Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Genome Sequences and Annotation
2.3. Genome Characterization and Mining
2.4. Data Availability
3. Results
3.1. Genomic Sequencing Report
3.2. Prediction of Functions Related to Antagonism, Plant Growth Promotion and Virulence
3.3. PGP Traits by Inferring Genome Sequences with PLaBAse Database
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oleńska, E.; Małek, W.; Wójcik, M.; Swiecicka, I.; Thijs, S.; Vangronsveld, J. Beneficial Features of Plant Growth-Promoting Rhizobacteria for Improving Plant Growth and Health in Challenging Conditions: A Methodical Review. Sci. Total Environ. 2020, 743, 140682. [Google Scholar] [CrossRef] [PubMed]
- Khoso, M.A.; Wagan, S.; Alam, I.; Hussain, A.; Ali, Q.; Saha, S.; Poudel, T.R.; Manghwar, H.; Liu, F. Impact of Plant Growth-Promoting Rhizobacteria (PGPR) on Plant Nutrition and Root Characteristics: Current Perspective. Plant Stress 2024, 11, 100341. [Google Scholar] [CrossRef]
- Su, F.; Zhao, B.; Dhondt-Cordelier, S.; Vaillant-Gaveau, N. Plant-Growth-Promoting Rhizobacteria Modulate Carbohydrate Metabolism in Connection with Host Plant Defense Mechanism. Int. J. Mol. Sci. 2024, 25, 1465. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Liu, H.; Macdonald, C.A.; Singh, B.K. Application of Microbial Inoculants Significantly Enhances Crop Productivity: A Meta-Analysis of Studies from 2010 to 2020. J. Sustain. Agric. Environ. 2022, 1, 216–225. [Google Scholar] [CrossRef]
- Mapelli, F.; Mengoni, A.; Riva, V.; Borin, S. Bacterial Culturing Is Crucial to Boost Sustainable Agriculture. Trends Microbiolol. 2023, 31, 1–4. [Google Scholar] [CrossRef]
- Mącik, M.; Gryta, A.; Frąc, M. Biofertilizers in Agriculture: An Overview on Concepts, Strategies and Effects on Soil Microorganisms. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press; Elsevier Inc.: Cambridge, MA, USA, 2020; Volume 162, pp. 31–87. [Google Scholar] [CrossRef]
- Maitra, S.; Brestic, M.; Bhadra, P.; Shankar, T.; Praharaj, S.; Palai, J.B.; Shah, M.M.R.; Barek, V.; Ondrisik, P.; Skalický, M.; et al. Bioinoculants—Natural Biological Resources for Sustainable Plant Production. Microorganisms 2022, 10, 51. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Li, M.; Zhang, K.; Ma, W.; Zheng, L.; Xu, H.; Cui, B.; Liu, R.; Yang, Y.; et al. Functional Assembly of Root-Associated Microbial Consortia Improves Nutrient Efficiency and Yield in Soybean. J. Integr. Plant Biol. 2021, 63, 1021–1035. [Google Scholar] [CrossRef]
- Tabacchioni, S.; Passato, S.; Ambrosino, P.; Huang, L.; Caldara, M.; Cantale, C.; Hett, J.; Del Fiore, A.; Fiore, A.; Schlüter, A.; et al. Identification of Beneficial Microbial Consortia and Bioactive Compounds with Potential as Plant Biostimulants for a Sustainable Agriculture. Microorganisms 2021, 9, 426. [Google Scholar] [CrossRef]
- Jain, A.; Singh, S.; Kumar Sarma, B.; Bahadur Singh, H. Microbial Consortium-Mediated Reprogramming of Defence Network in Pea to Enhance Tolerance against Sclerotinia Sclerotiorum. J. Appl. Microbiol. 2012, 112, 537–550. [Google Scholar] [CrossRef]
