Advances in the Degradation of Polycyclic Aromatic Hydrocarbons by Yeasts: A Review
Abstract
:1. Introduction
2. Polycyclic Aromatic Hydrocarbons (PAHs)
2.1. Definition and Physicochemical Properties
2.2. Sources of PAH Contamination
2.3. Toxicity, Human Health Risks, and Environmental Persistence
2.4. Regulation and Remediation
3. Yeast-Mediated PAH Degradation
4. Mechanisms of PAH Degradation by Yeasts
4.1. Biosurfactant Production
4.2. Enzymes Involved in Degradation
4.2.1. Cytochrome P450 (CYP) and Its Role in Epoxidation
4.2.2. Epoxide Hydrolases (EHs) and Their Role in Hydrolysis
4.2.3. Glutathione S-Transferases (GSTs)
4.2.4. Other Relevant Enzyme Systems
5. Metabolites Formed During Degradation
6. Genetic Engineering and Biotechnology
7. Omics Tools and PAH Degradation
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Dell’ Anno, F.; Rastelli, E.; Sansone, C.; Brunet, C.; Ianora, A.; Dell’ Anno, A. Bacteria, fungi and microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the omics era. Microorganisms 2021, 9, 1695. [Google Scholar] [CrossRef] [PubMed]
- Aranda, E. Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr. Opin. Biotechnol. 2016, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ide-Pérez, M.R.; Fernández-López, M.G.; Sánchez-Reyes, A.; Leija, A.; Batista-García, R.A.; Folch-Mallol, J.L.; Sánchez-Carbente, M. del R. Aromatic hydrocarbon removal by novel extremotolerant Exophiala and Rhodotorula spp. from an oil polluted site in Mexico. J. Fungi 2020, 6, 135. [Google Scholar] [CrossRef]
- Martínez-Ávila, L.; Peidro-Guzmán, H.; Pérez-Llano, Y.; Moreno-Perlín, T.; Sánchez-Reyes, A.; Aranda, E.; Ángeles de Paz, G.; Fernández-Silva, A.; Folch-Mallol, J.L.; Cabana, H.; et al. Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions. Environ. Pollut. 2021, 271, 116358. [Google Scholar] [CrossRef]
- Padilla-Garfias, F.; Sánchez, N.S.; Calahorra, M.; Peña, A. DhDIT2 encodes a Debaryomyces hansenii cytochrome P450 involved in benzo(a)pyrene degradation—A proposal for mycoremediation. J. Fungi 2022, 8, 1150. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Sutherland, J.B. Degradation of polycyclic aromatic hydrocarbons by fungi. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 2079–2110. [Google Scholar]
- Gan, S.; Lau, E.V.; Ng, H.K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 2009, 172, 532–549. [Google Scholar] [CrossRef]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef]
- Daccò, C.; Girometta, C.; Asemoloye, M.D.; Carpani, G.; Picco, A.M.; Tosi, S. Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. Int. Biodeterior. Biodegrad. 2020, 147, 104866. [Google Scholar] [CrossRef]
- Labrou, N.E.; Papageorgiou, A.C.; Pavli, O.; Flemetakis, E. Plant GSTome: Structure and functional role in xenome network and plant stress response. Curr. Opin. Biotechnol. 2015, 32, 186–194. [Google Scholar] [CrossRef]
- Marco-Urrea, E.; García-Romera, I.; Aranda, E. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. N. Biotechnol. 2015, 32, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Morel, M.; Meux, E.; Mathieu, Y.; Thuillier, A.; Chibani, K.; Harvengt, L.; Jacquot, J.; Gelhaye, E. Xenomic networks variability and adaptation traits in wood decaying fungi. Microb. Biotechnol. 2013, 6, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Guerrero, A.; Lara-Diaz, R.A.; Pihen, V.; Bandala, E.R.; Sanchez-Sala, J.L. Isolation and test of novel yeast strains with lignin usage capability and phenolic compound resistance. Microbiologyopen 2022, 11, e1326. [Google Scholar] [CrossRef] [PubMed]
- Kadri, T.; Rouissi, T.; Kaur Brar, S.; Cledon, M.; Sarma, S.; Verma, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. 2017, 51, 52–74. [Google Scholar] [CrossRef]
- Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K.Z.; Reckmeier, C.; Rogach, A.L.; Stolarczyk, J.K.; Urban, A.S.; Feldmann, J. Carbon dots: A unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 2015, 15, 6030–6035. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. ATSDR Toxicological Profile for Polycyclic Aromatic Hydrocarbons; U.S. Department of Health and Human Services: Atlanta, GA, USA, 1995; pp. 209–222. [Google Scholar]
