Genome-Wide Identification and Analysis of Glycosyltransferases in Colletotrichum graminicola
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Analysis of GTs
2.2. Phylogenetic Analysis
2.3. Gene Structures and Protein Motifs
2.4. Identification of Cis-Acting Regulatory Elements (CAREs) and Gene Ontology (GO) Analysis
2.5. Expression Pattern Analysis in GT Family
2.6. RT-qPCR
3. Results
3.1. Identification and Physicochemical Properties Analysis of GTs in C. graminicola
3.2. Phylogenetic Relationship
3.3. Sequence and Structural Analysis of CgGTs
3.4. Sequence Analysis of CgGT Gene Family Promoters
3.5. GO Analysis of CgGTs
3.6. The Response of CgGT Family Genes in the Infection Process of C. graminicola
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nagae, M.; Yamaguchi, Y. Function and 3D structure of the N–glycans on glycoproteins. Int. J. Mol. Sci. 2012, 13, 8398–8429. [Google Scholar] [CrossRef] [PubMed]
- Kawai, F.; Grass, S.; Kim, Y.; Choi, K.J.; St Geme, J.W.; Yeo, H.J. Structural insights into the glycosyltransferase activity of the Actinobacillus pleuropneumoniae HMW1C–like protein. J. Biol. Chem. 2011, 286, 38546–38557. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.T.; Su, H.Y.; An, W. Glycosyltransferases and non–alcoholic fatty liver disease. World J. Gastroenterol. 2016, 22, 2483–2493. [Google Scholar] [CrossRef] [PubMed]
- Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS–PROT database. Biochim. Biophys. Acta 1999, 1473, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Helenius, A.; Aebi, M. Intracellular functions of N–linked glycans. Science 2001, 291, 2364–2369. [Google Scholar] [CrossRef]
- Nakahara, T.; Hindsgaul, O.; Palcic, M.M.; Nishimura, S. Computational design and experimental evaluation of glycosyltransferase mutants: Engineering of a blood type B galactosyltransferase with enhanced glucosyltransferase activity. Protein Eng. Des. Sel. 2006, 19, 571–578. [Google Scholar] [CrossRef]
- Moon, S.; Kim, S.R.; Zhao, G.; Yi, J.; Yoo, Y.; Jin, P.; Lee, S.W.; Jung, K.H.; Zhang, D.; An, G. Rice glycosyltransferase1 encodes a glycosyltransferase essential for pollen wall formation. Plant Physiol. 2013, 161, 663–675. [Google Scholar] [CrossRef]
- Unligil, U.M.; Rini, J.M. Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 2000, 10, 510–517. [Google Scholar] [CrossRef]
- Breton, C.; Snajdrová, L.; Jeanneau, C.; Koca, J.; Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 2006, 16, 29R–37R. [Google Scholar] [CrossRef]
- Pesnot, T.; Jørgensen, R.; Palcic, M.M.; Wagner, G.K. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat. Chem. Biol. 2010, 6, 321–323. [Google Scholar] [CrossRef]