- Ke, J.; Wang, B.; Yoshikuni, Y. Microbiome Engineering: Synthetic Biology of Plant-Associated Microbiomes in Sustainable Agriculture. Trends Biotechnol. 2021, 39, 244–261. [Google Scholar] [CrossRef]
- Shayanthan, A.; Ordoñez, P.A.C.; Oresnik, I.J. The Role of Synthetic Microbial Communities (SynCom) in Sustainable Agriculture. Front. Agron. 2022, 4, 896307. [Google Scholar] [CrossRef]
- Fagorzi, C.; Passeri, I.; Cangioli, L.; Vaccaro, F.; Mengoni, A. When Biodiversity Preservation Meets Biotechnology: The Challenge of Developing Synthetic Microbiota for Resilient Sustainable Crop Production. J. Sustain. Agric. Environ. 2023, 2, 5–15. [Google Scholar] [CrossRef]
- Vaccaro, F.; Cangioli, L.; Mengoni, A.; Fagorzi, C. Synthetic Plant Microbiota Challenges in Nonmodel Species. Trends Microbiol. 2022, 30, 922–924. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M. Simplifying the Complexity of the Soil Microbiome to Guide the Development of Next-Generation SynComs. J. Sustain. Agric. Environ. 2022, 1, 9–15. [Google Scholar] [CrossRef]
- Vorholt, J.A.; Vogel, C.; Carlström, C.I.; Müller, D.B. Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. Cell Host Microbe. 2017, 22, 142–155. [Google Scholar] [CrossRef]
- Sessitsch, A.; Pfaffenbichler, N.; Mitter, B. Microbiome Applications from Lab to Field: Facing Complexity. Trends Plant Sci. 2019, 24, 194–198. [Google Scholar] [CrossRef]
- Neuhoff, D.; Neumann, G.; Weinmann, M. Testing Plant Growth Promoting Microorganisms in the Field—A Proposal for Standards. Front. Plant Sci. 2024, 14, 1324665. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Hou, J.; Tu, C.; Luo, Y.; Christie, P. Whole Genome Analysis of Halotolerant and Alkalotolerant Plant Growth-Promoting Rhizobacterium Klebsiella Sp. D5A. Sci. Rep. 2016, 6, 26710. [Google Scholar] [CrossRef]
- Gupta, A.; Gopal, M.; Thomas, G.V.; Manikandan, V.; Gajewski, J.; Thomas, G.; Seshagiri, S.; Schuster, S.C.; Rajesh, P.; Gupta, R. Whole Genome Sequencing and Analysis of Plant Growth Promoting Bacteria Isolated from the Rhizosphere of Plantation Crops Coconut, Cocoa and Arecanut. PLoS ONE 2014, 9, e104259. [Google Scholar] [CrossRef]
- Mingchao, M.; Wang, C.; Ding, Y.; Li, L.; Shen, D.; Jiang, X.; Guan, D.; Cao, F.; Chen, H.; Feng, R.; et al. Complete Genome Sequence of Paenibacillus Polymyxa SC2, a Strain of Plant Growth-Promoting Rhizobacterium with Broad-Spectrum Antimicrobial Activity. J. Bacteriol. 2011, 193, 311–312. [Google Scholar] [CrossRef]
- Khalifa, A.; Alsowayeh, N. Whole-Genome Sequence Insight into the Plant-Growth-Promoting Bacterium Priestia Filamentosa Strain AZC66 Obtained from Zygophyllum Coccineum Rhizosphere. Plants 2023, 12, 1944. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Kim, H.A.; Kim, J.S.; Kim, S.Y.; Jeong, H.; Kang, S.G.; Kim, B.K.; Kwon, S.K.; Lee, C.H.; Yu, D.S.; et al. Genome Sequence of the Plant Growth-Promoting Rhizobacterium Bacillus sp. Strain JS. J. Bacteriol. 2012, 194, 3760–3761. [Google Scholar] [CrossRef] [PubMed]
