Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria
Abstract
1. Introduction
2. Materials and Methods
2.1. Cigarette Butt Samples
2.2. Inocula Preparation
2.3. Preparation of Samples
2.4. Biodegradation Test
2.5. Weight Loss
2.6. Fourier-Transform Infrared Spectroscopy (FTIR)
2.7. Confocal Microscopy
2.8. Scanning Electron Microscopy (SEM)
2.9. Statistical Analysis
3. Results
3.1. Weight Loss
3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.3. Confocal Microscopy
3.4. Scanning Electron Microscopy (SEM)
4. Discussion
4.1. Loss of Weight
4.2. Fourier-Transform Infrared Spectroscopy (FTIR)
4.3. Confocal Microscopy
4.4. Scanning Electron Microscopy (SEM)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marinello, S.; Lolli, F.; Gamberini, R.; Rimini, B. A Second Life for Cigarette Butts? A Review of Recycling Solutions. J. Hazard. Mater. 2020, 384, 121245. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Rubio, L.C. Estrategias Para La Degradación de Colillas de Cigarrillo: Revisión de La Literatura; Pontificia Universidad Javeriana: Bogotá, Colombia, 2020. [Google Scholar]
- Elflein, J. Global Consumption of Cigarettes from 2007 to 2020, and Projections from 2021 to 2025 (in Trillions). Available online: https://www.statista.com/statistics/663534/worldwide-consumption-of-cigarettes/ (accessed on 26 October 2024).
- Vanapalli, K.R.; Sharma, H.B.; Anand, S.; Ranjan, V.P.; Singh, H.; Dubey, B.K.; Mohanty, B. Cigarettes Butt Littering: The Story of the World’s Most Littered Item from the Perspective of Pollution, Remedial Actions, and Policy Measures. J. Hazard. Mater. 2023, 453, 131387. [Google Scholar] [CrossRef]
- Bonanomi, G.; Maisto, G.; De Marco, A.; Cesarano, G.; Zotti, M.; Mazzei, P.; Libralato, G.; Staropoli, A.; Siciliano, A.; De Filippis, F.; et al. The Fate of Cigarette Butts in Different Environments: Decay Rate, Chemical Changes and Ecotoxicity Revealed by a 5-Years Decomposition Experiment. Environ. Pollut. 2020, 261, 114108. [Google Scholar] [CrossRef] [PubMed]
- Caridi, F.; Sabbatini, A.; Birarda, G.; Costanzi, E.; De Giudici, G.; Galeazzi, R.; Medas, D.; Mobbili, G.; Ricciutelli, M.; Ruello, M.L.; et al. Cigarette Butts, a Threat for Marine Environments: Lessons from Benthic Foraminifera (Protista). Mar. Environ. Res. 2020, 162, 105150. [Google Scholar] [CrossRef]
- Klus, H.; Scherer, G.; Müller, L. Influence of Additives on Cigarette Related Health Risks. Beiträge Zur Tab. Int./Contrib. Tob. Res. 2012, 25, 412–493. [Google Scholar] [CrossRef]
- Torkashvand, J.; Farzadkia, M.; Sobhi, H.R.; Esrafili, A. Littered Cigarette Butt as a Well-Known Hazardous Waste: A Comprehensive Systematic Review. J. Hazard. Mater. 2020, 383, 121242. [Google Scholar] [CrossRef] [PubMed]
- Green, D.S.; Boots, B.; Da Silva Carvalho, J.; Starkey, T. Cigarette Butts Have Adverse Effects on Initial Growth of Perennial Ryegrass (Gramineae: Lolium perenne L.) and White Clover (Leguminosae: Trifolium repens L.). Ecotoxicol. Environ. Saf. 2019, 182, 109418. [Google Scholar] [CrossRef]
- Zhou, S.; Fu, Z.; Xia, L.; Mao, Y.; Zhang, C.; Chen, J. Blocking and Filtering Effect of Filter Tips of Natural Fibers against Mainstream Cigarettes Smoke. J. Nat. Fibers 2021, 18, 2327–2337. [Google Scholar] [CrossRef]
- Fei, P.; Liao, L.; Cheng, B.; Song, J. Quantitative Analysis of Cellulose Acetate with a High Degree of Substitution by FTIR and Its Application. Anal. Methods 2017, 9, 6194–6201. [Google Scholar] [CrossRef]
