A Meta-Analysis of the Human Gut Mycobiome Using Internal Transcribed Spacer Data
Abstract
:1. Introduction
2. Method
2.1. Public Internal Transcribed Spacer (ITS) Sequencing Data Screening and Preprocessing
2.2. Internal Transcribed Spacer (ITS) Data Processing and Taxonomy Classification
2.3. Internal Transcribed Spacer (ITS) Abundance Differential Microbes Analysis
2.4. Disease Prediction Model Construction Based on Internal Transcribed Spacer (ITS) Data
2.5. Data Statistics and Visualization
3. Result
3.1. Data Screening and Quality Control
3.2. α-Diversity and β-Diversity Analysis of Intestinal Mycobiome
3.3. Taxonomy Classification of Intestinal Fungi
3.4. Identify Abundance-Differentiated Intestinal Mycobiome Between Disease and Control Groups
3.5. Disease Prediction Modeling Based on Intestinal Internal Transcribed Spacer (ITS) Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Heijden, M.G.A.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef]
- Genre, A.; Lanfranco, L.; Perotto, S.; Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020, 18, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Kohler, A.; Murat, C.; Veneault-Fourrey, C.; Hibbett, D.S. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 2016, 14, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.C. Fungi of the human gut microbiota: Roles and significance. Int. J. Med. Microbiol. 2021, 311, 151490. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.-Y.; Yang, Y.-G.; Chen, S.; Teng, Y.; Li, X.-Z. Genetic diversity and molecular epidemiology of Candida albicans from vulvovaginal candidiasis patients. Infect. Genet. Evol. 2021, 92, 104893. [Google Scholar] [CrossRef] [PubMed]
- Huseyin, C.E.; O’Toole, P.W.; Cotter, P.D.; Scanlan, P.D. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 2017, 41, 479–511. [Google Scholar] [CrossRef]
- Leonardi, I.; Gao, I.H.; Lin, W.-Y.; Allen, M.; Li, X.V.; Fiers, W.D.; De Celie, M.B.; Putzel, G.G.; Yantiss, R.K.; Johncilla, M.; et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 2022, 185, 831–846.e14. [Google Scholar] [CrossRef]
- Iliev, I.D.; Funari, V.A.; Taylor, K.D.; Nguyen, Q.; Reyes, C.N.; Strom, S.P.; Brown, J.; Becker, C.A.; Fleshner, P.R.; Dubinsky, M.; et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012, 336, 1314–1317. [Google Scholar] [CrossRef]
- Bacher, P.; Hohnstein, T.; Beerbaum, E.; Röcker, M.; Blango, M.G.; Kaufmann, S.; Röhmel, J.; Eschenhagen, P.; Grehn, C.; Seidel, K.; et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 2019, 176, 1340–1355.e15. [Google Scholar] [CrossRef]
- Lang, S.; Duan, Y.; Liu, J.; Torralba, M.G.; Kuelbs, C.; Ventura-Cots, M.; Abraldes, J.G.; Bosques-Padilla, F.; Verna, E.C.; Brown, R.S.; et al. Intestinal Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients With Alcoholic Hepatitis. Hepatology 2020, 71, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.-R.; Zhang, Z.; Zhou, Y.-Y.; Zhang, X.; Sun, W.-J.; Yang, Z.; Zhao, J.-H.; Jiang, H.-Y. Altered gut bacterial-fungal interkingdom networks in children and adolescents with depression. J. Affect. Disord. 2023, 332, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Ali, S.; Shrode, R.L.; Shahi, S.K.; Jensen, S.N.; Hoang, J.; Cassidy, S.; Olalde, H.; Guseva, N.; Paullus, M.; et al. Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness. PLoS ONE 2022, 17, e0264556. [Google Scholar] [CrossRef]
