In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Antibiotics
2.2. Determination of Minimum Inhibitory Concentration (MIC)
2.3. Determination of Fractional Inhibitory Concentration Index (FICI)
2.4. Time-Kill Assay
3. Results
3.1. Susceptibility
3.2. FICI Determination
3.3. Time-Kill Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Higuita, N.I.A.; Huycke, M.M. Enterococcal disease, epidemiology, and implications for treatment. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal infection—Treatment and antibiotic resistance. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanism in enterococcus. Virulence 2012, 3, 421–569. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. CLSI M100: Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Veve, M.P.; Wagner, J.L. Lefamulin: Review of a promising novel pleuromutilin antibiotic. Pharmacother. J. Hum. Pharmacol. Drug. Ther. 2018, 38, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Lehár, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Short III, G.F.; Staunton, J.E.; Jin, X.; et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 2009, 27, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Bollenbach, T. Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution. Curr. Opin. Microbiol. 2015, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.B.; Yeh, P.J.; Chait, R.; Moellering, R.C.; Kishony, R. Drug interactions modulate the potential for evolution of resistance. Proc. Natl. Acad. Sci. USA 2008, 105, 14918–14923. [Google Scholar] [CrossRef]
- Munck, C.; Gumpert, H.K.; Wallin, A.I.N.; Wang, H.H.; Sommer, M.O. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl. Med. 2014, 6, 262ra156. [Google Scholar] [CrossRef]
- Davis, H.; Ashcraft, D.S.; Pankey, G.A. In vitro interaction of lefamulin, a pleuromutilin antibiotic, and doxycycline against linezolid-and vancomycin-resistant Enterococcus faecium. J. Investig. Med. 2022, 70, 720–721. [Google Scholar]
- Paukner, S.; Stoneburner, A.; Ivezic-Schoenfeld, Z.; Pillar, C. In vitro synergy/antagonism of the pleuromutilin BC-3781 with selected antibiotics against gram-positive and gram-negative bacteria. In Proceedings of the 53th Interscience Conference on Antimicrobial Agents and Chemotherapy, Denver, CO, USA, 10–13 September 2013. [Google Scholar]
- Gargvanshi, S.; Gutheil, W.G. Library screening for synergistic combinations of FDA-approved drugs and metabolites with vancomycin against VanA-type vancomycin-resistant Enterococcus faecium. Microbiol. Spectr. 2022, 10, e0141222. [Google Scholar] [CrossRef]
- Dong, C.L.; Li, L.X.; Cui, Z.H.; Chen, S.W.; Xiong, Y.Q.; Lu, J.Q.; Liao, X.P.; Gao, Y.; Sun, J.; Liu, Y.H. Synergistic effect of pleuromutilins with other antimicrobial agents against Staphylococcus aureus in vitro and in an experimental Galleria mellonella model. Front. Pharmacol. 2017, 8, 553. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Ma, L.; Zhang, G.; Li, Y.; Zeng, X.; Li, Y.; Dong, N. Valnemulin restores colistin sensitivity against multidrug-resistant gram-negative pathogens. Commun. Biol. 2024, 7, 1122. [Google Scholar] [CrossRef]