- Mathimaran, N.; Srivastava, R.; Wiemken, A.; Sharma, A.K.; Boller, T. Genome Sequences of Two Plant Growth-Promoting Fluorescent Pseudomonas Strains, R62 and R81. J. Bacteriol. 2012, 194, 3760–3761. [Google Scholar] [CrossRef] [PubMed]
- Ercole, T.G.; Kava, V.M.; Petters-Vandresen, D.A.L.; Nassif Gomes, M.E.; Aluizio, R.; Ribeiro, R.A.; Hungria, M.; Galli, L.V. Unlocking the Growth-Promoting and Antagonistic Power: A Comprehensive Whole Genome Study on Bacillus Velezensis Strains. Gene 2024, 927, 1486669. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Wu, Y.; Zhu, N.; Leng, F.; Wang, Y. Bacillus LicheniformisYB06: A Rhizosphere–Genome-Wide Analysis and Plant Growth-Promoting Analysis of a Plant Growth-Promoting Rhizobacterium Isolated from Codonopsis Pilosula. Microorganisms 2024, 12, 1861. [Google Scholar] [CrossRef]
- Mullins, A.J.; Murray, J.A.H.; Bull, M.J.; Jenner, M.; Jones, C.; Webster, G.; Green, A.E.; Neill, D.R.; Connor, T.R.; Parkhill, J.; et al. Genome Mining Identifies Cepacin as a Plant-Protective Metabolite of the Biopesticidal Bacterium Burkholderia Ambifaria. Nat. Microbiol. 2019, 4, 996–1005. [Google Scholar] [CrossRef]
- Yapa, N.; Lakmali, D.; De Zoysa, K.S.; Silva, S.; Manawadu, C.; Herath, B.M.; Madhushan, A.; Perera, G.; Ratnayakae, O.; Kapilan, R.; et al. Biofertilizers: An Emerging Trend in Agricultural Sustainability. Chiang Mai J. Sci. 2022, 49, 1–33. [Google Scholar] [CrossRef]
- Mahdi, I.; Fahsi, N.; Hijri, M.; Sobeh, M. Antibiotic Resistance in Plant Growth Promoting Bacteria: A Comprehensive Review and Future Perspectives to Mitigate Potential Gene Invasion Risks. Front. Microbiol. 2022, 13, 999988. [Google Scholar] [CrossRef]
- Magarelli, R.A.; Trupo, M.; Ambrico, A.; Larocca, V.; Martino, M.; Palazzo, S.; Balducchi, R.; Joutsjoki, V.; Pihlanto, A.; Bevivino, A. Designing a Waste-Based Culture Medium for the Production of Plant Growth Promoting Microorganisms Based on Cladodes Juice from Opuntia Ficus-Indica Pruning. Fermentation 2022, 8, 225. [Google Scholar] [CrossRef]
- Hett, J.; Neuhoff, D.; Döring, T.F.; Masoero, G.; Ercole, E.; Bevivino, A. Effects of Multi-Species Microbial Inoculants on Early Wheat Growth and Litterbag Microbial Activity. Agronomy 2022, 12, 899. [Google Scholar] [CrossRef]
- Graziano, S.; Caldara, M.; Gullì, M.; Bevivino, A.; Maestri, E.; Marmiroli, N. A Metagenomic and Gene Expression Analysis in Wheat (T. durum) and Maize (Z. mays) Biofertilized with PGPM and Biochar. Int. J. Mol. Sci. 2022, 23, 10376. [Google Scholar] [CrossRef] [PubMed]
- Hett, J.; Döring, T.F.; Bevivino, A.; Neuhoff, D. Impact of Microbial Consortia on Organic Maize in a Temperate Climate Varies with Environment but Not with Fertilization. Eur. J. Agron. 2023, 144, 126743. [Google Scholar] [CrossRef]
- Caldara, M.; Gullì, M.; Graziano, S.; Riboni, N.; Maestri, E.; Mattarozzi, M.; Bianchi, F.; Careri, M.; Marmiroli, N. Microbial Consortia and Biochar as Sustainable Biofertilisers: Analysis of Their Impact on Wheat Growth and Production. Sci. Tot. Environ. 2024, 917, 170168. [Google Scholar] [CrossRef] [PubMed]