- Merchán, J.P.; Ballesteros, D.; Jiménez, I.C.; Medina, J.A.; Álvarez, O. Estudio de La Biodegradación Aerobia de Almidón Termoplástico (TPS). Supl. Rev. Latinoam. Metal. Mater. 2009, 1, 39–44. [Google Scholar]
- Sista Kameshwar, A.K.; Qin, W. Comparative Study of Genome-Wide Plant Biomass-Degrading CAZymes in White Rot, Brown Rot and Soft Rot Fungi. Mycology 2018, 9, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Iparraguirre Quispe, K.D.R.; Vivanco López, M. Aislamiento y Caracterización de Hongos Filamentosos Biodegradadores de Polietileno de Tereftalato y Polietileno de Baja Densidad. Bachelor Thesis, Universidad Nacional San Luis Gozaga de Ica, Ica, Peru, 2015. [Google Scholar]
- Presley, G.N.; Panisko, E.; Purvine, S.O.; Schilling, J.S. Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi. Appl. Environ. Microbiol. 2018, 84, e00159-18. [Google Scholar] [CrossRef]
- Reyes, C.; Poulin, A.; Nyström, G.; Schwarze, F.; Ribera, J. Enzyme Activities of Five White-Rot Fungi in the Presence of Nanocellulose. J. Fungi 2021, 7, 222. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, K.; Niikura, M.; Kojima, Y.; Goodell, B.; Yoshida, M. Transcriptome Analysis of the Brown Rot Fungus Gloeophyllum Trabeum during Lignocellulose Degradation. PLoS ONE 2020, 15, e0243984. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Zamudio, P.A.; Flórez-Restrepo, M.A.; López-Legarda, X.; Monroy-Giraldo, L.C.; Segura-Sánchez, F. Biodegradation of Plastics by White-Rot Fungi: A Review. Sci. Total Environ. 2023, 901, 165950. [Google Scholar] [CrossRef]
- Saira; Abdullah; Maroof, L.; Iqbal, M.; Farman, S.; Lubna; Faisal, S. Biodegradation of Low-Density Polyethylene (LDPE) Bags by Fungi Isolated from Waste Disposal Soil. Appl. Environ. Soil. Sci. 2022, 2022, 8286344. [Google Scholar] [CrossRef]
- Vertus, D.; Ruíz, M.; Henriquéz, J.; Ortíz, V. Biodegradación Bacteriana de Polietileno y Propuesta de Aplicación En Cerro Patacón. Rev. Iniciación Científica 2017, 3, 1–6. [Google Scholar]
- Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl Chloride Biodegradation by Pseudomonas Citronellolis and Bacillus Flexus. New Biotechnol. 2019, 52, 35–41. [Google Scholar] [CrossRef]
- Leppänen, I.; Vikman, M.; Harlin, A.; Orelma, H. Enzymatic Degradation and Pilot-Scale Composting of Cellulose-Based Films with Different Chemical Structures. J. Polym. Environ. 2020, 28, 458–470. [Google Scholar] [CrossRef]
- Califano, D.; Kadowaki, M.A.S.; Calabrese, V.; Prade, R.A.; Mattia, D.; Edler, K.J.; Polikarpov, I.; Scott, J.L. Multienzyme Cellulose Films as Sustainable and Self-Degradable Hydrogen Peroxide-Producing Material. Biomacromolecules 2020, 21, 5315–5322. [Google Scholar] [CrossRef]
- Ishigaki, T.; Sugano, W.; Ike, M.; Taniguchi, H.; Goto, T.; Fujita, M. Effect of UV Irradiation on Enzymatic Degradation of Cellulose Acetate. Polym. Degrad. Stab. 2002, 78, 505–510. [Google Scholar] [CrossRef]
- Updyke, R. Biodegradation and Feasibility of Three Pleurotus Species on Cigarette Filters; University of Maine: Orono, ME, USA, 2014; Available online: https://digitalcommons.library.umaine.edu/honors/192 (accessed on 20 October 2024).
- ASTM E1508; Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy. ASTM International: West Conshohocken, PA, USA, 2019.