- Dell’Anno, A.; Beolchini, F.; Corinaldesi, C.; Amato, A.; Becci, A.; Rastelli, E.; Hekeu, M.; Regoli, F.; Astarita, E.; Greco, S.; et al. Assessing the efficiency and eco-sustainability of bioremediation strategies for the rec-lamation of highly contaminated marine sediments. Mar. Environ. Res. 2020, 162, 105101. [Google Scholar] [CrossRef]
- Candian, A.; Zhen, J.; Tielens, A.G.G.M. The aromatic universe. Phys. Today 2018, 71, 38–43. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene—Environmental occurrence, human exposure, and mechanisms of toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Verma, N.; Pink, M.; Rettenmeier, A.W.; Schmitz-Spanke, S. Review on proteomic analyses of benzo[a]pyrene toxicity. Proteomics 2012, 12, 1731–1755. [Google Scholar] [CrossRef]
- Polycyclic aromatic hydrocarbons in food—Scientific opinion of the panel on contaminants in the food Chain. EFSA J. 2008, 6, 724. [CrossRef]
- Ostrem Loss, E.M.; Yu, J. Bioremediation and microbial metabolism of benzo(a)pyrene. Mol. Microbiol. 2018, 109, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Yamini, V.; Rajeswari, V.D. Metabolic capacity to alter polycyclic aromatic hydrocarbons and its mi-crobe-mediated remediation. Chemosphere 2023, 329, 138707. [Google Scholar] [CrossRef] [PubMed]
- Sartaj, K.; Prasad, R.; Matsakas, L.; Patel, A. Transforming recalcitrant wastes into biodiesel by oleaginous yeast: An insight into the metabolic pathways and multi-omics landscape. Chem. Eng. J. 2023, 474, 145625. [Google Scholar] [CrossRef]
- Padilla-Garfias, F.; Sánchez, N.S.; Calahorra, M.; Peña, A. Levaduras degradadoras de hidrocarburos aromáticos policíclicos. Rev. De Educ. Bioquímica 2021, 40, 178–188. [Google Scholar]
- Mishra, S.; Baranwal, R. Yeast genetics and biotechnological applications. In Yeast Biotechnology: Diversity and Applications; Springer: Dordrecht, The Netherlands, 2009; pp. 323–355. [Google Scholar]
- Nielsen, J. Yeast systems biology: Model organism and cell factory. Biotechnol. J. 2019, 14, 1800421. [Google Scholar] [CrossRef]
- Margesin, R. Bioremediation and biodegradation of hydrocarbons by cold-adapted yeasts. In Cold-Adapted Yeasts; Springer: Berlin/Heidelberg, Germany, 2014; pp. 465–480. [Google Scholar]
- Negi, B.B.; Das, C. Mycoremediation of wastewater, challenges, and current status: A review. Bioresour. Technol. Rep. 2023, 22, 101409. [Google Scholar] [CrossRef]
- Akhtar, N.; Mannan, M.A.-U. Mycoremediation: Expunging environmental pollutants. Biotechnol. Rep. 2020, 26, e00452. [Google Scholar] [CrossRef]
- Akpasi, S.O.; Anekwe, I.M.S.; Tetteh, E.K.; Amune, U.O.; Shoyiga, H.O.; Mahlangu, T.P.; Kiambi, S.L. Mycoremediation as a potentially promising technology: Current status and prospects—A review. Appl. Sci. 2023, 13, 4978. [Google Scholar] [CrossRef]
- van der Walt, J.P.; von Arx, J.A. The yeast genus Yarrowia gen. nov. Antonie Van Leeuwenhoek 1980, 46, 517–521. [Google Scholar] [CrossRef]
- Zinjarde, S.; Apte, M.; Mohite, P.; Kumar, A.R. Yarrowia lipolytica and pollutants: Interactions and appli-cations. Biotechnol. Adv. 2014, 32, 920–933. [Google Scholar] [CrossRef] [PubMed]
- Cerniglia, C.E.; Crow, S.A. Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol. 1981, 129, 9–13. [Google Scholar] [CrossRef]
- MacGillivray, A.R.; Shiaris, M.P. Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl. Environ. Microbiol. 1993, 59, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Hesham, A.E.-L.; Wang, Z.; Zhang, Y.; Zhang, J.; Lv, W.; Yang, M. Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann. Microbiol. 2006, 56, 109–112. [Google Scholar] [CrossRef]
- Hesham, A.E.-L.; Alamri, S.A.; Khan, S.; Mahmoud, M.E.; Mahmoud, H.M. Isolation and molecular genetic characterization of a yeast strain able to degrade petroleum polycyclic aromatic hydrocarbons. Afr. J. Biotechnol. 2009, 8, 2218–2223. [Google Scholar]
- O’Connor, S.T.F.; Lan, J.; North, M.; Loguinov, A.; Zhang, L.; Smith, M.T.; Gu, A.Z.; Vulpe, C. Genome-wide functional and stress response profiling reveals toxic mechanism and genes required for tolerance to benzo[a]pyrene in S. cerevisiae. Front. Genet. 2013, 3, 316. [Google Scholar] [CrossRef]
- Mandal, S.K.; Selvi, A.; Das, N. A novel approach on degradation of benzo[a]pyrene by yeast consortium isolated from contaminated soil. Pharm. Lett. 2016, 8, 80–93. [Google Scholar]