- Bevivino, A.; Dalmastri, C.; Tabacchioni, S.; Chiarini, L. Efficacy of Burkholderia Cepacia MCI 7 in Disease Suppression and Growth Promotion of Maize. Biol Fertil. Soils 2000, 31, 225–231. [Google Scholar] [CrossRef]
- Nacamulli, C.; Bevivino, A.; Dalmastri, C.; Tabacchioni, S.; Chiarini, L. Perturbation of Maize Rhizosphere Microflora Following Seed Bacterization with Burkholderia Cepacia MCI 7. FEMS Microbiol. Ecol. 1997, 23, 183–193. [Google Scholar] [CrossRef]
- Nielsen, M.N.; Sørensen, J.; Fels, J.; Pedersen, H.C. Secondary Metabolite- and Endochitinase-Dependent Antagonism toward Plant-Pathogenic Microfungi of Pseudomonas Fluorescens Isolates from Sugar Beet Rhizosphere. Appl. Environm. Microbiol. 1998, 64, 3563–3569. [Google Scholar] [CrossRef]
- Thirup, L.; Johnsen, K.; Winding, A. Succession of Indigenous Pseudomonas Spp. and Actinomycetes on Barley Roots Affected by the Antagonistic Strain Pseudomonas Fluorescens DR54 and the Fungicide Imazalil. Appl. Environm. Microbiol. 2001, 67, 1147–1153. [Google Scholar] [CrossRef]
- Andersen, K.S.; Winding, A. Non-Target Effects of Bacterial Biological Control Agents on Soil Protozoa. Biol. Fertil. Soils 2004, 40, 230–236. [Google Scholar] [CrossRef]
- Johansen, A.; Knudsen, I.M.B.; Binnerup, S.J.; Winding, A.; Johansen, J.E.; Jensen, L.E.; Andersen, K.S.; Svenning, M.M.; Bonde, T.A. Non-Target Effects of the Microbial Control Agents Pseudomonas Fluorescens DR54 and Clonostachys Rosea IK726 in Soils Cropped with Barley Followed by Sugar Beet: A Greenhouse Assessment. Soil Biol. Biochem. 2005, 37, 2225–2239. [Google Scholar] [CrossRef]
- Sørensen, J.; Sjøholm, O. Multiparameter Flow Cytometry for Characterization of Physiological States in Pseudomonas Fluorescens DR54 Biocontrol Inoculants Under Dry Formulation and Long-Term Storage in Clay Carrier. In Molecular Microbial Ecology of the Rhizosphere; de Bruijn, F.J., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; Volume 2, pp. 943–950. [Google Scholar] [CrossRef]
- Chiarini, L.; Bevivino, A.; Tabacchioni, S.; Dalmastri, C. Inoculation of Burkholderia Cepacia, Pseudomonas Fluorescens and Enterobacter Sp. on Sorghum Bicolor: Root Colonization and Plant Growth Promotion of Dual Strain Inocula. Soil Biol. Biochem. 1998, 30, 81–87. [Google Scholar] [CrossRef]
- Wilson, K. Preparation of Genomic DNA from Bacteria. In Current Protocols in Molecular Biology; Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Eds.; Wiley & Sons: New York, NY, USA, 1987; pp. 2.4.1–2.4.5. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Cuccuru, G.; Orsini, M.; Pinna, A.; Sbardellati, A.; Soranzo, N.; Travaglione, A.; Uva, P.; Zanetti, G.; Fotia, G. Orione, a web-based framework for NGS analysis in microbiology. Bioinformatics 2014, 30, 1928–1929. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS Is an Automated High-Throughput Platform for State-of-the-Art Genome-Based Taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome Sequence-Based Species Delimitation with Confidence Intervals and Improved Distance Functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kautsar, S.A.; Medema, M.H.; Weber, T. The AntiSMASH Database Version 3: Increased Taxonomic Coverage and New Query Features for Modular Enzymes. Nucleic Acids Res. 2021, 49, D639–D643. [Google Scholar] [CrossRef]