- Fang, W.; Zhang, X.; Zhang, P.; Carol Morera, X.; van Lier, J.B.; Spanjers, H. Evaluation of White Rot Fungi Pretreatment of Mushroom Residues for Volatile Fatty Acid Production by Anaerobic Fermentation: Feedstock Applicability and Fungal Function. Bioresour. Technol. 2020, 297, 122447. [Google Scholar] [CrossRef] [PubMed]
- Łucejko, J.J.; Mattonai, M.; Zborowska, M.; Tamburini, D.; Cofta, G.; Cantisani, E.; Kúdela, J.; Cartwright, C.; Colombini, M.P.; Ribechini, E.; et al. Deterioration Effects of Wet Environments and Brown Rot Fungus Coniophora Puteana on Pine Wood in the Archaeological Site of Biskupin (Poland). Microchem. J. 2018, 138, 132–146. [Google Scholar] [CrossRef]
- Polman, E.M.N.; Gruter, G.-J.M.; Parsons, J.R.; Tietema, A. Comparison of the Aerobic Biodegradation of Biopolymers and the Corresponding Bioplastics: A Review. Sci. Total Environ. 2021, 753, 141953. [Google Scholar] [CrossRef]
- Arroyo, F.D.; Castro-Guerrero, C.; León-Silva, U. Thin Films of Cellulose Acetate Nanofibers from Cigarette Butt Waste. Progress. Rubber Plast. Recycl. Technol. 2020, 36, 3–17. [Google Scholar] [CrossRef]
- Joly, F.-X.; Coulis, M. Comparison of Cellulose vs. Plastic Cigarette Filter Decomposition under Distinct Disposal Environments. Waste Manag. 2018, 72, 349–353. [Google Scholar] [CrossRef]
- Puls, J.; Wilson, S.A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2011, 19, 152–165. [Google Scholar] [CrossRef]
- Haske-Cornelius, O.; Pellis, A.; Tegl, G.; Wurz, S.; Saake, B.; Ludwig, R.; Sebastian, A.; Nyanhongo, G.; Guebitz, G. Enzymatic Systems for Cellulose Acetate Degradation. Catalysts 2017, 7, 287. [Google Scholar] [CrossRef]
- Silva Sosa, R.V.; Nieto Segura, A.C. Comparación de La Capacidad Degradadora de Tres Cepas de Pseudomonas Frente al Tereftalato de Polietileno, Poliestireno y Polipropileno. Bachelor Thesis, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru, 2020. [Google Scholar]
- Fatani, S.; Saito, Y.; Alarawi, M.; Gojobori, T.; Mineta, K. Genome Sequencing and Identification of Cellulase Genes in Bacillus Paralicheniformis Strains from the Red Sea. BMC Microbiol. 2021, 21, 254. [Google Scholar] [CrossRef]
- Leal Morales, A. Caracterización Del Regulón de FleQ y Del Cambio de Estilo de Vida de Pseudomonas putida. Doctoral Dissertation, Universidad Pablo de Olavide, Sevilla, Spain, 2019. [Google Scholar]
- Yadav, N.; Hakkarainen, M. Degradable or Not? Cellulose Acetate as a Model for Complicated Interplay between Structure, Environment and Degradation. Chemosphere 2021, 265, 128731. [Google Scholar] [CrossRef]
- Grijalva Vallejos, N. Degradación de Residuos Vegetales Mediante Inoculación Con Cepas Microbianas. Enfoque UTE 2013, 4, 1–13. [Google Scholar] [CrossRef]
- Recursos Educativos de Química Orgánica (QUIORED). Absorciones IR Para Grupos Funcionales Representativo. Available online: https://www.ugr.es/~quiored/lab/tablas_espec/ir.htm (accessed on 26 June 2024).