- Chang, A.; Singh, S.; Phillips, G.N.; Thorson, J.S. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr. Opin. Biotechnol. 2011, 22, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, R.; Pesnot, T.; Lee, H.J.; Palcic, M.M.; Wagner, G.K. Base–modified donor analogues reveal novel dynamic features of a glycosyltransferase. J. Biol. Chem. 2013, 288, 26201–26208. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Zhang, H.; Blumwald, E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 2001, 19, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Shabala, S.; Cuin, T.A. Potassium transport and plant salt tolerance. Physiol. Plant. 2008, 133, 651–669. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Chen, L.; Dixon, R.A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 2007, 25, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Li, Z.; Zhou, S.; Chen, X.L.; Wilson, R.A.; Liu, W. Effector secretion and stability in the maize anthracnose pathogen Colletotrichum graminicola requires N–linked protein glycosylation and the ER chaperone pathway. New Phytol. 2023, 240, 1449–1466. [Google Scholar] [CrossRef] [PubMed]
- Frey, T.J.; Weldekidan, T.; Colbert, T.; Wolters, P.J.C.C.; Hawk, J.A. Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) G.W. Wils. Using Near–Isogenic Maize Hybrids. Crop Sci. 2011, 51, 1551–1563. [Google Scholar] [CrossRef]
- O’Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 2012, 44, 1060–1065. [Google Scholar] [CrossRef]
- Li, Y.J.; Li, P.; Wang, T.; Zhang, F.J.; Huang, X.X.; Hou, B.K. The maize secondary metabolism glycosyltransferase UFGT2 modifies flavonols and contributes to plant acclimation to abiotic stresses. Ann. Bot. 2018, 122, 1203–1217. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shin, S.; Heinen, S.; Dill-Macky, R.; Berthiller, F.; Nersesian, N.; Clemente, T.; McCormick, S.; Muehlbauer, G.J. Transgenic wheat expressing a barley UDP-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum. Mol. Plant Microbe Interact. 2015, 28, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xia, X.; Mei, J.; Gong, Z.; Zhang, J.; Xiao, Y.; Duan, C.; Liu, W. Genome sequence resource of a Colletotrichum graminicola field strain from China. Mol. Plant Microbe Interact. 2023, 36, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the expasy server. Proteom. Protoc. Handb. 2005, 52, 571–607. [Google Scholar]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.Y.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef]
- Lairson, L.L.; Henrissat, B.; Davies, G.J.; Withers, S.G. Glycosyltransferases: Structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77, 521–555. [Google Scholar] [CrossRef]
- Liang, D.M.; Liu, J.H.; Wu, H.; Wang, B.B.; Zhu, H.J.; Qiao, J.J. Glycosyltransferases: Mechanisms and applications in natural product development. Chem. Soc. Rev. 2015, 44, 8350–8374. [Google Scholar] [CrossRef]
- Roy, S.W.; Penny, D. Patterns of intron loss and gain in plants: Intron loss–dominated evolution and genome–wide comparison of O. sativa and A. thaliana. Mol. Biol. Evol. 2007, 24, 171–181. [Google Scholar] [CrossRef]
- Roy, S.W.; Gilbert, W. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nat. Rev. Genet. 2006, 7, 211–221. [Google Scholar]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon–intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Xuan, C.; Feng, M.; Li, X.; Hou, Y.; Wei, C.; Zhang, X. Genome–wide identification and expression analysis of chitinase genes in watermelon under abiotic stimuli and Fusarium oxysporum infection. Int. J. Mol. Sci. 2024, 25, 638. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Garcia, C.M.; Finer, J.J. Identification and validation of promoters and cis–acting regulatory elements. Plant Sci. 2014, 217–218, 109–119. [Google Scholar] [CrossRef]