- Mandal, S.K.; Das, N. Biodegradation of perylene and benzo[ghi]perylene (5-6 rings) using yeast consortium: Kinetic study, enzyme analysis and degradation pathway. J. Environ. Biol. 2018, 39, 5–15. [Google Scholar] [CrossRef]
- Mandal, S.K.; Ojha, N.; Das, N. Optimization of process parameters for the yeast mediated degradation of benzo[a]pyrene in presence of ZnO nanoparticles and produced biosurfactant using 3-level box-behnken design. Ecol. Eng. 2018, 120, 497–503. [Google Scholar] [CrossRef]
- Moore, B.G.; Harrison, A.P. Benzo[a]pyrene uptake by bacteria and yeast. J. Bacteriol. 1965, 90, 989–1000. [Google Scholar] [CrossRef]
- Dehnen, W.; Tomingas, R.; Roos, J. A modified method for the assay of benzo[a]pyrene hydroxylase. Anal. Biochem. 1973, 53, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, A.; Lim, T.-K.; Woods, L.F.J. Regulation of the biosynthesis of cytochrome P-450 in brewer’s yeast role of cyclic AMP. Biochim. Et Biophys. Acta (BBA)-General. Subjects 1978, 544, 615–623. [Google Scholar] [CrossRef]
- Azari, M.R.; Wiseman, A. Purification and characterization of the cytochrome P-448 component of a benzo(a)pyrene hydroxylase from Saccharomyces cerevisiae. Anal. Biochem. 1982, 122, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Azari, M.R.; Wiseman, A. Evaluation of immobilized cytochrome P-448 from Saccharomyces cerevisiae using permeabilized whole cell, microsomal fraction and highly purified reconstituted forms, with benzopy-rene-3-monooxygenase activity. Enzyme Microb. Technol. 1982, 4, 401–404. [Google Scholar] [CrossRef]
- Syed, K.; Doddapaneni, H.; Subramanian, V.; Lam, Y.W.; Yadav, J.S. Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem. Biophys. Res. Commun. 2010, 399, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Belloch, C.; Pelaez, A.I.; Sánchez, J.; Kurtzman, C.P. Wickerhamiella verensis f.a. sp. nov., a novel yeast species isolated from subsoil groundwater contaminated with hydrocarbons and from a human infection. Int. J. Syst. Evol. Microbiol. 2020, 70, 2420–2425. [Google Scholar] [CrossRef]
- Ferreira, T.F.; Martins, F.F.; Cayres, C.A.; Amaral, P.F.F.; de Almeida Azevedo, D.; Coelho, M.A.Z. Biosurfactant production from the biodegradation of n-paraffins, isoprenoids and aromatic hydrocarbons from crude petroleum by Yarrowia lipolytica IMUFRJ 50682. Fermentation 2022, 9, 21. [Google Scholar] [CrossRef]
- Azimian, L. Response surface methodology (RMS) modelling to improve n -dodecane degradation using Debaryomyces hansenii LAF-3 in a simulated desalter effluent. Can. J. Chem. Eng. 2023, 101, 4320–4330. [Google Scholar] [CrossRef]
- Li, C.; Cui, C.; Zhang, J.; Shen, J.; He, B.; Long, Y.; Ye, J. Biodegradation of petroleum hydrocarbons based pollutants in contaminated soil by exogenous effective microorganisms and indigenous microbiome. Ecotoxicol. Environ. Saf. 2023, 253, 114673. [Google Scholar] [CrossRef]
- Hegazy, G.E.; Soliman, N.A.; Farag, S.; El-Helow, E.R.; Yusef, H.Y.; Abdel-Fattah, Y.R. Isolation and char-acterization of Candida tropicalis B: A promising yeast strain for biodegradation of petroleum oil in marine environments. Microb. Cell Fact. 2024, 23, 20. [Google Scholar] [CrossRef]
- Petra de Oliveira Barros, V.; Macedo Silva, J.R.; Maciel Melo, V.M.; Terceiro, P.S.; Nunes de Oliveira, I.; Duarte de Freitas, J.; Francisco da Silva Moura, O.; Xavier de Araújo-Júnior, J.; Erlanny da Silva Rodrigues, E.; Maraschin, M.; et al. Biosurfactants production by marine yeasts isolated from zoanthids and characterization of an emulsifier produced by Yarrowia lipolytica LMS 24B. Chemosphere 2024, 355, 141807. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.; Del Buono, D.; Fordham, M.; Skipsey, M.; Brazier, M.; Dixon, D.P.; Cummins, I. Differential induction of glutathione transferases and glucosyltransferases in wheat, maize and Arabidopsis thaliana by herbicide safeners. Z. Für Naturforschung C 2005, 60, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Morel, M.; Ngadin, A.A.; Droux, M.; Jacquot, J.-P.; Gelhaye, E. The fungal glutathione s-transferase system. evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium. Cell. Mol. Life Sci. 2009, 66, 3711–3725. [Google Scholar] [CrossRef] [PubMed]
- Durairaj, P.; Hur, J.-S.; Yun, H. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb. Cell Fact. 2016, 15, 125. [Google Scholar] [CrossRef] [PubMed]
