Detection and Characterisation of Colistin-Resistant Escherichia coli in Broiler Meats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Phenotypic Isolation and Identification of E. coli
2.3. Molecular Detection of E. coli
2.4. Antimicrobial Susceptibility Test (AST)
2.5. Minimum Inhibitory Concentration (MIC) of Colistin
2.6. Detection of mcr (1–5) Genes in Phenotypic Colistin-Resistant E. coli
2.7. Statistical Analysis
3. Results
3.1. Prevalence of E. coli in Different Sources and Types
3.2. AMR Profiling with Resistant Gene Detection in E. coli Isolates
3.2.1. Phenotypic AMR Profiles
3.2.2. MIC of Colistin Sulphate
3.2.3. Phenotypic MDR Patterns and Detection of mcr (1–5) Genes
3.2.4. AMR Profile and Its Correlation with E. coli Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- WHO. Global Action Plan on Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 7 October 2024).
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Hamid, M.; Rahman, M.; Ahmed, S.; Hossain, K. Status of poultry industry in Bangladesh and the role of private sector for its development. Asian J. Poult. Sci. 2017, 11, 1–13. [Google Scholar] [CrossRef]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Castanon, J. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef]
- Radimersky, T.; Frolkova, P.; Janoszowská, D.; Dolejská, M.; Svec, P.; Roubalová, E.; Cikova, P.; Cizek, A.; Literák, I. Antibiotic resistance in faecal bacteria (Escherichia coli, Enterococcus spp.) in feral pigeons. J. Appl. Microbiol. 2010, 109, 1687–1695. [Google Scholar] [CrossRef]
- Benameur, Q.; Tali-Maamar, H.; Assaous, F.; Guettou, B.; Rahal, K.; Ben-Mahdi, M.-H. Detection of multidrug resistant Escherichia coli in the ovaries of healthy broiler breeders with emphasis on extended-spectrum β-lactamases producers. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 163–167. [Google Scholar] [CrossRef]
- Boamah, V.; Agyare, C.; Odoi, H.; Dalsgaard, A. Practices and Factors Influencing the Use of Antibiotics in Selected Poultry Farms in Ghana. J. Antimicrob. Agents 2016, 2, 120. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Valentão, P.; Falco, V.; Poeta, P. Antimicrobial resistance and clonal lineages of Escherichia coli from food-producing animals. Antibiotics 2023, 12, 1061. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, B.; Paterson, D.L.; Mollinger, J.L.; Rogers, B.A. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin. Infect. Dis. 2015, 60, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Trongjit, S.; Assavacheep, P.; Samngamnim, S.; My, T.H.; An, V.T.T.; Simjee, S.; Chuanchuen, R. Plasmid-mediated colistin resistance and ESBL production in Escherichia coli from clinically healthy and sick pigs. Sci. Rep. 2022, 12, 2466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fu, Y.; Xiong, Z.; Ma, Y.; Wei, Y.; Qu, X.; Zhang, H.; Zhang, J.; Liao, M. Highly prevalent multidrug-resistant Salmonella from chicken and pork meat at retail markets in Guangdong, China. Front. Microbiol. 2018, 9, 2104. [Google Scholar] [CrossRef]
- Zhang, S.; Abbas, M.; Rehman, M.U.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhu, D.; Zhao, X.; Gao, Q.; et al. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Sci. Total Environ. 2021, 799, 149280. [Google Scholar] [CrossRef]
- Sun, J.; Xu, Y.; Gao, R.; Lin, J.; Wei, W.; Srinivas, S.; Li, D.; Yang, R.-S.; Li, X.-P.; Liao, X.-P.; et al. Deciphering mcr-2 colistin resistance. MBio 2017, 8, 10-1128. [Google Scholar] [CrossRef]
- Wang, R.; Van Dorp, L.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 2018, 9, 1179. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, Z.; Yu, G.; Song, Y.; Li, Y.; Geng, X.; Ma, L.; Guo, J.; Tan, L.; Chen, P. Genetic Characteristics of Coexistence of mcr-1 and blaNDM-5 in Escherichia coli Isolates from Lesion-Bearing Animal Organs. Front. Microbiol. 2023, 14, 1116413. [Google Scholar] [CrossRef]
