conditions of Laboratory and Vegetative Tests on Tomato. Plants 2023, 12, 3323. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M.; Askary, T.H. Fungal and Bacterial Nematicides in Integrated Nematode Management Strategies. Egypt. J. Biol. Pest Control 2018, 28, 74. [Google Scholar] [CrossRef]
- Pontes, K.B.; Machado, A.C.Z.; Nogueira, A.F.; Fagundes, D.F.V.; Filho, R.B.d.L.; Mosela, M.; Mian, S.; Santiago, D.C.; Gonçalves, L.S.A. Efficacy of Microbiological Nematicides in Controlling Root-Knot Nematodes in Tomato. Front. Agron. 2024, 6, 1462323. [Google Scholar] [CrossRef]
- Velegurov, A.S.; Baraishchuk, G.V. Golden Potato Cyst Nematode in the Omsk Region and Methods for Reducing Its Harmfulness. Bull. Altai State Agric. Univ. 2021, 5, 29–35. [Google Scholar]
- Ministry of Agriculture of the Russian Federation State Catalog of Pesticides and Agrochemicals as of 1 August 2024. Available online: https://www.agroxxi.ru/goshandbook (accessed on 1 August 2024).
- State Commission of the Russian Federation for Selection Achievements State Register of Breeding Achievements Approved for Use; Plant Varieties; Volume 1. Available online: https://gossortrf.ru/registry/gosudarstvennyy-reestr-selektsionnykh-dostizheniy-dopushchennykh-k-ispolzovaniyu-tom-1-sorta-rasteni/ (accessed on 14 October 2024).
- Konrat, A.; Lychagina, S.; Shesteperov, A. Guidelines on the Methodology for In Vitro Screening of Strains and Isolates of Bacteria with Parasitic and Nematicidal Properties. Theory Pract. Combat. Parasit. Dis. 2021, 22, 575–590. [Google Scholar] [CrossRef]
- Soliman, M.S.; El-Deriny, M.M.; Ibrahim, D.S.S.; Zakaria, H.; Ahmed, Y. Suppression of Root-knot Nematode Meloidogyne Incognita on Tomato Plants Using the Nematode Trapping Fungus Arthrobotrys Oligospora Fresenius. J. Appl. Microbiol. 2021, 131, 2402–2415. [Google Scholar] [CrossRef] [PubMed]
- USSR GOST 24556-89; Processed Fruit and Vegetable Products. Methods for Determining Vitamin C. Publishing House of Standards: Moscow, Russia, 1989.
- USSR GOST 25555.0-82; Processed Fruit and Vegetable Products. Methods for Determining Titratable Acidity. Publishing House of Standards: Moscow, Russia, 2010.
- Lebedev, D.V.; Rozhkov, E.A.; Platonov, K.E.; Pozdeev, I.A. Study of the Efficiency of Using a Refractometer in Agriculture. In Proceedings of the Strategies and Vectors of Development of the Agro-Industrial Complex: Collection of Articles from the National Conference Dedicated to the 100th Anniversary of the Kuban State Agrarian University; Kuban State Agrarian University Named After I.T. Trubilin: Krasnodar, Russia, 2021; pp. 220–226. [Google Scholar]
- Agius, C.; Von Tucher, S.; Poppenberger, B.; Rozhon, W. Quantification of Sugars and Organic Acids in Tomato Fruits. MethodsX 2018, 5, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Kassam, R.; Yadav, J.; Jaiswal, N.; Chatterjee, M.; Hada, A.; Chawla, G.; Kamil, D.; Rao, U. Identification and Potential Utility of Metarhizium Anisopliae (ITCC9014) for the Management of Root-Knot Nematode, Meloidogyne Incognita. Indian Phytopathol. 2022, 75, 875–881. [Google Scholar] [CrossRef]