- Yu, Y.; Fang, J.T.; Zheng, M.; Zhang, Q.; Walsh, T.R.; Liao, X.P.; Sun, J.; Liu, Y.H. Combination therapy strategies against multiple-resistant Streptococcus Suis. Front. Pharmacol. 2018, 9, 489. [Google Scholar] [CrossRef] [PubMed]
- Siricilla, S.; Mitachi, K.; Yang, J.S.; Eslamimehr, S.; Lemieux, M.R.; Meibohm, B.; Ji, Y.; Kurosu, M. A new combination of a pleuromutilin derivative and doxycycline for treatment of multidrug-resistant Acinetobacter baumannii. J. Med. Chem. 2017, 60, 2869–2878. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wei, M.C.; Luo, Y.D.; Jin, Z.; Tang, Y.Z. Synergistic effect of a pleuromutilin derivative with tetracycline against Streptococcus suis in vitro and in the neutropenic thigh infection model. Molecules 2020, 25, 3522. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Park, B.; Min, Y.H. In vitro synergistic effect of retapamulin with erythromycin and quinupristin against Enterococcus faecalis. J. Antibiot. 2020, 73, 630–635. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Pillai, S.K.; Moellering, R.C.J.; Eliopoulos, G.M. Antimicrobial combinations. In Antibiotics in Laboratory Medicine, 5th ed.; Lorian, V., Ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 365–405. ISBN 978-0781749831. [Google Scholar]
- Terbtothakun, P.; Nwabor, O.F.; Siriyong, T.; Voravuthikunchai, S.P.; Chusri, S. Synergistic antibacterial effects of meropenem in combination with aminoglycosides against carbapenem-resistant Escherichia coli harboring blaNDM-1 and blaNDM-5. Antibiotics 2021, 10, 1023. [Google Scholar] [CrossRef]
- Paukner, S.; Sader, H.S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial activity of the pleuromutilin antibiotic BC-3781 against bacterial pathogens isolated in the SENTRY antimicrobial surveillance program in 2010. Antimicrob. Agents Chemother. 2013, 57, 4489–4495. [Google Scholar] [CrossRef]
- Sader, H.S.; Biedenbach, D.J.; Paukner, S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial activity of the investigational pleuromutilin compound BC-3781 tested against Gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother. 2012, 56, 1619–1623. [Google Scholar] [CrossRef]
- Xenleta—Summary of Product Characteristics. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220708156315/anx_156315_en.pdf (accessed on 11 October 2024).
- Adhikary, S.; Duggal, M.K.; Nagendran, S.; Chintamaneni, M.; Tuli, H.S.; Kaur, G. Lefamulin: A new hope in the field of community-acquired bacterial pneumonia. Curr. Pharmacol. Rep. 2022, 8, 418–426. [Google Scholar] [CrossRef]
