Directional and Strain-Specific Interaction Between Lactobacillus plantarum and Staphylococcus aureus
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Strain Maintenance, and Growth Conditions
2.2. Co-Culture and Sample Preparation
2.3. Protein Quantification and Sample Quality Assessment
2.4. Protein Digestion and Peptide Preparation
2.5. Mass Spectrometry Analysis
2.6. Bioinformatic Analysis
3. Results and Discussion
3.1. Interaction between L. plantarum WCFS1 and S. aureus FRI-1169
3.1.1. Comparative Analysis of Proteins from L. plantarum WCFS1 During Co-Culture with S. aureus FRI-1169
3.1.2. Comparative Analysis of Proteins from S. aureus FRI-1169 During Co-culture with L. plantarum WCFS1
3.2. Interaction Between L. plantarum WCFS1 and S. aureus MN8
3.2.1. Comparative Analysis of Proteins from L. plantarum WCFS1 During Co-Culture with S. aureus MN8
3.2.2. Comparative Analysis of Proteins from S. aureus MN8 During Co-Culture with L. plantarum WCFS1
3.3. Differential Expression of Proteins from L. plantarum WCFS1 During Co-Culture
3.3.1. Protein Expression Profiles of L. plantarum WCFS1 During Co-Culture
3.3.2. Functional Analysis of Differentially Expressed Proteins from L. plantarum WCFS1 During Co-Culture with S. aureus FRI-1169 and S. aureus MN8
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergdoll, M.S.; Crass, B.A.; Reiser, R.F.; Robbins, R.N.; Davis, J.P. A new staphylococcal enterotoxin, enterotoxin F, associated with toxic-shock-syndrome Staphylococcus aureus isolates. Lancet 1981, 1, 1017–1021. [Google Scholar] [CrossRef]
- Blomster-Hautamaa, D.; Schlievert, P.M. Preparation of toxic shock syndrome toxin-1. Methods Enzymol. 1988, 165, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.C.; Crass, B.A.; Bergdoll, M.S. Investigation by syringe method of effect of tampons on production in vitro of toxic shock syndrome toxin 1 by Staphylococcus aureus. J. Clin. Microbiol. 1987, 25, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Schlievert, P.M.; Kelly, J.A. Clindamycin-induced suppression of toxic-shock syndrome--associated exotoxin production. J. Infect. Dis. 1984, 149, 471. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, A.; Satterwhite, E.; Lin, Y.-C.; Chuang-Smith, O.; Frank, K.; Merriman, J.; Schaefers, M.; Yarwood, J.; Peterson, M.; Schlievert, P. Comparison of Staphylococcus aureus strains for ability to cause infective endocarditis and lethal sepsis in rabbits. Front. Cell. Infect. Microbiol. 2012, 2, 18. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Summary of Notifiable Infectious Diseases and Conditions—United States, 2015. Morb. Mortal. Wkly. Rep. 2017, 64, 1–143. [Google Scholar] [CrossRef]
- Hajjeh, R.A.; Reingold, A.; Weil, A.; Shutt, K.; Schuchat, A.; Perkins, B.A. Toxic shock syndrome in the United States: Surveillance update, 1979-1996. Emerg. Infect. Dis. 1999, 5, 807–810. [Google Scholar] [CrossRef]
- Parsonnet, J.; Hansmann, M.A.; Delaney, M.L.; Modern, P.A.; Dubois, A.M.; Wieland-Alter, W.; Wissemann, K.W.; Wild, J.E.; Jones, M.B.; Seymour, J.L.; et al. Prevalence of toxic shock syndrome toxin 1-producing Staphylococcus aureus and the presence of antibodies to this superantigen in menstruating women. J. Clin. Microbiol. 2005, 43, 4628–4634. [Google Scholar] [CrossRef]
- Todd, J.; Fishaut, M.; Kapral, F.; Welch, T. Toxic-shock syndrome associated with phage-group-I Staphylococci. Lancet 1978, 2, 1116–1118. [Google Scholar] [CrossRef]
- Gaventa, S.; Reingold, A.L.; Hightower, A.W.; Broome, C.V.; Schwartz, B.; Hoppe, C.; Harwell, J.; Lefkowitz, L.K.; Makintubee, S.; Cundiff, D.R.; et al. Active surveillance for toxic shock syndrome in the United States, 1986. Rev. Infect. Dis. 1989, 11 (Suppl. S1), S28–S34. [Google Scholar] [CrossRef]
- DeVries, A.S.; Lesher, L.; Schlievert, P.M.; Rogers, T.; Villaume, L.G.; Danila, R.; Lynfield, R. Staphylococcal toxic shock syndrome 2000-2006: Epidemiology, clinical features, and molecular characteristics. PLoS ONE 2011, 6, e22997. [Google Scholar] [CrossRef] [PubMed]
