The Human Nasal Microbiome: A Perspective Study During the SARS-CoV-2 Pandemic in Malta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Data Collection
2.2. Full-Length 16S rRNA Sequencing
2.3. Data Analysis Workflow
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Sequence Data Quality and Filtering
3.3. Richness, Evenness, and Diversity Metrics
3.4. Nasal Microbiome Composition
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Candel, S.; Tyrkalska, S.D.; Álvarez-Santacruz, C.; Mulero, V. The nasopharyngeal microbiome in COVID-19. Emerg. Microbes Infect. 2023, 12, e2165970. [Google Scholar] [CrossRef] [PubMed]
- Di Stadio, A.; Costantini, C.; Renga, G.; Pariano, M.; Ricci, G.; Romani, L. The Microbiota/Host Immune System Interaction in the Nose to Protect from COVID-19. Life 2020, 10, 345. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, N.P.G.; Locher, K.; MacDonald, C.; Chorlton, S.D.; Charles, M.; Manges, A.R. Alterations in the nasopharyngeal microbiome associated with SARS-CoV-2 infection status and disease severity. PLoS ONE 2022, 17, e0275815. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Montero, M.T.V.; Rowe, K.; Kirton, R.; Kunik, F., Jr. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: A review of current evidence. Expert. Rev. Clin. Pharmacol. 2021, 14, 601–621. [Google Scholar] [CrossRef]
- Giugliano, R.; Sellitto, A.; Ferravante, C.; Rocco, T.; D’Agostino, Y.; Alexandrova, E.; Lamberti, J.; Palumbo, D.; Galdiero, M.; Vaccaro, E.; et al. NGS analysis of nasopharyngeal microbiota in SARS-CoV-2 positive patients during the first year of the pandemic in the Campania Region of Italy. Microb. Pathog. 2022, 165, 105506. [Google Scholar] [CrossRef]
- Engen, P.A.; Naqib, A.; Jennings, C.; Green, S.J.; Landay, A.; Keshavarzian, A.; Voigt, R.M. Nasopharyngeal Microbiota in SARS-CoV-2 Positive and Negative Patients. Biol. Proced. Online 2021, 23, 10. [Google Scholar] [CrossRef]
- Kumpitsch, C.; Koskinen, K.; Schöpf, V.; Moissl-Eichinger, C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019, 17, 87. [Google Scholar] [CrossRef]
- Hurst, J.H.; McCumber, A.W.; Aquino, J.N.; Rodriguez, J.; Heston, S.M.; Lugo, D.J.; Rotta, A.T.; Turner, N.A.; Pfeiffer, T.S.; Gurley, T.C.; et al. Age-Related Changes in the Nasopharyngeal Microbiome Are Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Symptoms Among Children, Adolescents, and Young Adults. Clin. Infect. Dis. 2022, 75, e928–e937. [Google Scholar] [CrossRef]
- Jochems, S.P.; Ferreira, D.M.; Smits, H.H. Microbiota and compartment matter in the COVID-19 response. Nat. Immunol. 2021, 22, 1350–1352. [Google Scholar] [CrossRef]
- Bellato, M.; Cappellato, M.; Longhin, F.; Del Vecchio, C.; Brancaccio, G.; Cattelan, A.M.; Brun, P.; Salaris, C.; Castagliuolo, I.; Di Camillo, B. Uncover a microbiota signature of upper respiratory tract in patients with SARS-CoV-2 +. Sci. Rep. 2023, 13, 16867. [Google Scholar] [CrossRef]
- De Maio, F.; Posteraro, B.; Ponziani, F.R.; Cattani, P.; Gasbarrini, A.; Sanguinetti, M. Nasopharyngeal Microbiota Profiling of SARS-CoV-2 Infected Patients. Biol. Proced. Online 2020, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Sarkar, M.; Maddheshiya, A.; De, D.; Paul, S.; Dey, S.; Pal, K.; Roy, S.K.; Ghosh, A.; Sengupta, S.; et al. Upper respiratory tract microbiome profiles in SARS-CoV-2 Delta and Omicron infected patients exhibit variant specific patterns and robust prediction of disease groups. Microbiol. Spectr. 2023, 11, e0236823. [Google Scholar] [CrossRef] [PubMed]
- Hankin, D.G.; Mohr, M.S.; Newman, K.B. Stratified Sampling. In Sampling Theory: For the Ecological and Natural Resource Sciences; Online Edition; Oxford Academic: Oxford, UK, 2019; Chapter 5; pp. 68–91. [Google Scholar] [CrossRef]
- Biazzo, M.; Madeddu, S.; Elnifro, E.; Sultana, T.; Muscat, J.; Scerri, C.A.; Santoro, F.; Pinzauti, D. Genome Sequences of 10 SARS-CoV-2 Viral Strains Obtained by Nanopore Sequencing of Nasopharyngeal Swabs in Malta. Microbiol. Resour. Announc. 2021, 10, e01375-20. [Google Scholar] [CrossRef] [PubMed]
- Szoboszlay, M.; Schramm, L.; Pinzauti, D.; Scerri, J.; Sandionigi, A.; Biazzo, M. Nanopore Is Preferable over Illumina for 16S Amplicon Sequencing of the Gut Microbiota When Species-Level Taxonomic Classification, Accurate Estimation of Richness, or Focus on Rare Taxa Is Required. Microorganisms 2023, 11, 804. [Google Scholar] [CrossRef]
- De Coster, W.; Rademakers, R. NanoPack2: Population-scale evaluation of long-read sequencing data. Bioinformatics 2023, 39, btad311. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Cuscó, A.; Catozzi, C.; Viñes, J.; Sanchez, A.; Francino, O. Microbiota profiling with long amplicons using Nanopore sequencing: Full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon. F1000Res 2018, 7, 1755. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Marijon, P.; Chikhi, R.; Varré, J.S. yacrd and fpa: Upstream tools for long-read genome assembly. Bioinformatics 2020, 36, 3894–3896. [Google Scholar] [CrossRef]
- Curry, K.D.; Wang, Q.; Nute, M.G.; Tyshaieva, A.; Reeves, E.; Soriano, S.; Wu, Q.; Graeber, E.; Finzer, P.; Mendling, W.; et al. Emu: Species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nat. Methods 2022, 19, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Parks, H.D.; Chuvochina, M.; Rinke, C.; Mussig, A.J.; Chaumeil, P.A.; Hugenholtz, P. GTDB: An ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022, 50, D785–D794. [Google Scholar] [CrossRef] [PubMed]
- Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 March 2023).