- Wang, L.Y.; Zhang, Y.; Fu, X.Q.; Zhang, T.T.; Ma, J.W.; Zhang, L.D.; Qian, H.M.; Tang, K.X.; Li, S.; Zhao, J.Y. Molecular cloning, characterization, and promoter analysis of the isochorismate synthase (AaICS1) gene from Artemisia annua. J. Zhejiang Univ. Sci. B 2017, 18, 662–673. [Google Scholar] [CrossRef]
- Yamaguchi–Shinozaki, K.; Shinozaki, K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 2006, 57, 781–803. [Google Scholar] [CrossRef]
- Mao, P.; Jin, X.; Bao, Q.; Mei, C.; Zhou, Q.; Min, X.; Liu, Z. WRKY transcription factors in Medicago sativa L.: Genome–wide identification and expression analysis under abiotic stress. DNA Cell Biol. 2020, 39, 2212–2225. [Google Scholar] [CrossRef]
- Pu, J.; Li, M.; Mao, P.; Zhou, Q.; Liu, W.; Liu, Z. Genome–wide identification of the Q-type C2H2 transcription factor family in Alfalfa (Medicago sativa) and expression analysis under different abiotic stresses. Genes 2021, 12, 1906. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tang, J.; Wu, A.; Fan, C.; Li, H. Genome–wide identification and functional analysis of the GUX gene family in Eucalyptus grandis. Int. J. Mol. Sci. 2024, 25, 8199. [Google Scholar] [CrossRef]
- Tang, R.; Zhu, Y.; Yang, S.; Wang, F.; Chen, G.; Chen, J.; Zhao, K.; Liu, Z.; Peng, D. Genome–Wide identification and analysis of WRKY gene family in Melastoma dodecandrum. Int. J. Mol. Sci. 2023, 24, 14904. [Google Scholar] [CrossRef]
- Zhao, X.; Han, X.; Lu, X.; Yang, H.; Wang, Z.Y.; Chai, M. Genome–wide identification and characterization of the Msr gene family in Alfalfa under abiotic stress. Int. J. Mol. Sci. 2023, 24, 9638. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Kherawat, B.S.; Katara, J.L.; Parameswaran, C.; Misra, N.; Kumar, M.; Chung, S.M.; Alamri, S.; Siddiqui, M.H. Genome–wide analysis of proline–rich extensin–like receptor kinases (PERKs) gene family reveals their roles in plant development and stress conditions in Oryza sativa L. Plant Sci. 2023, 334, 111749. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Y.; Li, H.; Wang, S.; Wang, A. Whole genome identiffcation and biochemical characteristics of the Tilletia horrida Cytochrome p450 gene family. Int. J. Mol. Sci. 2024, 25, 10478. [Google Scholar] [CrossRef] [PubMed]
- Haltiwanger, R.S.; Lowe, J.B. Role of glycosylation in development. Annu. Rev. Biochem. 2004, 73, 491–537. [Google Scholar] [CrossRef] [PubMed]
- Rudd, P.M.; Dwek, R.A. Glycosylation: Heterogeneity and the 3D structure of proteins. Crit. Rev. Biochem. Mol. Biol. 1997, 32, 1–100. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, H.; Yu, D. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Mol. Plant 2016, 9, 1492–1503. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Z.; Wang, L.; Kim, S.G.; Seo, P.J.; Qiao, M.; Wang, N.; Li, S.; Cao, X.; Park, C.M.; et al. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. Plant J. 2016, 85, 96–106. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Xu, Y.; Lu, Y.; Yu, H.X.; Gu, M.H.; Liu, Q.Q. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta 2011, 234, 541–554. [Google Scholar] [CrossRef]