- Cerniglia, C.E. Fungal metabolism of polycyclic aromatic hydrocarbons: Past, present and future applications in bioremediation. J. Ind. Microbiol. Biotechnol. 1997, 19, 324–333. [Google Scholar] [CrossRef]
- Rufino, R.D.; de Luna, J.M.; de Campos Takaki, G.M.; Sarubbo, L.A. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron. J. Biotechnol. 2014, 17, 34–38. [Google Scholar] [CrossRef]
- Cameotra, S.S.; Makkar, R.S. Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl. Chem. 2010, 82, 97–116. [Google Scholar] [CrossRef]
- Maier, R.M.; Gentry, T.J. Microorganisms and organic pollutants. In Environmental Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 377–413. [Google Scholar]
- Parthipan, P.; Cheng, L.; Rajasekar, A.; Angaiah, S. Microbial surfactants are next-generation biomolecules for sustainable remediation of polyaromatic hydrocarbons. In Biosurfactants for a Sustainable Future; Wiley: Hoboken, NJ, USA, 2021; pp. 139–158. [Google Scholar]
- Coimbra, C.D.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications. Curr. Microbiol. 2009, 58, 245–251. [Google Scholar] [CrossRef]
- Makkar, R.S.; Rockne, K.J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 2003, 22, 2280–2292. [Google Scholar] [CrossRef]
- Bernhardt, R.; Urlacher, V.B. Cytochromes P450 as promising catalysts for biotechnological application: Chances and limitations. Appl. Microbiol. Biotechnol. 2014, 98, 6185–6203. [Google Scholar] [CrossRef]
- Chandor-Proust, A.; Bibby, J.; Régent-Kloeckner, M.; Roux, J.; Guittard-Crilat, E.; Poupardin, R.; Riaz, M.A.; Paine, M.; Dauphin-Villemant, C.; Reynaud, S.; et al. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochem. J. 2013, 455, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Ostrem Loss, E.M.; Lee, M.-K.; Wu, M.-Y.; Martien, J.; Chen, W.; Amador-Noguez, D.; Jefcoate, C.; Remucal, C.; Jung, S.; Kim, S.-C.; et al. Cytochrome P450 monooxygenase-mediated metabolic utilization of benzo[a]pyrene by Aspergillus species. mBio 2019, 10, 1128. [Google Scholar] [CrossRef] [PubMed]
- Decker, M.; Arand, M.; Cronin, A. Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch. Toxicol. 2009, 83, 297–318. [Google Scholar] [CrossRef] [PubMed]
- Fretland, A.J.; Omiecinski, C.J. Epoxide hydrolases: Biochemistry and molecular biology. Chem. Biol. Interact. 2000, 129, 41–59. [Google Scholar] [CrossRef]
- Mathieu, Y.; Prosper, P.; Favier, F.; Harvengt, L.; Didierjean, C.; Jacquot, J.-P.; Morel-Rouhier, M.; Gelhaye, E. Diversification of fungal specific class A glutathione transferases in saprotrophic fungi. PLoS ONE 2013, 8, e80298. [Google Scholar] [CrossRef]
- Vaish, S.; Gupta, D.; Mehrotra, R.; Mehrotra, S.; Basantani, M.K. Glutathione s-transferase: A versatile protein family. 3 Biotech. 2020, 10, 321. [Google Scholar] [CrossRef]
- Park, H.; Choi, I.-G. Genomic and transcriptomic perspectives on mycoremediation of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 2020, 104, 6919–6928. [Google Scholar] [CrossRef]
- Książek-Trela, P.; Figura, D.; Węzka, D.; Szpyrka, E. Degradation of a mixture of 13 polycyclic aromatic hydrocarbons by commercial effective microorganisms. Open Life Sci. 2024, 19, 20220831. [Google Scholar] [CrossRef]
- Imam, A.; Kumar Suman, S.; Kanaujia, P.K.; Ray, A. Biological machinery for polycyclic aromatic hydro-carbons degradation: A review. Bioresour. Technol. 2022, 343, 126121. [Google Scholar] [CrossRef]
- Tesfaye, E.L.; Bogale, F.M.; Aragaw, T.A. Biodegradation of polycyclic aromatic hydrocarbons: The role of ligninolytic enzymes and advances of biosensors for in-situ monitoring. Emerg. Contam. 2025, 11, 100424. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R. Critical review of microbial degradation of aromatic compounds and exploring potential aspects of furfuryl alcohol degradation. J. Polym. Environ. 2019, 27, 901–916. [Google Scholar] [CrossRef]
- Patel, A.; Sartaj, K.; Arora, N.; Pruthi, V.; Pruthi, P.A. Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast. J. Hazard. Mater. 2017, 340, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Jiru, T.M.; Groenewald, M.; Pohl, C.; Steyn, L.; Kiggundu, N.; Abate, D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech. 2017, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Mou, B.; Gong, G.; Wu, S. Biodegradation mechanisms of polycyclic aromatic hydrocarbons: Combination of instrumental analysis and theoretical calculation. Chemosphere 2023, 341, 140017. [Google Scholar] [CrossRef] [PubMed]