- Youssef, M.M.A.; El-Nagdi, W.M.A.; Lotfy, D.E.M. Evaluation of the Fungal Activity of Beauveria Bassiana, Metarhizium Anisopliae and Paecilomyces Lilacinus as Biocontrol Agents against Root-Knot Nematode, Meloidogyne Incognita on Cowpea. Bull. Natl. Res. Cent. 2020, 44, 112. [Google Scholar] [CrossRef]
- Kumari, M.; Sharma, M.; Baheti, B. Biological Control of Root-Knot Nematode, Meloidogyne Incognita Infecting Tomato (Solanum lycopersicum). J. Entomol. Zool. Stud. 2020, 8, 35–39. [Google Scholar]
- Massoud, M.A.; Saad, A.F.S.A.; Khalil, M.S.; Zakaria, M.; Selim, S. Comparative Biological Activity of Abamectin Formulations on Root-Knot Nematodes (Meloidogyne spp.) Infecting Cucumber Plants: In Vivo and in Vitro. Sci. Rep. 2023, 13, 12418. [Google Scholar] [CrossRef]
- Landi, S.; d’Errico, G.; Roversi, P.F.; d’Errico, F.P. Management of the root-knot nematode meloidogyne incognita on tomato with different combinations of nematicides and a resistant rootstock: Preliminary data. Redia G. Di Zool. 2018, 101, 47–52. [Google Scholar] [CrossRef]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.C.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.-M.; Krüger, A.; Tauqeer Alam, M.; et al. The Return of Metabolism: Biochemistry and Physiology of the Pentose Phosphate Pathway. Biol. Rev. Camb. Philos. Soc. 2015, 90, 927–963. [Google Scholar] [CrossRef]
- Wheeler, G.L.; Jones, M.A.; Smirnoff, N. The Biosynthetic Pathway of Vitamin C in Higher Plants. Nature 1998, 393, 365–369. [Google Scholar] [CrossRef]
- Beker, B.Y.; Sönmezoğlu, I.; Imer, F.; Apak, R. Protection of Ascorbic Acid from Copper(II)-Catalyzed Oxidative Degradation in the Presence of Flavonoids: Quercetin, Catechin and Morin. Int. J. Food Sci. Nutr. 2011, 62, 504–512. [Google Scholar] [CrossRef]
Microorganism Species | Strain | Titer, CFU/mL |
---|---|---|
Metarhizium anisopliae | F-22BK/2 | (2.5 ± 0.1) × 107 |
Arthrobotrys conoides | F-22BK/4 | (3.5 ± 0.7) × 106 |
Paecilomyces lilacinus | F-22BK/6 | (2.0 ± 0.5) × 107 |
Trichoderma viride | F-294 | (4.0 ± 0.2) × 106 |
Preparation | Active Compounds | Chemical Class | Titer, CFU/mL |
---|---|---|---|
Nematophagin–Mycopro | Arthrobotrys oligospora F-1303 | - | (3.0 ± 0.5) × 106 |
Vydate 5G | Oxamyl | Carbamates | - |
Fitoverm | Aversectin C | Avermectins + biological pesticides | - |
Treatments | Number of Examined Plants, Pieces | Number of Infected Plants, Pieces | Number of Galls/Plant | Biological Efficacy, % * |
---|---|---|---|---|
Control (without treatment) | 10 | 10 | 75.2 ± 1.2 | - |
Biological control (Nematophagin–Mycopro) | 10 | 8 | 39.1 ± 0.7 | 48.0 c |
Chemical control (Vydate 5G) | 10 | 1 | 2.4 ± 0.3 | 96.8 d |
Fitoverm | 10 | 8 | 31.0 ± 0.5 | 58.8 a |
Liquid culture Metarhizium anisopliae F-22BK/2 | 10 | 5 | 10.4 ± 0.6 | 86.2 ab |