- Hassan, J.; Kassem, I.I. Audacious Hitchhikers: The Role of Travel and the International Food Trade in the Global Dissemination of Mobile Colistin-Resistance (mcr) Genes. Antibiotics 2020, 9, 370. [Google Scholar] [CrossRef]
- Ara, B.; Urmi, U.L.; Haque, T.A.; Nahar, S.; Rumnaz, A.; Ali, T.; Alam, M.S.; Mosaddek, A.S.M.; a Rahman, N.A.; Haque, M.; et al. Detection of Mobile Colistin-Resistance Gene Variants (mcr-1 and mcr-2) in Urinary Tract Pathogens in Bangladesh: The Last Resort of Infectious Disease Management Colistin Efficacy Is Under Threat. Expert Rev. Clin. Pharmacol. 2021, 14, 513–522. [Google Scholar] [CrossRef]
- Sarker, S.; Neeloy, R.M.; Habib, M.B.; Urmi, U.L.; Al Asad, M.; Mosaddek, A.S.M.; Khan, M.R.K.; Nahar, S.; Godman, B.; Islam, S. Mobile Colistin-Resistant Genes mcr-1, mcr-2, and mcr-3 Identified in Diarrheal Pathogens among Infants, Children, and Adults in Bangladesh: Implications for the Future. Antibiotics 2024, 13, 534. [Google Scholar] [CrossRef]
- Dutta, A.; Islam, M.Z.; Barua, H.; Rana, E.A.; Jalal, M.S.; Dhar, P.K.; Das, A.; Das, T.; Sarma, S.M.; Biswas, S.K.; et al. Acquisition of Plasmid-Mediated Colistin Resistance Gene mcr-1 in Escherichia coli of Livestock Origin in Bangladesh. Microb. Drug Resist. 2020, 26, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Sraboni, A.S.; Hossain, M.I.; Roy, S.; Mozmader, T.A.U.; Unicomb, L.; Rousham, E.K.; Islam, M.A. Occurrence and Genetic Characteristics of mcr-1-Positive Colistin-Resistant E. coli from Poultry Environments in Bangladesh. J. Glob. Antimicrob. Resist. 2020, 22, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Das, T.; Islam, M.Z.; Herrero-Fresno, A.; Biswas, P.K.; Olsen, J.E. High Prevalence of mcr-1-Encoded Colistin Resistance in Commensal Escherichia coli from Broiler Chicken in Bangladesh. Sci. Rep. 2020, 10, 18637. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Urmi, U.L.; Rana, M.; Sultana, F.; Jahan, N.; Hossain, M.I.; Mozmader, T.A.U.; Unicomb, L.; Rousham, E.K.; Islam, M.A. High Abundance of the Colistin Resistance Gene mcr-1 in Chicken Gut Bacteria in Bangladesh. Sci. Rep. 2020, 10, 17292. [Google Scholar] [CrossRef] [PubMed]
- Johura, F.T.; Tasnim, J.; Barman, I.; Biswas, S.R.; Jubyda, F.T.; Sultana, M.; George, C.M.; Camilli, A.; Seed, K.D.; Ahmed, N.; et al. Colistin-Resistant Escherichia coli Carrying mcr-1 in Food, Water, Hand Rinse, and Healthy Human Gut in Bangladesh. Gut Pathog. 2020, 12, 5. [Google Scholar] [CrossRef]
- Uddin, M.B.; Alam, M.N.; Hasan, M.; Hossain, S.B.; Debnath, M.; Begum, R.; Samad, M.A.; Hoque, S.F.; Chowdhury, M.S.R.; Rahman, M.M.; et al. Molecular detection of colistin resistance mcr-1 gene in multidrug-resistant Escherichia coli Isolated from chicken. Antibiotics 2022, 11, 97. [Google Scholar] [CrossRef]
- Malorny, B.; Hoorfar, J.; Hugas, M.; Heuvelink, A.; Fach, P.; Ellerbroek, L.; Bunge, C.; Dorn, C.; Helmuth, R. Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method. Int. J. Food Microbiol. 2003, 89, 241–249. [Google Scholar] [CrossRef]
- Godambe, L.P.; Bandekar, J.; Shashidhar, R. Species specific PCR based detection of Escherichia coli from Indian foods. 3 Biotech 2017, 7, 130. [Google Scholar] [CrossRef]
- Bauer, A.; Kirby, W.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- CLS. M100: Performance Standards for Antimicrobial Susceptibility Testing. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 7 October 2024).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Algammal, A.M.; El-Tarabili, R.M.; Alfifi, K.J.; Al-Otaibi, A.S.; Hashem, M.E.A.; El-Maghraby, M.M.; Mahmoud, A.E. Virulence determinant and antimicrobial resistance traits of Emerging MDR Shiga toxigenic E. coli in diarrheic dogs. AMB Express 2022, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- ISO 20776-2; Clinical laboratory Testing and In Vitro Diagnostic Test Systems—Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 2: Evaluation of Performance of Antimicrobial Susceptibility Test Devices Against Reference Broth Micro-Dilution. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:20776:-2:ed-2:v1:en (accessed on 7 October 2024).