- Peidro-Guzmán, H.; Pérez-Llano, Y.; González-Abradelo, D.; Fernández-López, M.G.; Dávila-Ramos, S.; Aranda, E.; Hernández, D.R.O.; García, A.O.; Lira-Ruan, V.; Pliego, O.R.; et al. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ. Microbiol. 2021, 23, 3435–3459. [Google Scholar] [CrossRef]
- González, A.; Espinoza, D.; Vidal, C.; Moenne, A. Benzopyrene induces oxidative stress and increases ex-pression and activities of antioxidant enzymes, and CYP450 and GST metabolizing enzymes in Ulva lactuca (Chlorophyta). Planta 2020, 252, 107. [Google Scholar] [CrossRef]
- Alao, M.B.; Adebayo, E.A. Fungi as Veritable tool in bioremediation of polycyclic aromatic hydrocarbons-polluted wastewater. J. Basic. Microbiol. 2022, 62, 223–244. [Google Scholar] [CrossRef]
- Beopoulos, A.; Cescut, J.; Haddouche, R.; Uribelarrea, J.-L.; Molina-Jouve, C.; Nicaud, J.-M. Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 2009, 48, 375–387. [Google Scholar] [CrossRef]
- Gajdoš, P.; Ledesma-Amaro, R.; Nicaud, J.-M.; Čertík, M.; Rossignol, T. Overexpression of diacylglycerol acyltransferase in Yarrowia lipolytica affects lipid body size, number and distribution. FEMS Yeast Res. 2016, 16, fow062. [Google Scholar] [CrossRef]
- Nagy, K.K.; Takács, K.; Németh, I.; Varga, B.; Grolmusz, V.; Molnár, M.; Vértessy, B.G. Novel enzymes for biodegradation of polycyclic aromatic hydrocarbons identified by metagenomics and functional analysis in short-term soil microcosm experiments. Sci. Rep. 2024, 14, 11608. [Google Scholar] [CrossRef]
- Rafeeq, H.; Afsheen, N.; Rafique, S.; Arshad, A.; Intisar, M.; Hussain, A.; Bilal, M.; Iqbal, H.M.N. Genetically engineered microorganisms for environmental remediation. Chemosphere 2023, 310, 136751. [Google Scholar] [CrossRef]
- Schuster, M.; Kahmann, R. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet. Biol. 2019, 130, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, J.E.; Saha, S.; Mäkelä, M.R. Application of CRISPR/Cas9 Tools for genome editing in the white-rot fungus dichomitus squalens. Biomolecules 2021, 11, 1526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, H.; Liu, Y.; Zhou, J.; Shen, W.; Liu, L.; Li, Q.; Chen, X. A CRISPR–Cas9 system for multiple genome editing and pathway assembly in Candida tropicalis. Biotechnol. Bioeng. 2020, 117, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Boti, M.A.; Athanasopoulou, K.; Adamopoulos, P.G.; Sideris, D.C.; Scorilas, A. Recent advances in ge-nome-engineering strategies. Genes 2023, 14, 129. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yue, L.; Chen, S.; Wu, Y. Functional expression of Helicoverpa armigera CYP9A12 and CYP9A14 in Saccharomyces cerevisiae. Pestic. Biochem. Physiol. 2008, 92, 101–105. [Google Scholar] [CrossRef]
- Shin, J.; Kim, J.-E.; Lee, Y.-W.; Son, H. Fungal cytochrome P450s and the P450 complement (CYPome) of fusarium graminearum. Toxins 2018, 10, 112. [Google Scholar] [CrossRef]
- Kunitake, E.; Tanaka, T.; Ueda, H.; Endo, A.; Yarimizu, T.; Katoh, E.; Kitamoto, H. CRISPR/Cas9-mediated gene replacement in the basidiomycetous yeast Pseudozyma antarctica. Fungal Genet. Biol. 2019, 130, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.; Kang, C.-M.; Lee, Y.M.; Lee, H.; Yun, C.-W.; Kim, G.-H.; Kim, J.-J. Heterologous expression of a new manganese-dependent peroxidase gene from Peniophora incarnata KUC8836 and its ability to remove anthracene in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2016, 122, 716–721. [Google Scholar] [CrossRef]
- Saxena, G.; Kishor, R.; Saratale, G.D.; Bharagava, R.N. Genetically Modified Organisms (GMOs) and their potential in environmental management: Constraints, prospects, and challenges. In Bioremediation of Industrial Waste for Environmental Safety; Springer: Singapore, 2020; pp. 1–19. [Google Scholar]
- Hussain, I.; Aleti, G.; Naidu, R.; Puschenreiter, M.; Mahmood, Q.; Rahman, M.M.; Wang, F.; Shaheen, S.; Syed, J.H.; Reichenauer, T.G. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. Sci. Total Environ. 2018, 628–629, 1582–1599. [Google Scholar] [CrossRef]