- Hui, X.; Chen, Z.; Lin, M.; Zhang, J.; Hu, Y.; Zeng, Y.; Cheng, X.; Ou-Yang, L.; Sun, M.; White, A.P.; et al. T3SEpp: An Integrated Prediction Pipeline for Bacterial Type III Secreted Effectors. mSystems 2020, 5, e00288-20. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genomics 2008, 9, 75. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of Microbial Genomes Using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A Modular and Extensible Implementation of the RAST Algorithm for Building Custom Annotation Pipelines and Annotating Batches of Genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, S.; Kuzmanović, N.; Patz, S.; Lohwasser, U.; Bunk, B.; Spröer, C.; Lorenz, M.; Elhady, A.; Frühling, A.; Neumann-Schaal, M.; et al. Two New Rhizobiales Species Isolated from Root Nodules of Common Sainfoin (Onobrychis Viciifolia) Show Different Plant Colonization Strategies. Microbiol. Spectr. 2022, 10, e0109922. [Google Scholar] [CrossRef] [PubMed]
- Patz, S.; Gautam, A.; Becker, S.; Ruppel, S.; Rodríguez-Palenzuela, P.; Huson, D.H. PLaBAse: A Comprehensive Web Resource for Analyzing the Plant Growth-Promoting Potential of Plant-Associated Bacteria. bioRxiv 2021. [Google Scholar] [CrossRef]
- Sascha, P.; Rauh, M.; Gautam, A.; Huson, D.H. MgPGPT: Metagenomic Analysis of Plant Growth-Promoting Traits. bioRxiv 2024. [Google Scholar] [CrossRef]
- Schöner, T.A.; Gassel, S.; Osawa, A.; Tobias, N.J.; Okuno, Y.; Sakakibara, Y.; Shindo, K.; Sandmann, G.; Bode, H.B. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids. Chem. Bio. Chem. 2016, 17, 247–253. [Google Scholar] [CrossRef]
- Popa, O.; Dagan, T. Trends and Barriers to Lateral Gene Transfer in Prokaryotes. Curr. Opin. Microbiol. 2011, 145, 615–623. [Google Scholar] [CrossRef]
- Rilling, J.I.; Acuña, J.J.; Nannipieri, P.; Cassan, F.; Maruyama, F.; Jorquera, M.A. Current Opinion and Perspectives on the Methods for Tracking and Monitoring Plant Growth-Promoting Bacteria. Soil Biol. Biochem. 2019, 130, 205–219. [Google Scholar] [CrossRef]
- Iosa, I.; Agrimonti, C.; Marmiroli, N. Real-Time PCR (QtPCR) to Discover the Fate of Plant Growth-Promoting Rhizobacteria (PGPR) in Agricultural Soils. Microorganisms 2024, 12, 1002. [Google Scholar] [CrossRef]
- Rana, K.L.; Negi, R.; Sharma, B.; Yadav, A.; Devi, R.; Kaur, T.; Shreaz, S.; Rustagi, S.; Rai, A.K.; Singh, S.; et al. Potential Effect of Novel Endophytic Nitrogen Fixing Diverse Species of Rahnella on Growth Promotion of Wheat (Triticum aestivum L.). J. Crop Sci. Biotechnol. 2024, 27, 605–615. [Google Scholar] [CrossRef]
- Peng, J.; Xu, Z.; Li, L.; Zhao, B.; Guo, Y. Disruption of the Sensor Kinase PhoQ Gene Decreases Acid Resistance in Plant Growth-Promoting Rhizobacterium Rahnella Aquatilis HX2. J. Appl. Microbiol. 2023, 134, lxad009. [Google Scholar] [CrossRef]