- Demir, M.; Lang, S.; Hartmann, P.; Duan, Y.; Martin, A.; Miyamoto, Y.; Bondareva, M.; Zhang, X.; Wang, Y.; Kasper, P.; et al. The fecal mycobiome in non-alcoholic fatty liver disease. J. Hepatol. 2022, 76, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, Y.; Li, X.; Wang, M.; Dong, J.; Tang, W.; Lei, Z.; Guo, Y.; Li, M.; Li, Y. Alterations of gut fungal microbiota in patients with rheumatoid arthritis. PeerJ 2022, 10, e13037. [Google Scholar] [CrossRef] [PubMed]
- Bandala-Sanchez, E.; Roth-Schulze, A.J.; Oakey, H.; Penno, M.A.S.; Bediaga, N.G.; Naselli, G.; Ngui, K.M.; Smith, A.D.; Huang, D.; Zozaya-Valdes, E.; et al. Women with type 1 diabetes exhibit a progressive increase in gut Saccharomyces cerevisiae in pregnancy associated with evidence of gut inflammation. Diabetes Res. Clin. Pract. 2022, 184, 109189. [Google Scholar] [CrossRef]
- Shuai, M.; Fu, Y.; Zhong, H.-L.; Gou, W.; Jiang, Z.; Liang, Y.; Miao, Z.; Xu, J.-J.; Huynh, T.; Wahlqvist, M.L.; et al. Mapping the human gut mycobiome in middle-aged and elderly adults: Multiomics insights and implications for host metabolic health. Gut 2022, 71, 1812–1820. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Chen, L.; Ma, T.; Li, X.; Zheng, M.; Zhou, X.; Chen, L.; Qian, X.; Xi, J.; Lu, H.; et al. EasyAmplicon: An easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research. Imeta 2023, 2, e83. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, W.; Gao, Z.; Wang, G.; Zhao, H. Phylogenetic Utility of rRNA ITS2 Sequence-Structure under Functional Constraint. Int. J. Mol. Sci. 2020, 21, 6395. [Google Scholar] [CrossRef]
- Lai, S.; Yan, Y.; Pu, Y.; Lin, S.; Qiu, J.-G.; Jiang, B.-H.; Keller, M.I.; Wang, M.; Bork, P.; Chen, W.-H.; et al. Enterotypes of the human gut mycobiome. Microbiome 2023, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Shalon, D.; Culver, R.N.; Grembi, J.A.; Folz, J.; Treit, P.V.; Shi, H.; Rosenberger, F.A.; Dethlefsen, L.; Meng, X.; Yaffe, E.; et al. Profiling the human intestinal environment under physiological conditions. Nature 2023, 617, 581–591. [Google Scholar] [CrossRef]
- Tarris, G.; de Rougemont, A.; Charkaoui, M.; Michiels, C.; Martin, L.; Belliot, G. Enteric Viruses and Inflammatory Bowel Disease. Viruses 2021, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xu, X.; Liang, L.; Wang, X.; Bai, X.; Zhu, L.; He, Q.; Liang, H.; Xin, X.; Wang, L.; et al. Lactic Acid-Producing Probiotic Saccharomyces cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Front. Immunol. 2021, 12, 777665. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wang, C.; Qin, X.; Zhou, B.; Liu, X.; Liu, T.; Xie, R.; Liu, J.; Wang, B.; Cao, H. Saccharomyces boulardii, a yeast probiotic, inhibits gut motility through upregulating intestinal serotonin transporter and modulating gut microbiota. Pharmacol. Res. 2022, 181, 106291. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.K.; Sarker, M.; Li, T.; Yin, J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. Biomed. Res. Int. 2018, 2018, 9478630. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Kaźmierczak-Siedlecka, K.; Ruszkowski, J.; Fic, M.; Folwarski, M.; Makarewicz, W. Saccharomyces boulardii CNCM I-745: A Non-bacterial Microorganism Used as Probiotic Agent in Supporting Treatment of Selected Diseases. Curr. Microbiol. 2020, 77, 1987–1996. [Google Scholar] [CrossRef]
- Musumeci, S.; Coen, M.; Leidi, A.; Schrenzel, J. The human gut mycobiome and the specific role of Candida albicans: Where do we stand, as clinicians? Clin. Microbiol. Infect. 2022, 28, 58–63. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, X.; Han, J.; Yin, R.; Zhang, S.; Liu, H. Gut mycobiome: A “black box” of gut microbiome-host interactions. WIREs Mech. Dis. 2023, 15, e1611. [Google Scholar] [CrossRef] [PubMed]