- Pant, G.; Garlapati, D.; Agrawal, U.; Prasuna, R.G.; Mathimani, T.; Pugazhendhi, A. Biological Approaches Practised Using genetically engineered microbes for a sustainable environment: A review. J. Hazard. Mater. 2021, 405, 124631. [Google Scholar] [CrossRef] [PubMed]
- Prista, C.; Loureiro-Dias, M.C. Debaryomyces hansenii, a salt loving spoilage yeast. In A Portrait of State of the Art Research at the Technical University of Lisbon; Springer: Dordrecht, The Netherlands, 2007; pp. 457–464. [Google Scholar]
- Prista, C.; Michán, C.; Miranda, I.M.; Ramos, J. The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 2016, 33, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Breuer, U.; Harms, H. Debaryomyces hansenii —An extremophilic yeast with biotechnological potential. Yeast 2006, 23, 415–437. [Google Scholar] [CrossRef] [PubMed]
- Cébron, A.; Beguiristain, T.; Bongoua-Devisme, J.; Denonfoux, J.; Faure, P.; Lorgeoux, C.; Ouvrard, S.; Parisot, N.; Peyret, P.; Leyval, C. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environ. Sci. Pollut. Res. 2015, 22, 13724–13738. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Zhang, Y.; Wu, M.; Wang, Y.; Dong, J.; Jiang, Y.; Yang, Q.; Zeng, S. Fungal community successions in rhizosphere sediment of seagrasses Enhalus acoroides under PAHs stress. Int. J. Mol. Sci. 2015, 16, 14039–14055. [Google Scholar] [CrossRef] [PubMed]
- Miura, A.; Urabe, J. Spatial and seasonal changes in species diversity of epilithic fungi along environmental gradients of a river. Freshw. Biol. 2015, 60, 673–685. [Google Scholar] [CrossRef]
- Krauss, G.-J.; Solé, M.; Krauss, G.; Schlosser, D.; Wesenberg, D.; Bärlocher, F. Fungi in freshwaters: Ecology, physiology and biochemical potential. FEMS Microbiol. Rev. 2011, 35, 620–651. [Google Scholar] [CrossRef]
- Cury, J.C.; Jurelevicius, D.A.; Villela, H.D.M.; Jesus, H.E.; Peixoto, R.S.; Schaefer, C.E.G.R.; Bícego, M.C.; Seldin, L.; Rosado, A.S. Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarct. Sci. 2015, 27, 263–273. [Google Scholar] [CrossRef]
- Andreolli, M.; Lampis, S.; Brignoli, P.; Vallini, G. Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: A comparative study. J. Environ. Manage 2015, 153, 121–131. [Google Scholar] [CrossRef]
- Thomas, T.; Gilbert, J.; Meyer, F. Metagenomics a guide from sampling to data analysis. Microb. Inform. Exp. 2012, 2, 3. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, J.; Huang, Y.; Liu, W.; Christie, P. Metagenomics reveals mechanism of pyrene degradation by an enriched bacterial consortium from a coking site contaminated with PAHs. Sci. Total Environ. 2023, 904, 166759. [Google Scholar] [CrossRef] [PubMed]
- Hesham, A.E.-L.; Khan, S.; Tao, Y.; Li, D.; Zhang, Y.; Yang, M. Biodegradation of high molecular weight PAHs using isolated yeast mixtures: Application of metagenomic methods for community structure analyses. Environ. Sci. Pollut. Res. 2012, 19, 3568–3578. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Karaçay, H.A.; Shahi, A.; Gökçe, S.; Ince, B.; Ince, O. Aerobic and anaerobic fungal metabolism and omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol. Rev. 2017, 31, 61–72. [Google Scholar] [CrossRef]
- Deshpande, D.; Chhugani, K.; Chang, Y.; Karlsberg, A.; Loeffler, C.; Zhang, J.; Muszyńska, A.; Munteanu, V.; Yang, H.; Rotman, J.; et al. RNA-Seq data science: From raw data to effective interpretation. Front. Genet. 2023, 14, 997383. [Google Scholar] [CrossRef]
- Chigu, N.L.; Hirosue, S.; Nakamura, C.; Teramoto, H.; Ichinose, H.; Wariishi, H. Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 2010, 87, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Thuillier, A.; Ngadin, A.A.; Thion, C.; Billard, P.; Jacquot, J.-P.; Gelhaye, E.; Morel, M. Functional diversi-fication of fungal glutathione transferases from the Ure2p class. Int. J. Evol. Biol. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.S.; Syed, K.; Shann, J.; Yadav, J.S. A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium. J. Hazard. Mater. 2013, 261, 675–683. [Google Scholar] [CrossRef]
- Altelaar, A.F.M.; Munoz, J.; Heck, A.J.R. Next-Generation Proteomics: Towards an integrative view of pro-teome dynamics. Nat. Rev. Genet. 2013, 14, 35–48. [Google Scholar] [CrossRef]
- Bianco, L.; Perrotta, G. Methodologies and perspectives of proteomics applied to filamentous fungi: From sample preparation to secretome analysis. Int. J. Mol. Sci. 2015, 16, 5803–5829. [Google Scholar] [CrossRef]