- Li, G.E.; Kong, W.L.; Wu, X.Q.; Ma, S.B. Phytase-Producing Rahnella Aquatilis Jz-Gx1 Promotes Seed Germination and Growth in Corn (Zea mays L.). Microorganisms 2021, 9, 1647. [Google Scholar] [CrossRef] [PubMed]
- Podile, A.R.; Vukanti, R.V.N.R.; Sravani, A.; Kalam, S.; Dutta, S.; Durgeshwar, P.; Papa Rao, V. Root Colonization and Quorum Sensing Are the Driving Forces of Plant Growth Promoting Rhizobacteria (PGPR) for Growth Promotion. Proc. Indian Natl. Sci. Acad. 2014, 80, 407–413. [Google Scholar] [CrossRef]
- Pellegrinetti, T.A.; Monteiro, G.G.T.N.; Lemos, L.N.; Santos, R.A.C.d.; Barros, A.G.; Mendes, L.W. PGPg_finder: A Comprehensive and User-Friendly Pipeline for Identifying Plant Growth-Promoting Genes in Genomic and Metagenomic Data. Rhizosphere 2024, 30, 100905. [Google Scholar] [CrossRef]
- Źuñiga, A.; Donoso, R.A.; Ruiz, D.; Ruz, G.A.; Gonźalez, B. Quorum-Sensing Systems in the Plant Growth-Promoting Bacterium Paraburkholderia Phytofirmans PsJN Exhibit Cross-Regulation and Are Involved in Biofilm Formation. Mol. Plant Microbe Interact. 2017, 30, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, X.; Wang, S.; Zhu, C.; Li, R.; Shen, Q. Application of Bacillus Velezensis NJAU-Z9 Enhanced Plant Growth Associated with Efficient Rhizospheric Colonization Monitored by QPCR with Primers Designed from the Whole Genome Sequence. Curr. Microbiol. 2018, 75, 1574–1583. [Google Scholar] [CrossRef]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef]
- Farris, J.S. Estimating Phylogenetic Trees from Distance Matrices. Am. Nat. 1972, 106, 645–668. [Google Scholar] [CrossRef]
PGPM | Strain | Origin | Country | Properties | References | Microbial Consortia/ Commercial Products |
---|---|---|---|---|---|---|
Bacillus licheniformis | PS141 | Rhizosphere | Italy | Indole acetic acid (IAA) production | Unpublished results | SIMBA MC_A Bio-Semina PW (Agriges) |
Bacillus velezensis | BV84 | Endophyte Grape leaves | Italy | Biocontrol/PGP | Unpublished results | SIMBA MC_B MICOSAT F (CCS Aosta) |
Burkholderia ambifaria | MCI 7 | Maize rhizosphere | Italy | PGP | [35,36] | SIMBA MC_C |
Pseudomonas fluorescens | DR54 | Sugar beet rhizosphere | Denmark | Biocontrol | [37,38,39,40,41] | SIMBA MC_B, SIMBA MC_C |
Pseudomonas granadensis | A23/T3c | Soil | Italy | PGP | [42] | SIMBA MC_A |
Rahnella aquatilis | BB23/T4d | Soil | Italy | PGP | [42] | SIMBA MC_B, SIMBA MC_C |
Strains | Contigs | CDSs | Genes | Genome Size (bp) | rRNA * | tRNA * | tmRNA * | Repeat Region ** |
---|---|---|---|---|---|---|---|---|
Bacillus licheniformis PS141 | 1242 | 4′318 | 4′402 | 4′504′417 | 6 | 77 | 1 | / |
Bacillus velezensis BV84 | 9′042 | 5′140 | 5′243 | 6′928′355 | 10 | 92 | 1 | / |
Burkholderia ambifaria MCI 7 | 274 | 6′618 | 6′697 | 7′509′419 | 4 | 74 | 1 | / |
Pseudomonas granadensis A23/T3c | 1870 | 5′835 | 5′903 | 7′034′766 | 5 | 62 | 1 | / |
Pseudomonas fluorescens DR54 | 359 | 5′420 | 5′501 | 6′178′566 | 4 | 68 | 1 | / |
Rahnella aquatilis BB23/T4d | 509 | 5′087 | 5′176 | 5′606′795 | 6 | 82 | 1 | 1 |
Query Strain | Subject Strain | dDDH (d4, in %) * | C.I. (d4, in %) | G + C Content Difference (in %) |
---|---|---|---|---|