- Rai, L.S.; Wijlick, L.V.; Bougnoux, M.-E.; Bachellier-Bassi, S.; d’Enfert, C. Regulators of commensal and pathogenic life-styles of an opportunistic fungus-Candida albicans. Yeast 2021, 38, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Barac, A.; Vujovic, A.; Peric, J.; Tulic, I.; Stojanovic, M.; Stjepanovic, M. Rethinking Aspergillosis in the Era of Microbiota and Mycobiota. Mycopathologia 2024, 189, 49. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Q.; Khan, I.A.; Li, Y.; Wang, J.; Wang, J.; Liu, X.; Lin, F.; Lu, J. The Methylcitrate Cycle and Its Crosstalk with the Glyoxylate Cycle and Tricarboxylic Acid Cycle in Pathogenic Fungi. Molecules 2023, 28, 6667. [Google Scholar] [CrossRef] [PubMed]
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Barlow, G.M.; Mathur, R. Type 2 Diabetes and the Microbiome. J. Endocr. Soc. 2022, 7, bvac184. [Google Scholar] [CrossRef] [PubMed]
- Metwaly, A.; Reitmeier, S.; Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Cao, Y.; Liang, N.; Ma, X.; Fang, J.-A.; Zhang, X. Investigating the causal association between gut microbiota and type 2 diabetes: A meta-analysis and Mendelian randomization. Front. Public. Health 2024, 12, 1342313. [Google Scholar] [CrossRef]
- Coker, O.O.; Liu, C.; Wu, W.K.K.; Wong, S.H.; Jia, W.; Sung, J.J.Y.; Yu, J. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers. Microbiome 2022, 10, 35. [Google Scholar] [CrossRef]
Cohort Description | PMID | Disease | Number of Disease Group Samples | Number of Control Group Samples | Total |
---|---|---|---|---|---|
Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis | 31228214 | AH | 36 | 9 | 45 |
Altered gut bacterial–fungal interkingdom networks in children and adolescents with depression | 37003434 | DPR | 145 | 110 | 255 |
Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness | 35472144 | MS | 17 | 27 | 44 |
The fecal mycobiome in non-alcoholic fatty liver disease | 34896404 | NAFLD | 41 | 16 | 57 |
Alterations of gut fungal microbiota in patients with rheumatoid arthritis | 35251791 | RA | 47 | 39 | 86 |
Women with type 1 diabetes exhibit a progressive increase in gut Saccharomyces cerevisiae in pregnancy associated with evidence of gut inflammation | 35051423 | T1DM | 99 | 56 | 155 |
Mapping the human gut mycobiome in middle-aged and elderly adults; multiomics insights and implications for host metabolic health | 35017200 | Healthy | 0 | 1633 | 1633 |
Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis, the fecal mycobiome in non-alcoholic fatty liver disease | 31228214 | AUD | 75 | 22 | 97 |
Total | 460 | 1912 | 2372 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, Y.; Yuan, Q.; Wang, Z.; Hu, S.; Yin, P.; He, Z. A Meta-Analysis of the Human Gut Mycobiome Using Internal Transcribed Spacer Data. Microorganisms 2024, 12, 2567. https://doi.org/10.3390/microorganisms12122567
Zhang Z, Zhang Y, Yuan Q, Wang Z, Hu S, Yin P, He Z. A Meta-Analysis of the Human Gut Mycobiome Using Internal Transcribed Spacer Data. Microorganisms. 2024; 12(12):2567. https://doi.org/10.3390/microorganisms12122567
Chicago/Turabian StyleZhang, Zeming, Yining Zhang, Qixiang Yuan, Zuoyi Wang, Songnian Hu, Peng Yin, and Zilong He. 2024. "A Meta-Analysis of the Human Gut Mycobiome Using Internal Transcribed Spacer Data" Microorganisms 12, no. 12: 2567. https://doi.org/10.3390/microorganisms12122567
APA StyleZhang, Z., Zhang, Y., Yuan, Q., Wang, Z., Hu, S., Yin, P., & He, Z. (2024). A Meta-Analysis of the Human Gut Mycobiome Using Internal Transcribed Spacer Data. Microorganisms, 12(12), 2567. https://doi.org/10.3390/microorganisms12122567