- Kim, Y.; Nandakumar, M.P.; Marten, M.R. Proteomics of filamentous fungi. Trends Biotechnol. 2007, 25, 395–400. [Google Scholar] [CrossRef]
- Verdin, A.; Sahraoui, A.L.-H.; Robinson, G.; Durand, R. Effect of the polycyclic aromatic hydrocarbon, benzopyrene, on the intracellular protein composition of Fusarium solani and Fusarium oxysporum. Int. Biodeterior. Biodegradation 2005, 55, 171–174. [Google Scholar] [CrossRef]
- Szewczyk, R.; Soboń, A.; Sylwia, R.; Dzitko, K.; Waidelich, D.; Długoński, J. Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii. Int. Biodeterior. Biodegradation 2014, 93, 44–53. [Google Scholar] [CrossRef]
- Szewczyk, R.; Soboń, A.; Słaba, M.; Długoński, J. Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J. Hazard. Mater. 2015, 291, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Crowther, T.W.; Rappuoli, R.; Corinaldesi, C.; Danovaro, R.; Donohue, T.J.; Huisman, J.; Stein, L.Y.; Timmis, J.K.; Timmis, K.; Anderson, M.Z.; et al. Scientists’ call to action: Microbes, planetary health, and the Sustainable Development Goals. Cell 2024, 187, 5195–5216. [Google Scholar] [CrossRef] [PubMed]
Year | Study |
---|---|
1965 | The ability of S. cerevisiae to absorb BaP through passive diffusion was investigated [44]. |
1970s | The activity of BaP hydroxylase, later identified as CYP, in S. cerevisiae was examined [45]. A fluorometric assay was developed to measure BaP metabolites, revealing that CYP synthesis is regulated by cyclic AMP and influenced by glucose in the medium. It was further reported that BaP induces genetic activation of CYPs [46]. |
1981 | The ability of C. lipolytica (later identified and characterized as Y. lipolytica [35]), C. tropicalis, C. maltosa, C. guilliermondii, and D. hansenii to oxidize naphthalene, biphenyl, and BaP was investigated, along with an early metabolomic analysis proposing the structures of some metabolites [36]. |
1982 | The purification of CYP (also known as BaP hydroxylase) was performed to study its regulation and the metabolites produced when BaP was exposed to the enzyme [47,48]. |
1993 | Yeast abundance was quantified in sediments from 13 coastal sites in Massachusetts, identifying genera such as Candida spp., Cryptococcus spp., Rhodotorula spp., Torulopsis spp., and Trichosporon spp. Over 50% of the isolates from contaminated areas transformed phenanthrene, with Trichosporon penicillatum exhibiting the greatest efficiency in transforming PAHs [37]. This work is considered the earliest metagenomic study. |
2006 | A strain of P. anomala, isolated from petroleum- and oil-contaminated soil, was characterized. This strain demonstrated the ability to degrade naphthalene, dibenzothiophene, phenanthrene, and chrysene [38]. |
2009 | A strain of C. viswanathii capable of degrading a mixture of low- and high-molecular-weight PAHs, including naphthalene, phenanthrene, pyrene, and BaP, was isolated and characterized [39]. |
2010 | Six CYP genes were identified in Phanerochaete chrysosporium and found to be induced by PAHs. These genes were cloned and expressed in Pichia pastoris alongside a reductase from P. chrysosporium, demonstrating oxidizing activity towards three-to-five-ring PAHs. The recombinant enzymes oxidized pyrene and BaP, enhancing P. pastoris’ capacity to degrade PAHs [49]. |
2013 | A functional toxicology proteomic analysis with S. cerevisiae identified the proteins required for cellular resistance to BaP by examining the activity of key genes involved in various stress response pathways, DNA repair, redox homeostasis, and oxidative stress [40]. |
2016 | Four yeast strains, D. hansenii, H. opuntiae, H. valbyensis, and Rhodotorula sp., isolated from BaP-contaminated soils, were evaluated. In consortium studies, they achieved 76% degradation within 6 days under optimized conditions. Degradation products were identified, and a metabolic pathway involving several key enzymes was proposed [41]. |
2018 | A yeast consortium composed of D. hansenii, H. opuntiae, H. valbyensis, and Rhodotorula sp., enriched with zinc oxide nanoparticles for the degradation of BaP in contaminated soils, was found to enhance degradation efficiency in the presence of the nanoparticles [42,43]. |