Proposed Gene Name | Gene ID | CDS Length (bp) | Protein Length (aa) | Mw (KDa) | pI | GRAVY | Predicted Subcellular Localization |
---|---|---|---|---|---|---|---|
CgGT1 | EVM0000312 | 1119 | 372 | 42.13 | 6.73 | −0.221 | extracellular, including cell wall |
CgGT2 | EVM0000372 | 2142 | 713 | 81.25 | 6.05 | −0.448 | cytosol |
CgGT3 | EVM0000427 | 1014 | 337 | 38.21 | 6.31 | −0.313 | extracellular, including cell wall |
CgGT4 | EVM0000494 | 2244 | 747 | 82.13 | 5.77 | −0.728 | nucleus |
CgGT5 | EVM0000520 | 5823 | 1940 | 221.5 | 7.49 | −0.156 | plasma membrane |
CgGT6 | EVM0000577 | 4428 | 1475 | 164.95 | 5.08 | −0.286 | plasma membrane |
CgGT7 | EVM0000595 | 2247 | 748 | 83.70 | 8.94 | 0.207 | plasma membrane |
CgGT8 | EVM0000840 | 1566 | 521 | 58.41 | 8.01 | −0.019 | mitochondrion |
CgGT9 | EVM0000878 | 717 | 238 | 26.58 | 8.79 | −0.104 | mitochondrion |
CgGT10 | EVM0001034 | 1659 | 552 | 61.65 | 9.04 | −0.142 | cytosol |
CgGT11 | EVM0001072 | 1341 | 446 | 49.09 | 5.77 | −0.052 | cytosol |
CgGT12 | EVM0001510 | 5289 | 1762 | 199.24 | 6.85 | −0.414 | cytosol |
CgGT13 | EVM0001638 | 1137 | 378 | 44.07 | 6.68 | −0.425 | extracellular, including cell wall |
CgGT14 | EVM0001682 | 1296 | 431 | 46.30 | 5.43 | 0.028 | cytosol |
CgGT15 | EVM0001689 | 2931 | 976 | 109.09 | 6.71 | −0.022 | plasma membrane |
CgGT16 | EVM0001718 | 1563 | 520 | 59.60 | 6.29 | −0.578 | extracellular, including cell wall |
CgGT17 | EVM0001804 | 1230 | 409 | 46.03 | 5.95 | −0.189 | extracellular, including cell wall |
CgGT18 | EVM0001965 | 1302 | 433 | 49.34 | 9.18 | −0.012 | mitochondrion |
CgGT19 | EVM0002001 | 2742 | 913 | 103.24 | 6.13 | −0.172 | plasma membrane |
CgGT20 | EVM0002094 | 2106 | 701 | 78.52 | 7.03 | −0.525 | mitochondrion |
CgGT21 | EVM0002104 | 1596 | 531 | 61.21 | 8.26 | −0.510 | plasma membrane |
CgGT22 | EVM0002238 | 1104 | 367 | 41.31 | 7.75 | −0.380 | extracellular, including cell wall |
CgGT23 | EVM0002239 | 1743 | 580 | 62.32 | 9.66 | 0.430 | plasma membrane |
CgGT24 | EVM0002267 | 2217 | 738 | 83.80 | 7.38 | −0.011 | plasma membrane |
CgGT25 | EVM0002284 | 1293 | 430 | 48.38 | 9.47 | 0.511 | plasma membrane |
CgGT26 | EVM0002503 | 1383 | 460 | 53.15 | 5.31 | −0.468 | extracellular, including cell wall |
CgGT27 | EVM0002506 | 7173 | 2390 | 264.75 | 5.71 | −0.164 | plasma membrane |
CgGT28 | EVM0002539 | 2247 | 748 | 83.78 | 6.40 | −0.314 | mitochondrion |
CgGT29 | EVM0002695 | 2205 | 734 | 83.17 | 9.28 | 0.203 | mitochondrion |
CgGT30 | EVM0002790 | 1287 | 428 | 50.20 | 5.89 | −0.724 | Golgi apparatus |
CgGT31 | EVM0002951 | 1584 | 527 | 58.45 | 6.17 | −0.307 | extracellular, including cell wall |
CgGT32 | EVM0003094 | 1266 | 421 | 47.71 | 7.71 | −0.271 | mitochondrion |
CgGT33 | EVM0003195 | 1179 | 392 | 45.80 | 6.02 | −0.564 | mitochondrion |
CgGT34 | EVM0003225 | 1803 | 600 | 67.31 | 9.54 | 0.381 | plasma membrane |
CgGT35 | EVM0003259 | 1809 | 602 | 69.15 | 9.70 | −0.719 | plasma membrane |