- Eyal, Z.; Matzov, D.; Krupkin, M.; Paukner, S.; Riedl, R.; Rozenberg, H.; Zimmerman, E.; Bashan, A.; Yonath, A. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci. Rep. 2016, 6, 39004. [Google Scholar] [CrossRef]
- Chukwudi, C.U. rRNA binding sites and the molecular mechanism of action of the tetracyclines. Antimicrob. Agents Chemother. 2016, 60, 4433–4441. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P.J.; Hegreness, M.J.; Aiden, A.P.; Kishony, R. Drug interactions and the evolution of antibiotic resistance. Nat. Rev. Microbiol. 2009, 7, 460–466. [Google Scholar] [CrossRef]
- Sullivan, G.J.; Delgado, N.N.; Maharjan, R.; Cain, A.K. How antibiotics work together: Molecular mechanisms behind combination therapy. Curr. Opin. Microbiol. 2020, 57, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Shen, J.; Kadlec, K.; Wang, Y.; Brenner Michael, G.; Feßler, A.T.; Vester, B. Lincosamides, streptogramins, phenicols, and pleuromutilins: Mode of action and mechanisms of resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a027037. [Google Scholar] [CrossRef]
- Harms, J.M.; Schlunzen, F.; Fucini, P.; Bartels, H.; Yonath, A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2004, 2, 4. [Google Scholar] [CrossRef]
- Hamouche, L.; Poljak, L.; Carpousis, A.J. Ribosomal RNA degradation induced by the bacterial RNA polymerase inhibitor rifampicin. RNA 2021, 27, 946–958. [Google Scholar] [CrossRef] [PubMed]
Strains a | MIC (μg/mL) Alone | LEF + DOX | LEF + RIF | ||||
---|---|---|---|---|---|---|---|
LEF | DOX | RIF | MIC in Combination | FICI b | MIC in Combination | FICI b | |
ATCC | 0.063 | 0.25 | 16 | 0.016/0.063 | 0.5 | 0.016/1 | 0.313 |
3 | 0.25 | 0.25 | 8 | 0.063/0.063 | 0.5 | 0.031/0.5 | 0.188 |
4 | 0.125 | 8 | 8 | 0.031/1 | 0.375 | 0.016/0.5 | 0.188 |
5 | 0.063 | 0.25 | 2 | 0.031/0.063 | 0.75 | 0.008/0.25 | 0.25 |
20 | 0.125 | 0.25 | 16 | 0.016/0.063 | 0.375 | 0.016/1 | 0.188 |
26 | 0.063 | 8 | 4 | 0.016/2 | 0.5 | 0.016/0.25 | 0.313 |
36 | 0.063 | 0.063 | 0.5 | 0.031/0.008 | 0.625 | 0.016/0.063 | 0.375 |
37 | 32 | 0.25 | 0.063 | 1/0.063 | 0.281 | 1/0.008 | 0.156 |
44 | 0.125 | 0.125 | 8 | 0.031/0.031 | 0.5 | 0.016/1 | 0.25 |
57 | 64 | 0.25 | 8 | 4/0.063 | 0.313 | 0.25/1 | 0.129 |
58 | 0.125 | 0.125 | 8 | 0.031/0.016 | 0.375 | 0.016/1 | 0.25 |
59 | 0.125 | 0.25 | 8 | 0.031/0.031 | 0.375 | 0.016/1 | 0.25 |
60 | 0.125 | 0.125 | 16 | 0.063/0.016 | 0.625 | 0.016/0.5 | 0.156 |
61 | 0.125 | 0.125 | 8 | 0.016/0.031 | 0.375 | 0.016/0.5 | 0.188 |
93 | 0.125 | 0.25 | 8 | 0.031/0.031 | 0.375 | 0.016/1 | 0.25 |
95 | 64 | 32 | 4 | 8/16 | 0.625 | 0.5/1 | 0.258 |
VRE31 | 0.125 | 0.125 | 8 | 0.031/0.031 | 0.5 | 0.016/0.5 | 0.188 |
VRE36 | 0.063 | 2 | 2 | 0.016/0.25 | 0.375 | 0.016/0.125 | 0.313 |
VRE40 | 0.063 | 2 | 8 | 0.016/0.25 | 0.375 | 0.008/1 | 0.25 |
VRE19 | 0.125 | 0.25 | 8 | 0.031/0.031 | 0.375 | 0.016/1 | 0.25 |