- Nath, C.; Das, T.; Islam, M.S.; Hasib, F.Y.; Singha, S.; Dutta, A.; Barua, H.; Islam, M.Z. Colistin Resistance in Multidrug-Resistant Escherichia coli Isolated from Retail Broiler Meat in Bangladesh. Microb. Drug Resist. 2023, 29, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17–00672. [Google Scholar] [CrossRef]
- Ewers, C.; Göpel, L.; Prenger-Berninghoff, E.; Semmler, T.; Kerner, K.; Bauerfeind, R. Occurrence of mcr-1 and mcr-2 colistin resistance genes in porcine Escherichia coli isolates (2010–2020) and genomic characterization of mcr-2-positive E. coli. Front. Microbiol. 2022, 13, 1076315. [Google Scholar] [CrossRef]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance 2017, 22, 30589. [Google Scholar] [CrossRef]
- Borowiak, M.; Hammerl, J.A.; Deneke, C.; Fischer, J.; Szabo, I.; Malorny, B. Characterization of mcr-5-harboring Salmonella enterica subsp. enterica serovar Typhimurium isolates from animal and food origin in Germany. Antimicrob. Agents Chemother. 2019, 63, e00063-19. [Google Scholar] [CrossRef]
- He, M.; Wu, T.; Pan, S.; Xu, X. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study. Appl. Surf. Sci. 2014, 305, 515–521. [Google Scholar] [CrossRef]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Christiansen, N.; Nielsen, L.; Jakobsen, L.; Stegger, M.; Hansen, L.H.; Frimodt-Møller, N. Fluoroquinolone resistance mechanisms in urinary tract pathogenic Escherichia coli isolated during rapidly increasing fluoroquinolone consumption in a low-use country. Microb. Drug Resist. 2011, 17, 395–406. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 15 June 2024).