CgGT36 | EVM0003732 | 1209 | 402 | 45.63 | 7.67 | −0.023 | cytosol |
CgGT37 | EVM0003755 | 1920 | 639 | 72.94 | 8.81 | −0.531 | mitochondrion |
CgGT38 | EVM0003893 | 5601 | 1866 | 207.16 | 6.65 | −0.204 | plasma membrane |
CgGT39 | EVM0003945 | 1200 | 399 | 43.58 | 6.87 | −0.011 | plasma membrane |
CgGT40 | EVM0003981 | 3093 | 1030 | 116.35 | 6.17 | −0.258 | plasma membrane |
CgGT41 | EVM0004307 | 1182 | 393 | 46.50 | 5.76 | −0.637 | extracellular, including cell wall |
CgGT42 | EVM0004462 | 1494 | 497 | 56.99 | 6.09 | −0.176 | Golgi apparatus |
CgGT43 | EVM0004588 | 1233 | 410 | 45.47 | 8.94 | −0.391 | plasma membrane |
CgGT44 | EVM0004712 | 3927 | 1308 | 141.69 | 5.69 | −0.447 | cytosol |
CgGT45 | EVM0004723 | 7290 | 2429 | 272.73 | 6.30 | −0.216 | plasma membrane |
CgGT46 | EVM0004757 | 1551 | 516 | 59.07 | 9.42 | 0.272 | plasma membrane |
CgGT47 | EVM0004896 | 5352 | 1783 | 197.36 | 5.54 | −0.179 | plasma membrane |
CgGT48 | EVM0004972 | 4824 | 1607 | 177.57 | 8.27 | −0.373 | nucleus |
CgGT49 | EVM0004975 | 3792 | 1263 | 140.20 | 7.16 | −0.328 | plasma membrane |
CgGT50 | EVM0005005 | 1509 | 502 | 57.91 | 9.00 | −0.173 | plasma membrane |
CgGT51 | EVM0005211 | 3675 | 1224 | 137.19 | 8.82 | −0.303 | plasma membrane |
CgGT52 | EVM0005219 | 1626 | 541 | 59.93 | 9.05 | −0.034 | mitochondrion |
CgGT53 | EVM0005273 | 1335 | 444 | 50.51 | 6.50 | −0.422 | mitochondrion |
CgGT54 | EVM0005326 | 1395 | 464 | 49.50 | 5.77 | −0.018 | mitochondrion |
CgGT55 | EVM0005437 | 1476 | 491 | 54.50 | 5.89 | −0.157 | mitochondrion |
CgGT56 | EVM0005573 | 1611 | 536 | 58.65 | 5.85 | −0.167 | extracellular, including cell wall |
CgGT57 | EVM0005623 | 1950 | 649 | 74.18 | 8.77 | −0.039 | plasma membrane |
CgGT58 | EVM0005717 | 1437 | 478 | 53.55 | 8.74 | −0.056 | plasma membrane |
CgGT59 | EVM0005768 | 1482 | 493 | 56.50 | 5.88 | −0.605 | nucleus |
CgGT60 | EVM0005789 | 2745 | 914 | 100.18 | 9.22 | −0.264 | plasma membrane |
CgGT61 | EVM0005882 | 1599 | 532 | 59.83 | 5.48 | −0.261 | cytosol |
CgGT62 | EVM0006207 | 1428 | 475 | 52.69 | 5.54 | −0.356 | extracellular, including cell wall |
CgGT63 | EVM0006283 | 1878 | 625 | 70.68 | 9.46 | 0.116 | plasma membrane |
CgGT64 | EVM0006286 | 1863 | 620 | 71.52 | 6.78 | −0.642 | Golgi apparatus |
CgGT65 | EVM0006578 | 1596 | 531 | 59.56 | 5.76 | −0.334 | extracellular, including cell wall |
CgGT66 | EVM0006633 | 1299 | 432 | 45.57 | 6.14 | 0.011 | mitochondrion |
CgGT67 | EVM0006833 | 903 | 300 | 33.55 | 6.52 | 0.158 | plasma membrane |
CgGT68 | EVM0006930 | 2169 | 722 | 82.17 | 5.73 | −0.289 | plasma membrane |
CgGT69 | EVM0007087 | 2712 | 903 | 102.80 | 6.00 | −0.486 | nucleus |
CgGT70 | EVM0007165 | 1302 | 433 | 49.72 | 5.71 | −0.313 | extracellular, including cell wall |
CgGT71 | EVM0007204 | 1215 | 404 | 46.01 | 6.37 | −0.402 | mitochondrion |
CgGT72 | EVM0007220 | 3060 | 1019 | 114.74 | 5.97 | −0.471 | nucleus |
CgGT73 | EVM0007383 | 1662 | 553 | 62.31 | 6.17 | −0.386 | plasma membrane |
CgGT74 | EVM0007715 | 1338 | 445 | 50.67 | 6.17 | −0.333 | extracellular, including cell wall |