VRE34 | 0.063 | 0.125 | 4 | 0.016/0.031 | 0.5 | 0.008/0.5 | 0.25 |
VRE35 | 0.125 | 0.063 | 1 | 0.031/0.016 | 0.5 | 0.031/0.063 | 0.313 |
VRE41 | 0.125 | 0.25 | 1 | 0.063/0.031 | 0.625 | 0.031/0.063 | 0.313 |
VRE42 | 0.063 | 0.25 | 2 | 0.016/0.031 | 0.375 | 0.016/0.125 | 0.313 |
VRE43 | 0.063 | 0.063 | 1 | 0.016/0.016 | 0.5 | 0.016/0.063 | 0.313 |
VRE46 | 0.125 | 0.125 | 4 | 0.031/0.031 | 0.5 | 0.016/0.5 | 0.25 |
VRE48 | 0.063 | 0.063 | 1 | 0.016/0.016 | 0.5 | 0.008/0.125 | 0.25 |
VRE75 | 0.063 | 0.063 | 8 | 0.016/0.016 | 0.5 | 0.016/0.5 | 0.313 |
VRE80 | 0.063 | 0.125 | 2 | 0.016/0.031 | 0.5 | 0.008/0.25 | 0.25 |
VRE99 | 0.125 | 16 | 8 | 0.016/2 | 0.25 | 0.008/0.5 | 0.125 |
VRE84 | 0.25 | 0.125 | 16 | 0.063/0.016 | 0.375 | 0.031/1 | 0.188 |
VRE96 | 0.125 | 0.125 | 16 | 0.031/0.016 | 0.375 | 0.063/0.25 | 0.516 |
VRE97 | 0.125 | 0.25 | 16 | 0.016/0.063 | 0.375 | 0.031/1 | 0.313 |
VRE98 | 0.125 | 0.25 | 16 | 0.031/0.063 | 0.5 | 0.008/1 | 0.125 |
Strains a | MIC (μg/mL) Alone | LEF + DOX | LEF + RIF | LEF + Q/D | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LEF | DOX | RIF | Q/D | MIC in Combination | FICI b | MIC in Combination | FICI b | MIC in Combination | FICI b | |
ATCC | 32 | 4 | 1 | 4 | 1/1 | 0.281 | 4/0.25 | 0.375 | 4/1 | 0.375 |
951 | 128 | 8 | 4 | 16 | 8/2 | 0.313 | 32/2 | 0.75 | 8/4 | 0.313 |
573 | 32 | 16 | 4 | 8 | 2/4 | 0.313 | 1/1 | 0.281 | 4/2 | 0.375 |
23 | 64 | 0.5 | 0.031 | 8 | 1/0.125 | 0.266 | 1/0.016 | 0.516 | 4/2 | 0.313 |
24 | 128 | 0.5 | 16 | 8 | 1/0.125 | 0.258 | 1/4 | 0.258 | 4/2 | 0.281 |
114 | 128 | 0.5 | 4 | 4 | 1/0.125 | 0.258 | 2/1 | 0.266 | 4/1 | 0.281 |
154 | 32 | 16 | 2 | 4 | 2/4 | 0.313 | 2/1 | 0.563 | 4/1 | 0.375 |
940 | 64 | 16 | 16 | 4 | 1/4 | 0.266 | 1/8 | 0.516 | 8/0.5 | 0.25 |
196 | 64 | 16 | 4 | 4 | 1/4 | 0.266 | 1/0.5 | 0.141 | 2/1 | 0.281 |
507 | 64 | 0.5 | 4 | 4 | 2/0.125 | 0.281 | 1/2 | 0.516 | 8/1 | 0.375 |
846 | 64 | 16 | 2 | 4 | 2/4 | 0.281 | 8/0.5 | 0.375 | 4/1 | 0.313 |
509 | 32 | 16 | 8 | 4 | 1/4 | 0.281 | 1/2 | 0.281 | 8/0.5 | 0.375 |
365 | 64 | 32 | 2 | 4 | 8/8 | 0.375 | 4/1 | 0.563 | 16/0.25 | 0.313 |
293 | 128 | 32 | 2 | 8 | 1/16 | 0.508 | 1/1 | 0.508 | 4/2 | 0.281 |
536 | 64 | 0.5 | 16 | 8 | 1/0.125 | 0.266 | 1/4 | 0.266 | 4/2 | 0.313 |
709 | 64 | 32 | 16 | 8 | 1/8 | 0.266 | 1/4 | 0.266 | 4/2 | 0.313 |
269 | 64 | 16 | 4 | 4 | 16/4 | 0.5 | 4/1 | 0.313 | 8/1 | 0.375 |
232 | 64 | 0.5 | 4 | 8 | 2/0.125 | 0.281 | 16/1 | 0.5 | 4/2 | 0.313 |
60 | 64 | 0.5 | 32 | 4 | 1/0.125 | 0.266 | 2/4 | 0.156 | 8/1 | 0.375 |
508 | 64 | 32 | 4 | 4 | 2/4 | 0.156 | 4/1 | 0.313 | 4/1 | 0.313 |
103 | 128 | 32 | 8 | 16 | 16/8 | 0.375 | 4/2 | 0.281 | 32/4 | 0.5 |
225 | 64 | 16 | 4 | 16 | 1/4 | 0.266 | 1/1 | 0.266 | 4/2 | 0.188 |
861 | 128 | 16 | 4 | 16 | 32/8 | 0.75 | 4/2 | 0.531 | 32/2 | 0.375 |
105 | 128 | 8 | 2 | 32 | 32/2 | 0.5 | 64/1 | 1 | 32/16 | 0.75 |
720 | 128 | 32 | 4 | 16 | 4/8 | 0.281 | 16/2 | 0.625 | 64/8 | 1 |