- Akond, M.A.; Alam, S.; Hassan, S.; Shirin, M. Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. Internet J. Food Saf. 2009, 11, 19–23. [Google Scholar]
- Sarker, M.S.; Mannan, M.S.; Ali, M.Y.; Bayzid, M.; Ahad, A.; Bupasha, Z.B. Antibiotic resistance of Escherichia coli isolated from broilers sold at live bird markets in Chattogram, Bangladesh. J. Adv. Vet. Anim. Res. 2019, 6, 272. [Google Scholar] [CrossRef] [PubMed]
- Alam, G.S.; Hassan, M.M.; Ahaduzzaman, M.; Nath, C.; Dutta, P.; Khanom, H.; Khan, S.A.; Pasha, M.R.; Islam, A.; Magalhaes, R.S.; et al. Molecular Detection of Tetracycline-Resistant Genes in Multi-Drug-Resistant Escherichia coli Isolated from Broiler Meat in Bangladesh. Antibiotics 2023, 12, 418. [Google Scholar] [CrossRef]
- Abass, A.; Adzitey, F.; Huda, N. Escherichia coli of ready-to-eat (RTE) meats origin showed resistance to antibiotics used by farmers. Antibiotics 2020, 9, 869. [Google Scholar] [CrossRef]
- Hassan, M.M.; Amin, K.B.; Ahaduzzaman, M.; Alam, M.; Faruk, M.; Uddin, I. Antimicrobial resistance pattern against E. coli and Salmonella in layer poultry. Res. J. Vet. Pr. 2014, 2, 30–35. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Yang, G.; Wu, Q.; Zhang, J.; Wang, J.; Ding, Y.; Su, Y.; Ye, Q.; Wu, S.; et al. High prevalence of multidrug-resistant Escherichia coli in retail aquatic products in China and the first report of mcr-1-positive extended-spectrum β-lactamase-producing E. coli ST2705 and ST10 in fish. Int. J. Food Microbiol. 2024, 408, 110449. [Google Scholar] [CrossRef]
- Adelowo, O.O.; Fagade, O.E.; Agersø, Y. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria. J. Infect. Dev. Ctries. 2014, 8, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Rahman, Z.; Monira, S.; Rahman, M.A.; Camilli, A.; George, C.M.; Ahmed, N.; Alam, M. Colistin resistant Escherichia coli carrying mcr-1 in urban sludge samples: Dhaka, Bangladesh. Gut Pathog. 2017, 9, 77. [Google Scholar] [CrossRef]
- Patoli, A.A.; Patoli, B.B.; Mehraj, V. High prevalence of multi-drug resistant Escherichia coli in drinking water samples from Hyderabad. Gomal J. Med. Sci. 2010, 8, 23–26. Available online: https://gjms.com.pk/index.php/journal/article/view/194/192 (accessed on 15 June 2024).
- Baron, S.; Hadjadj, L.; Rolain, J.-M.; Olaitan, A.O. Molecular mechanisms of polymyxin resistance: Knowns and unknowns. Int. J. Antimicrob. Agents 2016, 48, 583–591. [Google Scholar] [CrossRef]
- Shuford, J.A.; Patel, R. Antimicrobial growth promoter use in livestock-implications for human health. Rev. Res. Med. Microbiol. 2005, 16, 17–24. [Google Scholar] [CrossRef]
- Kibret, M.; Tadesse, M. The bacteriological safety and antimicrobial susceptibility of bacteria isolated from street-vended white lupin (Lupinus albus) in Bahir Dar, Ethiopia. Ethiop. J. Health Sci. 2013, 23, 19–26. [Google Scholar] [PubMed]