Liquid culture Arthrobotrys conoides F-22BK/4 | 10 | 5 | 8.7 ± 0.3 | 88.4 b |
Liquid culture Paecilomyces lilacinus F-22BK/6 | 10 | 4 | 6.2 ± 0.2 | 91.8 e |
Liquid culture Trichoderma viride F-294 | 10 | 6 | 25.7 ± 1.6 | 65.8 f |
Treatments | Fruit Weight, g * | Yield, kg/m2 | |
---|---|---|---|
Average | Control Gain, % | ||
Control (without treatments) | 85.6 c | 6.0 | - |
Biological control (Nematophagin-Mycopro) | 92.2 abc | 6.6 | 10.0 |
Chemical control (Vydate 5G) | 83.1 ac | 5.5 | - |
Fitoverm | 85.2 c | 5.8 | - |
Liquid culture Metarhizium anisopliae F-22BK/2 | 93.0 ab | 6.3 | 5.0 |
Liquid culture Arthrobotrys conoides F-22BK/4 | 94.1 ab | 6.8 | 13.3 |
Liquid culture Paecilomyces lilacinus F-22BK/6 | 90.3 ab | 6.6 | 10.0 |
Liquid culture Trichoderma viride F-294 | 87.4 c | 6.5 | 8.3 |
Treatments | Concentration of Sugars–Total Acidity | Concentration of Sugars–Concentration of Vitamin C | Total Acidity–Concentration of Vitamin C |
---|---|---|---|
Control (without treatment) | 0.14 | −0.47 | 0.48 |
Biological control (Nematophagin–Mycopro) | 0 | −0.97 | 0.48 |
Chemical control (Vydate 5G) | −0.97 | −0.5 | 0.85 |
Fitoverm | −0.14 | −0.98 | 0.94 |
Liquid culture Metarhizium anisopliae F-22BK/2 | 0.33 | 0.65 | 0.84 |
Liquid culture Arthrobotrys conoides F-22BK/4 | −0.5 | 0.87 | 0.19 |
Liquid culture Paecilomyces lilacinus F-22BK/6 | 0.6 | −0.8 | −0.59 |
Liquid culture Trichoderma viride F-294 | −0.43 | −1.0 | −0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekoval, S.N.; Churikova, A.K.; Maskalenko, O.A.; Tukhuzheva, Z.Z.; Ivanov, V.V. Microorganism Strains, Environmentally Friendly and Biological Preparations Against Meloidogyne hapla Chitwood, 1949 and Their Impact on Fruit Quality and Tomato Crop Structure. Microorganisms 2024, 12, 2586. https://doi.org/10.3390/microorganisms12122586
Nekoval SN, Churikova AK, Maskalenko OA, Tukhuzheva ZZ, Ivanov VV. Microorganism Strains, Environmentally Friendly and Biological Preparations Against Meloidogyne hapla Chitwood, 1949 and Their Impact on Fruit Quality and Tomato Crop Structure. Microorganisms. 2024; 12(12):2586. https://doi.org/10.3390/microorganisms12122586
Chicago/Turabian StyleNekoval, Svetlana Nikolaevna, Arina Konstantinovna Churikova, Oksana Aleksandrovna Maskalenko, Zhanneta Zaurovna Tukhuzheva, and Valentin Valentinovich Ivanov. 2024. "Microorganism Strains, Environmentally Friendly and Biological Preparations Against Meloidogyne hapla Chitwood, 1949 and Their Impact on Fruit Quality and Tomato Crop Structure" Microorganisms 12, no. 12: 2586. https://doi.org/10.3390/microorganisms12122586
APA StyleNekoval, S. N., Churikova, A. K., Maskalenko, O. A., Tukhuzheva, Z. Z., & Ivanov, V. V. (2024). Microorganism Strains, Environmentally Friendly and Biological Preparations Against Meloidogyne hapla Chitwood, 1949 and Their Impact on Fruit Quality and Tomato Crop Structure. Microorganisms, 12(12), 2586. https://doi.org/10.3390/microorganisms12122586