2020 | Yeast strains of a novel anamorphic species were isolated from hydrocarbon-contaminated groundwater in Spain and a human infection in the USA. Phylogenetic analysis placed them in the Wickerhamiella clade, with W. sorbophila and W. infanticola as their closest relatives. The species W. verensis was proposed as new, with CECT 12028T as the holotype [50]. |
Two fungal isolates from an oil-polluted site in Mexico were identified as a novel Rhodotorula sp. and Exophiala sp. Both strains showed pH and salinity tolerance, with Exophiala switching from hyphae to yeast at high salinity. Rhodotorula degraded single-ring aromatic hydrocarbons, while Exophiala removed polyaromatic hydrocarbons. Both strains grew well in the presence of aromatic compounds [4]. | |
2021 | R. mucilaginosa EXF-1630, isolated from Arctic Sea ice, was grown on phenanthrene and BaP under hypersaline conditions, achieving 80% removal in 10 days. Extracellular enzymes were undetected, but NADPH-cytochrome c reductase activity peaked at day 4. Non-toxic metabolites were confirmed, and transcriptomic analysis revealed extensive gene regulation in response to PAHs. This study is considered the first to describe a yeast’s metabolic profile and transcriptomic response to PAH degradation [5]. |
2022 | Cryptococcus albidus, C. guilliermondii, and C. tropicalis, isolated from sugarcane, showed the ability to use lignin as the sole carbon source and to grow in the presence of phenol and its derivatives (pentachlorophenol and p-nitrophenol), with all strains exhibiting ligninolytic activity [14]. |
The effect of BaP on the growth and metabolism of C. albicans, D. hansenii, R. mucilaginosa, and S. cerevisiae was evaluated. All species metabolized over 70% of BaP without affecting their viability, with D. hansenii showing the highest efficiency. The initial degradation step was found to be mediated by a CYP enzyme, and the DhDIT2 gene in D. hansenii was identified as essential for this process. D. hansenii and S. cerevisiae expressing the DhDIT2 gene are proposed as optimal candidates for BaP bioremediation in contaminated environments [6]. | |
Y. lipolytica IMUFRJ 50682, isolated in Brazil, efficiently degraded complex petroleum hydrocarbons, including n-alkanes, isoprenoids, and PAHs. In the process, it was found to produce biosurfactants [51]. | |
D. hansenii completely removed n-dodecane, a linear alkane, in saline effluent from desalination plants at 20 °C and 1–5 g/L salt, and demonstrated effectiveness in wastewater treatment in refineries [52]. | |
2023 | S. cerevisiae, C. utilis, and Rhodotorula benthica were used as exogenous organisms to treat soils contaminated with total petroleum hydrocarbons, improving degradation compared to that achieved by native microorganisms [53]. |
2024 | C. tropicalis strain B isolated from hydrocarbon-contaminated seawater demonstrated a high capacity to degrade crude oil, with a wide tolerance of pH (4–11) and salinity (1–12%). With glucose and yeast extract, it enhanced its biodegradation capacity, reaching up to 98.6% removal of naphthalene and 79.48% of phenol [54]. |
Y. lipolytica LMS 24B demonstrated high potential to produce biosurfactants capable of emulsifying hydrocarbons and metabolizing paraffin [55]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padilla-Garfias, F.; Araiza-Villanueva, M.; Calahorra, M.; Sánchez, N.S.; Peña, A. Advances in the Degradation of Polycyclic Aromatic Hydrocarbons by Yeasts: A Review. Microorganisms 2024, 12, 2484. https://doi.org/10.3390/microorganisms12122484
Padilla-Garfias F, Araiza-Villanueva M, Calahorra M, Sánchez NS, Peña A. Advances in the Degradation of Polycyclic Aromatic Hydrocarbons by Yeasts: A Review. Microorganisms. 2024; 12(12):2484. https://doi.org/10.3390/microorganisms12122484
Chicago/Turabian StylePadilla-Garfias, Francisco, Minerva Araiza-Villanueva, Martha Calahorra, Norma Silvia Sánchez, and Antonio Peña. 2024. "Advances in the Degradation of Polycyclic Aromatic Hydrocarbons by Yeasts: A Review" Microorganisms 12, no. 12: 2484. https://doi.org/10.3390/microorganisms12122484
APA StylePadilla-Garfias, F., Araiza-Villanueva, M., Calahorra, M., Sánchez, N. S., & Peña, A. (2024). Advances in the Degradation of Polycyclic Aromatic Hydrocarbons by Yeasts: A Review. Microorganisms, 12(12), 2484. https://doi.org/10.3390/microorganisms12122484