- Irrgang, A.; Roschanski, N.; Tenhagen, B.-A.; Grobbel, M.; Skladnikiewicz-Ziemer, T.; Thomas, K.; Roesler, U.; Kaesbohrer, A. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010–2015. PLoS ONE 2016, 11, e0159863. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wang, Y.; Shen, Y.; Shen, J.; Wu, C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect. Dis. 2016, 16, 293. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Iglesias, M.R.; Rodríguez-Lázaro, D.; Gallardo, A.; Quijada, N.; Miguela-Villoldo, P.; Campos, M.J.; Píriz, S.; López-Orozco, G.; de Frutos, C.; et al. Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015. Eurosurveillance 2017, 22, 30586. [Google Scholar] [CrossRef]
- Islam, M.S.; Nath, C.; Hasib, F.Y.; Logno, T.A.; Uddin, M.H.; Hassan, M.M.; Chowdhury, S. Detection and characterization of multidrug resistant Escherichia coli carrying virulence gene isolated from broilers in Bangladesh. Vet. Med. Sci. 2024, 10, e70032. [Google Scholar] [CrossRef]
Source | Sample Type | No. of E. coli, n (%) | Phenotypic Resistance to Colistin Sulphate, n (%) | No. of mcr-1, n (%) |
---|---|---|---|---|
LBMs | Liver (n = 110) | 52 (47.27) | 32 (61.54) | 32 (100) |
Muscle (n = 110) | 78 (70.91) | 52 (66.67) | 52 (100) | |
Subtotal (n = 220) | 130 (59.09) | 84 (64.62) | 84 (100) | |
Supermarket | Liver (175) | 111(63.43) | 98 (88.29) | 98 (100) |
Muscle (n = 175) | 70 (40) | 51 (72.86) | 51 (100) | |
Subtotal (n = 350) | 181 (51.71) | 149 (82.32) | 149 (100) | |
Total (N = 570) | 311 (54.56) | 233 (74.92) | 233 (100) |
No of Isolates | % | Resistance Type | Phenotypic Resistance Patterns | MAR Index |
---|---|---|---|---|
41 | 13.18 | MDR | Five classes CIP, SXT, AMP, DO, TE, CT | 0.75 |
30 | 9.65 | MDR | Six classes CIP, CN, SXT, AMP, DO, TE, CT | 0.88 |
26 | 8.36 | MDR | Six classes CL, CIP, SXT, AMP, DO, TE, CT | 0.88 |
19 | 6.11 | MDR | Five classes CIP, CN, SXT, AMP, DO, TE | 0.75 |
19 | 6.11 | MDR | Four classes SXT, AMP, DO, TE, CT | 0.63 |
18 | 5.79 | MDR | Seven classes CL, CIP, CN, SXT, AMP, DO, TE, CT | 1 |
14 | 4.50 | MDR | Three classes SXT, DO, TE, CT | 0.5 |
12 | 3.86 | MDR | Four classes CIP, SXT, AMP, DO, TE | 0.63 |
11 | 3.54 | MDR | Five classes CL, SXT, AMP, DO, TE, CT | 0.75 |
9 | 2.89 | MDR | Three classes SXT, AMP, DO, TE | 0.5 |
8 | 2.57 | MDR | Four classes CL, SXT, DO, TE, CT | 0.63 |
8 | 2.57 | MDR | Six classes CL, CIP, CN, SXT, AMP, DO, TE | 0.88 |
6 | 1.93 | MDR | Five classes CL, CIP, SXT, AMP, DO, TE | 0.75 |
5 | 1.61 | MDR | Six classes CL, CN, SXT, AMP, DO, CT | 0.75 |
4 | 1.28 | MDR | Three classes CL, AMP, CT | 0.38 |
4 | 1.28 | MDR | Four classes CL, AMP, DO, TE, CT | 0.63 |
4 | 1.28 | MDR | Five classes CN, SXT, AMP, DO, TE, CT | 0.75 |
3 | 0.96 | MDR | Four classes SXT, AMP, TE, CT | 0.5 |
3 | 0.96 | MDR | Four classes CL, CN, AMP, CT | 0.5 |
3 | 0.96 | MDR | Five classes CIP, SXT, DO, TE, CT | 0.63 |
3 | 0.96 | MDR | Four classes SXT, AMP, DO, CT | 0.5 |
3 | 0.96 | MDR | Five classes CIP, CN, SXT, AMP, CT | 0.63 |
3 | 0.96 | MDR | Five classes CIP, SXT, AMP, TE, CT | 0.63 |
3 | 0.96 | R | One class CT | 0.13 |
2 | 0.64 | MDR | Three classes AMP, TE, CT | 0.38 |
2 | 0.64 | MDR | Four classes CIP, CN, SXT, DO, TE | 0.63 |
2 | 0.64 | MDR | Five classes CL, CIP, SXT, DO, TE, CT | 0.75 |
2 | 0.64 | MDR | Five classes CL, CN, SXT, TE, CT | 0.63 |