7 | 64 | 8 | 1 | 8 | 4/2 | 0.313 | 2/0.5 | 0.531 | 4/2 | 0.313 |
466 | 64 | 16 | 8 | 8 | 1/4 | 0.266 | 32/4 | 1 | 4/1 | 0.188 |
907 | 128 | 32 | 8 | 16 | 2/8 | 0.266 | 32/2 | 0.5 | 32/8 | 0.75 |
800 | 128 | 16 | 4 | 16 | 32/4 | 0.5 | 32/1 | 0.5 | 16/8 | 0.625 |
188 | 128 | 16 | 16 | 16 | 32/4 | 0.5 | 2/4 | 0.266 | 32/8 | 0.75 |
110 | 128 | 16 | 16 | 16 | 8/4 | 0.313 | 1/4 | 0.258 | 32/8 | 0.75 |
665 | 64 | 0.25 | 0.008 | 8 | 8/0.06 | 0.375 | 8/0.004 | 0.625 | 8/1 | 0.25 |
564 | 128 | 8 | 4 | 64 | 2/2 | 0.266 | 4/1 | 0.281 | 4/32 | 0.531 |
Strains | Antibiotics | log10CFU/mL | Changes vs. Most Active Antibiotic |
---|---|---|---|
E. faecium ATCC 19434 | - | 8.50 ± 0.20 ab | |
LEF | 8.49 ± 0.11 ab | ||
DOX | 8.62 ± 0.19 a | ||
RIF | 8.13 ± 0.16 b | ||
LEF + DOX | 6.15 ± 0.18 c | −2.33 | |
LEF + RIF | 5.74 ± 0.24 c | −2.39 | |
E. faecium VRE19 | - | 9.04 ± 0.03 a | |
LEF | 8.42 ± 0.01 ab | ||
DOX | 8.31 ± 0.32 ab | ||
RIF | 8.04 ± 0.06 b | ||
LEF + DOX | 5.58 ± 0.26 c | −2.72 | |
LEF + RIF | 5.17 ± 0.24 c | −2.87 | |
E. faecium VRE42 | - | 8.84 ± 0.03 a | |
LEF | 8.52 ± 0.01 a | ||
DOX | 8.37 ± 0.20 a | ||
RIF | 8.35 ± 0.04 a | ||
LEF + DOX | 5.79 ± 0.02 b | −2.59 | |
LEF + RIF | 5.49 ± 0.26 b | −2.86 | |
E. faecalis ATCC 29212 | - | 8.70 ± 0.22 a | |
LEF | 9.02 ± 0.02 a | ||
DOX | 8.61 ± 0.22 a | ||
RIF | 8.57 ± 0.30 a | ||
Q/D | 8.79 ± 0.27 a | ||
LEF + DOX | 5.48 ± 0.38 b | −3.12 | |
LEF + RIF | 6.01 ± 0.27 b | −2.56 | |
LEF + Q/D | 5.57 ± 0.38 b | −3.22 | |
E. faecalis 24 | - | 8.89 ± 0.22 a | |
LEF | 8.87 ± 0.07 a | ||
DOX | 9.06 ± 0.02 a | ||
RIF | 7.94 ± 0.14 b | ||
Q/D | 8.81 ± 0.24 a | ||
LEF + DOX | 5.30 ± 0.12 c | −3.57 | |
LEF + RIF | 5.81 ± 0.10 c | −2.13 | |
LEF + Q/D | 5.59 ± 0.36 c | −3.21 | |
E. faecalis 225 | - | 8.94 ± 0.16 a | |
LEF | 8.97 ± 0.17 a | ||
DOX | 9.30 ± 0.06 a | ||
RIF | 8.11 ± 0.33 b | ||
Q/D | 8.84 ± 0.31 a | ||
LEF + DOX | 5.02 ± 0.06 d | −3.94 | |
LEF + RIF | 5.89 ± 0.12 c | −2.22 | |
LEF + Q/D | 5.04 ± 0.12 d | −3.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, Y.-H.; Kim, Y.-u.; Park, M.C. In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci. Microorganisms 2024, 12, 2515. https://doi.org/10.3390/microorganisms12122515
Min Y-H, Kim Y-u, Park MC. In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci. Microorganisms. 2024; 12(12):2515. https://doi.org/10.3390/microorganisms12122515
Chicago/Turabian StyleMin, Yu-Hong, Yong-ung Kim, and Min Chul Park. 2024. "In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci" Microorganisms 12, no. 12: 2515. https://doi.org/10.3390/microorganisms12122515
APA StyleMin, Y.-H., Kim, Y.-u., & Park, M. C. (2024). In Vitro Synergistic Effect of Lefamulin with Doxycycline, Rifampin, and Quinupristin/Dalfopristin Against Enterococci. Microorganisms, 12(12), 2515. https://doi.org/10.3390/microorganisms12122515