Bacillus licheniformis PS141 | Bacillus licheniformis ATCC 14580 | 97.2 | [96.1–98.0] | 0.21 |
Bacillus velezensis BV84 | Bacillus velezensis NRRL B-41580 | 83.8 | [81.0–86.2] | 3.3 |
Burkholderia ambifaria MCI 7 | Burkholderia ambifaria AMMD | 79.2 | [76.3–81.9] | 0.04 |
Pseudomonas granadensis A23/T3c | Pseudomonas crudilactis UCMA 17988T | 47.1 | [44.5–49.7] | 0.45 |
Pseudomonas fluorescens DR54 | Pseudomonas carnis B4-1T | 77.7 | [74.7–80.4] | 0.23 |
Rahnella aquatilis BB23/T4d | Rahnella aceris SAP-19 | 95.7 | [94.2–96.8] | 0.13 |
Strains | NRPSs | Other Secondary Metabolite Predictions | T3SS |
---|---|---|---|
Bacillus licheniformis PS141 | butirosin, fengycin, lichensyn, lassopeptide, surfactin, bacylisin, baciullibactin | terpene | 0 |
Bacillus velezensis BV84 | macrolactin, fengycin, piliplastin, difficidin, surfactin, bacylisin, baciullibactin, macrolactin | terpene | 0 |
Burkholderia ambifaria MCI 7 | T1PKS, NRPS | terpene, arylpolyene, phosphonate, pyrrolnitrin | 0 |
Pseudomonas granadensis A23/T3c | NRPS, bacillomycin, pyoverdin, fragin | siderophore, terpene, arylpolyene | 0 |
Pseudomonas fluorescens DR54 | RiPP-like, pyoverdin, coelibactin, anikasin | siderophore, terpene, arylpolyene | 0 |
Rahnella aquatilis BB23/T4d | lankacidin | betalactone, | 0 |
terpene, | |||
arylpolyene |
Strain | Number of PGP Traits |
---|---|
Bacillus licheniformis PS141 | 3052 |
Bacillus licheniformis ATCC 14580 (reference genome) | 2978 |
Bacillus velezensis BV84 | 3202 |
Bacillus velezensis FZB42 (reference genome) | 2904 |
Burkholderia ambifaria MCI 7 | 3893 |
Burkholderia ambifaria AMMD (reference genome) | 3904 |
Pseudomonas fluorescens DR54 | 3796 |
Pseudomonas fluorescens ATCC 13525 (reference genome) | 4012 |
Pseudomonas granadensis A23/T3c | 3877 |
Pseudomonas granadensis LMG 27940 (reference genome) | 3650 |
Rahnella aquatilis BB23/T4d | 4048 |
Rahnella aquatilis ATCC 33071 (reference genome) | 4002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cangioli, L.; Tabacchioni, S.; Visca, A.; Fiore, A.; Aprea, G.; Ambrosino, P.; Ercole, E.; Sørensen, S.; Mengoni, A.; Bevivino, A. Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato. Microorganisms 2024, 12, 2562. https://doi.org/10.3390/microorganisms12122562
Cangioli L, Tabacchioni S, Visca A, Fiore A, Aprea G, Ambrosino P, Ercole E, Sørensen S, Mengoni A, Bevivino A. Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato. Microorganisms. 2024; 12(12):2562. https://doi.org/10.3390/microorganisms12122562
Chicago/Turabian StyleCangioli, Lisa, Silvia Tabacchioni, Andrea Visca, Alessia Fiore, Giuseppe Aprea, Patrizia Ambrosino, Enrico Ercole, Soren Sørensen, Alessio Mengoni, and Annamaria Bevivino. 2024. "Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato" Microorganisms 12, no. 12: 2562. https://doi.org/10.3390/microorganisms12122562
APA StyleCangioli, L., Tabacchioni, S., Visca, A., Fiore, A., Aprea, G., Ambrosino, P., Ercole, E., Sørensen, S., Mengoni, A., & Bevivino, A. (2024). Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato. Microorganisms, 12(12), 2562. https://doi.org/10.3390/microorganisms12122562