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 1 March 2023).
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Lahti, L.; Shetty, S. Microbiome R Package. 2012–2019. Available online: https://bioconductor.org/packages/release/bioc/html/microbiome.html (accessed on 1 March 2023).
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 March 2023).
- Lin, H.; Peddada, S.D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr. rms: Regression Modeling Strategies. R Package Version 6.7-0. 2023. Available online: https://CRAN.R-project.org/package=rms (accessed on 1 March 2023).
- Hoque, M.N.; Sarkar, M.M.H.; Rahman, M.S.; Akter, S.; Nabu, T.A.; Goswami, B.; Jahan, I.; Hossain, M.S.; Shamsuzzaman, A.K.M.; Nafisa, T.; et al. SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiome with inclusion of pathobionts. Sci. Rep. 2021, 11, 24042. [Google Scholar] [CrossRef]
- Rhoades, N.S.; Pinski, A.N.; Monsibais, A.N.; Jankeel, A.; Doratt, B.M.; Cinco, I.R.; Ibraim, I.; Messaoudi, I. Acute SARS-CoV-2 infection is associated with an increased abundance of bacterial pathogens, including Pseudomonas aeruginosa in the nose. Cell Rep. 2021, 36, 109637. [Google Scholar] [CrossRef]
- Jung, E.J.; Lee, S.K.; Shin, S.H.; Kim, J.S.; Woo, H.; Cho, E.J.; Hyun, J.; Kim, J.S.; Kim, H.S. Comparison of Nasal Swabs, Nasopharyngeal Swabs, and Saliva Samples for the Detection of SARS-CoV-2 and other Respiratory Virus Infections. Ann. Lab. Med. 2023, 43, 434–442. [Google Scholar] [CrossRef]
- Clark, S.E. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr. Opin. Immunol. 2020, 66, 42–49. [Google Scholar] [CrossRef]
COVID-Negative (n = 94) | COVID-Positive (n = 85) | |||
---|---|---|---|---|
N. (Median) | % | N. (Median) | % | |
Age group: | ||||
0–14 | 6 (4) | 6.2% | 6 (7) | 7.1% |
15–44 | 54 (36) | 57.5% | 42 (33) | 49.4% |
45–64 | 16 (55) | 17.0% | 9 (47.5) | 10.6% |
>65 | 18 (68.5) | 19.2% | 28 (69) | 32.9% |
Gender: | ||||
Female | 40 | 42.6% | 38 | 44.7% |
Male | 49 | 52.1% | 39 | 45.9% |
NAs | 5 | 5.3% | 8 | 9.4% |
Ethnicity: | ||||
African | 3 | 3.2% | 1 | 1.2% |
American | 14 | 14.9% | 1 | 1.2% |
Asian | 17 | 18.1% | 3 | 3.5% |
European | 50 | 53.2% | 57 | 67.1% |
NAs | 10 | 10.6% | 23 | 27% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzauti, D.; De Jaegher, S.; D’Aguanno, M.; Biazzo, M. The Human Nasal Microbiome: A Perspective Study During the SARS-CoV-2 Pandemic in Malta. Microorganisms 2024, 12, 2570. https://doi.org/10.3390/microorganisms12122570
Pinzauti D, De Jaegher S, D’Aguanno M, Biazzo M. The Human Nasal Microbiome: A Perspective Study During the SARS-CoV-2 Pandemic in Malta. Microorganisms. 2024; 12(12):2570. https://doi.org/10.3390/microorganisms12122570
Chicago/Turabian StylePinzauti, David, Simon De Jaegher, Maria D’Aguanno, and Manuele Biazzo. 2024. "The Human Nasal Microbiome: A Perspective Study During the SARS-CoV-2 Pandemic in Malta" Microorganisms 12, no. 12: 2570. https://doi.org/10.3390/microorganisms12122570
APA StylePinzauti, D., De Jaegher, S., D’Aguanno, M., & Biazzo, M. (2024). The Human Nasal Microbiome: A Perspective Study During the SARS-CoV-2 Pandemic in Malta. Microorganisms, 12(12), 2570. https://doi.org/10.3390/microorganisms12122570