CgGT75 | EVM0007775 | 1461 | 486 | 55.29 | 5.55 | −0.492 | extracellular, including cell wall |
CgGT76 | EVM0007855 | 1485 | 494 | 55.72 | 5.39 | −0.199 | extracellular, including cell wall |
CgGT77 | EVM0008052 | 942 | 313 | 35.94 | 9.08 | −0.396 | plasma membrane |
CgGT78 | EVM0008073 | 2382 | 793 | 89.93 | 8.97 | −0.074 | plasma membrane |
CgGT79 | EVM0008174 | 2166 | 721 | 78.61 | 7.96 | −0.026 | plasma membrane |
CgGT80 | EVM0008429 | 1407 | 468 | 51.59 | 8.23 | 0.039 | extracellular, including cell wall |
CgGT81 | EVM0008593 | 1119 | 372 | 42.42 | 5.63 | −0.373 | Endoplasmic reticulum |
CgGT82 | EVM0008674 | 1314 | 437 | 47.13 | 9.14 | 0.584 | plasma membrane |
CgGT83 | EVM0008963 | 912 | 303 | 33.71 | 7.13 | −0.159 | mitochondrion |
CgGT84 | EVM0009050 | 1386 | 461 | 51.97 | 7.26 | −0.378 | mitochondrion |
CgGT85 | EVM0009152 | 2322 | 773 | 88.16 | 8.86 | −0.089 | plasma membrane |
CgGT86 | EVM0009253 | 2856 | 951 | 106.49 | 6.64 | −0.195 | plasma membrane |
CgGT87 | EVM0009723 | 2652 | 883 | 99.22 | 5.57 | 0.019 | plasma membrane |
CgGT88 | EVM0009853 | 2067 | 688 | 77.57 | 7.88 | −0.041 | plasma membrane |
CgGT89 | EVM0010072 | 723 | 240 | 26.30 | 5.06 | −0.128 | mitochondrion |
CgGT90 | EVM0010156 | 1803 | 600 | 67.92 | 8.95 | 0.156 | plasma membrane |
CgGT91 | EVM0010249 | 1083 | 360 | 41.40 | 8.15 | −0.432 | plasma membrane |
CgGT92 | EVM0010269 | 2664 | 887 | 100.26 | 5.62 | −0.346 | cytosol |
CgGT93 | EVM0010555 | 1152 | 383 | 43.46 | 4.85 | −0.213 | cytosol |
CgGT94 | EVM0010706 | 2547 | 848 | 95.61 | 6.42 | −0.239 | plasma membrane |
CgGT95 | EVM0010719 | 1452 | 483 | 54.16 | 6.20 | 0.067 | cytosol |
CgGT96 | EVM0010739 | 1020 | 339 | 38.34 | 5.37 | −0.518 | cytosol |
CgGT97 | EVM0010808 | 1521 | 506 | 58.49 | 5.98 | −0.477 | plasma membrane |
CgGT98 | EVM0010822 | 7056 | 2351 | 262.09 | 6.01 | −0.176 | plasma membrane |
CgGT99 | EVM0011166 | 3807 | 1268 | 137.48 | 8.75 | −0.602 | cytosol |
CgGT100 | EVM0011280 | 2712 | 903 | 101.02 | 5.57 | −0.034 | plasma membrane |
CgGT101 | EVM0011800 | 1155 | 384 | 43.20 | 6.97 | −0.264 | extracellular, including cell wall |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, H.; Chang, J.; Zhang, Y.; Li, J.; Jia, S.; Shi, Y. Genome-Wide Identification and Analysis of Glycosyltransferases in Colletotrichum graminicola. Microorganisms 2024, 12, 2551. https://doi.org/10.3390/microorganisms12122551
Wang Y, Li H, Chang J, Zhang Y, Li J, Jia S, Shi Y. Genome-Wide Identification and Analysis of Glycosyltransferases in Colletotrichum graminicola. Microorganisms. 2024; 12(12):2551. https://doi.org/10.3390/microorganisms12122551
Chicago/Turabian StyleWang, Yafei, Honglian Li, Jiaxin Chang, Yu Zhang, Jinyao Li, Shaofeng Jia, and Yan Shi. 2024. "Genome-Wide Identification and Analysis of Glycosyltransferases in Colletotrichum graminicola" Microorganisms 12, no. 12: 2551. https://doi.org/10.3390/microorganisms12122551
APA StyleWang, Y., Li, H., Chang, J., Zhang, Y., Li, J., Jia, S., & Shi, Y. (2024). Genome-Wide Identification and Analysis of Glycosyltransferases in Colletotrichum graminicola. Microorganisms, 12(12), 2551. https://doi.org/10.3390/microorganisms12122551