- Schlievert, P.M.; Tripp, T.J.; Peterson, M.L. Reemergence of staphylococcal toxic shock syndrome in Minneapolis-St. Paul, Minnesota, during the 2000-2003 surveillance period. J. Clin. Microbiol. 2004, 42, 2875–2876. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, H.; Smoragiewicz, W. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int. J. Antimicrob. Agents 2013, 42, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.M.; Mergulhao, F.J.M.; Gomes, L.C. Using Lactobacilli to fight Escherichia coli and Staphylococcus aureus biofilms on urinary tract devices. Antibiotics 2021, 10, 1525. [Google Scholar] [CrossRef]
- Elkins, C.A.; Munoz, M.E.; Mullis, L.B.; Stingley, R.L.; Hart, M.E. Lactobacillus-mediated inhibition of clinical toxic shock syndrome Staphylococcus aureus strains and its relation to acid and peroxide production. Anaerobe 2008, 14, 261–267. [Google Scholar] [CrossRef]
- Gustafsson, R.J.; Ahrné, S.; Jeppsson, B.; Benoni, C.; Olsson, C.; Stjernquist, M.; Ohlsson, B. The Lactobacillus flora in vagina and rectum of fertile and postmenopausal healthy Swedish women. BMC Women’s Health 2011, 11, 17. [Google Scholar] [CrossRef]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108, 4680–4687. [Google Scholar] [CrossRef]
- Van de Wijgert, J.H.H.M.; Borgdorff, H.; Verhelst, R.; Crucitti, T.; Francis, S.; Verstraelen, H.; Jespers, V. The vaginal microbiota: What have we learned after a decade of molecular characterization? PLoS ONE 2014, 9, e105998. [Google Scholar] [CrossRef]
- Chaban, B.; Links, M.G.; Jayaprakash, T.P.; Wagner, E.C.; Bourque, D.K.; Lohn, Z.; Albert, A.Y.K.; van Schalkwyk, J.; Reid, G.; Hemmingsen, S.M.; et al. Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle. Microbiome 2014, 2, 23. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Y.; Yu, L.-R.; Jones, R.C.; Elkins, C.A.; Hart, M.E. Inhibition of Staphylococcus aureus by lysostaphin-expressing Lactobacillus plantarum WCFS1 in a modified genital tract secretion medium. Appl. Environ. Microbiol. 2011, 77, 8500–8508. [Google Scholar] [CrossRef]
- Kleerebezem, M.; Boekhorst, J.; van Kranenburg, R.; Molenaar, D.; Kuipers, O.P.; Leer, R.; Tarchini, R.; Peters, S.A.; Sandbrink, H.M.; Fiers, M.W.; et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 2003, 100, 1990–1995. [Google Scholar] [CrossRef]
- Siezen, R.J.; Francke, C.; Renckens, B.; Boekhorst, J.; Weis, M.; Kleerebezem, M.; van Hijum, S.A. Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J. Bacteriol. 2012, 194, 195–196. [Google Scholar] [CrossRef]
- Stingley, R.L.; Liu, H.; Mullis, L.B.; Elkins, C.A.; Hart, M.E. Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) production and Lactobacillus species growth in a defined medium simulating vaginal secretions. J. Microbiol. Methods 2014, 106c, 57–66. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Redondo-Lopez, V.; Cook, R.L.; Sobel, J.D. Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev. Infect. Dis. 1990, 12, 856–872. [Google Scholar] [CrossRef]
- Reid, G.; Dols, J.; Miller, W. Targeting the vaginal microbiota with probiotics as a means to counteract infections. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 583–587. [Google Scholar] [CrossRef]
- Reid, G.; Jass, J.; Sebulsky, M.T.; McCormick, J.K. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 2003, 16, 658–672. [Google Scholar] [CrossRef]
- Li, H.; Jia, M.; Qi, Q.; Wang, Q. Engineered probiotic Lactobacillus plantarum WCSF I for monitoring and treatment of Staphylococcus aureus infection. Microbiol. Spectr. 2023, 11, e0182923. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Chitrakar, B.; Zhang, X.; Zhang, N.; Liu, C.; Li, Y.; Wang, M.; Tian, H.; Li, C. Copper inhibits postacidification of yogurt and affects its flavor: A study based on the cop operon. J. Dairy Sci. 2023, 106, 897–911. [Google Scholar] [CrossRef]