2 | 0.64 | MDR | Three classes CIP, SXT, DO, TE | 0.5 |
2 | 0.64 | MDR | Three classes CIP, SXT, CT | 0.38 |
2 | 0.64 | MDR | Three classes CL, AMP, DO, TE | 0.5 |
2 | 0.64 | R | Three classes AMP, DO, CT | 0.38 |
2 | 0.64 | MDR | Three classes CN, AMP, CT | 0.38 |
2 | 0.64 | MDR | Three classes CL, SXT, CT | 0.38 |
2 | 0.64 | MDR | Four classes CN, SXT, AMP, DO, CT | 0.63 |
2 | 0.64 | MDR | Five classes CL, CN, SXT, AMP, DO, TE | 0.75 |
1 | 0.32 | R | One class AMP | 0.13 |
1 | 0.32 | R | One class SXT | 0.13 |
1 | 0.32 | R | Two classes DO, CT | 0.25 |
1 | 0.32 | R | Two classes SXT, DO, TE | 0.38 |
1 | 0.32 | R | Two classes AMP, DO, TE | 0.38 |
1 | 0.32 | R | Two classes SXT, TE | 0.25 |
1 | 0.32 | R | Two classes CL, DO, TE | 0.38 |
1 | 0.32 | R | Two classes SXT, AMP | 0.25 |
1 | 0.32 | R | Two classes CN, TE | 0.25 |
1 | 0.32 | R | Two classes SXT, CT | 0.25 |
1 | 0.32 | MDR | Three classes CL, SXT, DO | 0.38 |
1 | 0.32 | MDR | Three classes CIP, CN, CT | 0.38 |
1 | 0.32 | MDR | Three classes AMP, DO, TE, CT | 0.5 |
1 | 0.32 | MDR | Three classes CL, AMP, DO | 0.38 |
1 | 0.32 | MDR | Three classes CL, SXT, DO, TE | 0.5 |
1 | 0.32 | MDR | Three classes SXT, AMP, DO | 0.38 |
1 | 0.32 | MDR | Three classes SXT, DO, CT | 0.38 |
1 | 0.32 | MDR | Three classes CN, TE, CT | 0.38 |
1 | 0.32 | MDR | Four classes CL, SXT, DO, CT | 0.5 |
1 | 0.32 | MDR | Four classes CIP, SXT, AMP, TE | 0.5 |
1 | 0.32 | MDR | Four classes CIP, SXT, AMP, DO | 0.5 |
1 | 0.32 | MDR | Four classes CL, CIP, DO, TE, CT | 0.63 |
1 | 0.32 | MDR | Four classes CL, SXT, AMP, DO, TE | 0.63 |
1 | 0.32 | MDR | Four classes CL, CN, SXT, DO | 0.5 |
1 | 0.32 | MDR | Four classes CL, CIP, SXT, DO, TE | 0.63 |
1 | 0.32 | MDR | Four classes CL, SXT, AMP, CT | 0.5 |
1 | 0.32 | MDR | Four classes CIP, SXT, AMP, CT | 0.5 |
1 | 0.32 | MDR | Five classes CL, CN, SXT, DO, TE, CT | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanzin, A.Z.; Nath, C.; Nayem, M.R.K.; Sayeed, M.A.; Khan, S.A.; Magalhaes, R.S.; Alawneh, J.I.; Hassan, M.M. Detection and Characterisation of Colistin-Resistant Escherichia coli in Broiler Meats. Microorganisms 2024, 12, 2535. https://doi.org/10.3390/microorganisms12122535
Tanzin AZ, Nath C, Nayem MRK, Sayeed MA, Khan SA, Magalhaes RS, Alawneh JI, Hassan MM. Detection and Characterisation of Colistin-Resistant Escherichia coli in Broiler Meats. Microorganisms. 2024; 12(12):2535. https://doi.org/10.3390/microorganisms12122535
Chicago/Turabian StyleTanzin, Abu Zubayer, Chandan Nath, Md. Raihan Khan Nayem, Md Abu Sayeed, Shahneaz Ali Khan, Ricardo Soares Magalhaes, John I. Alawneh, and Mohammad Mahmudul Hassan. 2024. "Detection and Characterisation of Colistin-Resistant Escherichia coli in Broiler Meats" Microorganisms 12, no. 12: 2535. https://doi.org/10.3390/microorganisms12122535
APA StyleTanzin, A. Z., Nath, C., Nayem, M. R. K., Sayeed, M. A., Khan, S. A., Magalhaes, R. S., Alawneh, J. I., & Hassan, M. M. (2024). Detection and Characterisation of Colistin-Resistant Escherichia coli in Broiler Meats. Microorganisms, 12(12), 2535. https://doi.org/10.3390/microorganisms12122535