- Lin, W.H.; Chien, C.C.; Ou, J.H.; Yu, Y.L.; Chen, S.C.; Kao, C.M. Cleanup of Cr(VI)-polluted groundwater using immobilized bacterial consortia via bioreduction mechanisms. J. Environ. Manag. 2023, 339, 117947. [Google Scholar] [CrossRef]
- Ingmer, H.; Vogensen, F.K.; Hammer, K.; Kilstrup, M. Disruption and analysis of the clpB, clpC, and clpE genes in Lactococcus lactis: ClpE, a new Clp family in gram-positive bacteria. J. Bacteriol. 1999, 181, 2075–2083. [Google Scholar] [CrossRef]
- Cao, C.; Wang, J.; Liu, Y.; Kwok, L.Y.; Zhang, H.; Zhang, W. Adaptation of Lactobacillus plantarum to ampicillin involves mechanisms that maintain protein homeostasis. mSystems 2020, 5, e00853-19. [Google Scholar] [CrossRef]
- Ingavale, S.; van Wamel, W.; Luong, T.T.; Lee, C.Y.; Cheung, A.L. Rat/MgrA, a Regulator of autolysis, is a regulator of virulence genes in Staphylococcus aureus. Infect. Immun. 2005, 73, 1423–1431. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Hooper, D.C. Phosphorylation of MgrA and its effect on expression of the NorA and NorB efflux pumps of Staphylococcus aureus. J. Bacteriol. 2010, 192, 2525–2534. [Google Scholar] [CrossRef]
- Luong, T.T.; Dunman, P.M.; Murphy, E.; Projan, S.J.; Lee, C.Y. Transcription profiling of the mgrA regulon in Staphylococcus aureus. J. Bacteriol. 2006, 188, 1899–1910. [Google Scholar] [CrossRef]
- Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001, 104, 901–912. [Google Scholar] [CrossRef]
- Perichon, B.; Courvalin, P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 4580–4587. [Google Scholar] [CrossRef]
- Qoronfleh, M.W.; Bortner, C.A.; Schwartzberg, P.; Wilkinson, B.J. Enhanced levels of Staphylococcus aureus stress protein GroEL and DnaK homologs early in infection of human epithelial cells. Infect. Immun. 1998, 66, 3024–3027. [Google Scholar] [CrossRef]
- Frees, D.; Gerth, U.; Ingmer, H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int. J. Med. Microbiol. 2014, 304, 142–149. [Google Scholar] [CrossRef]
- Tsai, Y.K.; Lin, T.H. Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1. J. Appl. Microbiol. 2006, 100, 446–459. [Google Scholar] [CrossRef]
- Licandro-Seraut, H.; Scornec, H.; Pedron, T.; Cavin, J.F.; Sansonetti, P.J. Functional genomics of Lactobacillus casei establishment in the gut. Proc. Natl. Acad. Sci. USA 2014, 111, E3101–E3109. [Google Scholar] [CrossRef] [PubMed]
- Morel-Deville, F.; Fauvel, F.; Morel, P. Two-component signal-transducing systems involved in stress responses and vancomycin susceptibility in Lactobacillus sakei. Microbiology 1998, 144 Pt 10, 2873–2883. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Bhinderwala, F.; Lehman, M.K.; Thomas, V.C.; Chaudhari, S.S.; Yamada, K.J.; Foster, K.W.; Powers, R.; Kielian, T.; Fey, P.D. Urease is an essential component of the acid response network of Staphylococcus aureus and is required for a persistent murine kidney infection. PLoS Pathog. 2019, 15, e1007538. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondakala, S.; Yoon, S.; Daddy Gaoh, S.; Kweon, O.; Kim, S.-J.; Hart, M.E. Directional and Strain-Specific Interaction Between Lactobacillus plantarum and Staphylococcus aureus. Microorganisms 2024, 12, 2432. https://doi.org/10.3390/microorganisms12122432
Kondakala S, Yoon S, Daddy Gaoh S, Kweon O, Kim S-J, Hart ME. Directional and Strain-Specific Interaction Between Lactobacillus plantarum and Staphylococcus aureus. Microorganisms. 2024; 12(12):2432. https://doi.org/10.3390/microorganisms12122432
Chicago/Turabian StyleKondakala, Sandeep, Sunghyun Yoon, Soumana Daddy Gaoh, Ohgew Kweon, Seong-Jae Kim, and Mark E. Hart. 2024. "Directional and Strain-Specific Interaction Between Lactobacillus plantarum and Staphylococcus aureus" Microorganisms 12, no. 12: 2432. https://doi.org/10.3390/microorganisms12122432
APA StyleKondakala, S., Yoon, S., Daddy Gaoh, S., Kweon, O., Kim, S.-J., & Hart, M. E. (2024). Directional and Strain-Specific Interaction Between Lactobacillus plantarum and Staphylococcus aureus. Microorganisms, 12(12), 2432. https://doi.org/10.3390/microorganisms12122432