- González García, Y.; González Reynoso, O.; Nungaray Arellano, J. Potencial Del Bagazo de Agave Tequilero Para La Producción de Biopolímeros y Carbohidrasas Por Bacterias Celulolíticas y Para La Obtención de Compuestos Fenólicos. e-Gnosis 2005, 3, 1–18. [Google Scholar]
- Fuentes Olivera, A.J. Influencia de La Concentración Inicial de Azúcares y La Temperatura de Fermentación En El Rendimiento de Un Bioplástico a Partir Del Hidrolizado de Granos Usados de Cervecería Empleando Pseudomonas Aeruginosa. Doctoral Dissertation, Universidad Nacional de Trujillo, Trujillo, Peru, 2015. [Google Scholar]
- Di Martino, C. Estudio de Bacterias Del Género Pseudomonas En La Degradación de Hidrocarburos y Síntesis de Biosurfactantes: Análisis Del Efecto de Los Polihidroxialcanoatos. Doctoral Dissertation, Universidad de Buenos Aires, Buenos Aires, Argentina, 2015. [Google Scholar]
- Tan, J.; Liang, Y.; Sun, L.; Yang, Z.; Xu, J.; Dong, D.; Liu, H. Degradation Characteristics of Cellulose Acetate in Different Aqueous Conditions. Polymers 2023, 15, 4505. [Google Scholar] [CrossRef] [PubMed]
- Daly, P.; Cai, F.; Kubicek, C.P.; Jiang, S.; Grujic, M.; Rahimi, M.J.; Sheteiwy, M.S.; Giles, R.; Riaz, A.; de Vries, R.P.; et al. From Lignocellulose to Plastics: Knowledge Transfer on the Degradation Approaches by Fungi. Biotechnol. Adv. 2021, 50, 107770. [Google Scholar] [CrossRef]
- Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. Biodegradation of Plastic Polymers by Fungi: A Brief Review. Bioresour. Bioprocess. 2022, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, R.; Fan, F. A Comprehensive Insight into the Application of White Rot Fungi and Their Lignocellulolytic Enzymes in the Removal of Organic Pollutants. Sci. Total Environ. 2021, 778, 146132. [Google Scholar] [CrossRef]
- Kijpornyongpan, T.; Schwartz, A.; Yaguchi, A.; Salvachúa, D. Systems Biology-Guided Understanding of White-Rot Fungi for Biotechnological Applications: A Review. iScience 2022, 25, 104640. [Google Scholar] [CrossRef]
- Gómez-Méndez, L.D.; Moreno-Bayona, D.A.; Poutou-Piñales, R.A.; Salcedo-Reyes, J.C.; Pedroza-Rodríguez, A.M.; Vargas, A.; Bogoya, J.M. Biodeterioration of Plasma Pretreated LDPE Sheets by Pleurotus Ostreatus. PLoS ONE 2018, 13, e0203786. [Google Scholar] [CrossRef]
- Kim, H.R.; Lee, H.M.; Yu, H.C.; Jeon, E.; Lee, S.; Li, J.; Kim, D.-H. Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms (Larvae of Zophobas atratus). Environ. Sci. Technol. 2020, 54, 6987–6996. [Google Scholar] [CrossRef]
- Gadaleta, G.; De Gisi, S.; Chong, Z.K.; Heerenklage, J.; Notarnicola, M.; Kuchta, K.; Cafiero, L.; Oliviero, M.; Sorrentino, A.; Picuno, C. Degradation of Thermoplastic Cellulose Acetate-Based Bioplastics by Full-Scale Experimentation of Industrial Anaerobic Digestion and Composting. Chem. Eng. J. 2023, 462, 142301. [Google Scholar] [CrossRef]
- Gu, D.; Xiang, X.; Wu, Y.; Zeng, J.; Lin, X. Synergy between Fungi and Bacteria Promotes Polycyclic Aromatic Hydrocarbon Cometabolism in Lignin-Amended Soil. J. Hazard. Mater. 2022, 425, 127958. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, A.; Zhang, M.; Sharaf, F. Synergistic Degradation of PBAT Poly (Butylene Adipate-Co-Terephthalate) Co-Polyesters Using a Bacterial Co-Culture System. Polym. Bull. 2024, 81, 2741–2755. [Google Scholar] [CrossRef]
- Purnomo, A.S.; Sariwati, A.; Kamei, I. Synergistic Interaction of a Consortium of the Brown-Rot Fungus Fomitopsis Pinicola and the Bacterium Ralstonia Pickettii for DDT Biodegradation. Heliyon 2020, 6, e04027. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.; Edwards, S.; Vague, M.; León-Zayas, R.; Scheffer, H.; Chan, G.; Swartz, N.A.; Mellies, J.L. Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic. mSphere 2020, 5, e01151-20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Vera, R.; Cantillana, J.; Arto-Paz, F.; Hernández, C.; Echeverría-Vega, A.; Valdés, C. Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria. Microorganisms 2024, 12, 2285. https://doi.org/10.3390/microorganisms12112285
Morales-Vera R, Cantillana J, Arto-Paz F, Hernández C, Echeverría-Vega A, Valdés C. Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria. Microorganisms. 2024; 12(11):2285. https://doi.org/10.3390/microorganisms12112285
Chicago/Turabian StyleMorales-Vera, Rodrigo, Javiera Cantillana, Félix Arto-Paz, Camila Hernández, Alex Echeverría-Vega, and Cristian Valdés. 2024. "Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria" Microorganisms 12, no. 11: 2285. https://doi.org/10.3390/microorganisms12112285
APA StyleMorales-Vera, R., Cantillana, J., Arto-Paz, F., Hernández, C., Echeverría-Vega, A., & Valdés, C. (2024). Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria. Microorganisms, 12(11), 2285. https://doi.org/10.3390/microorganisms12112285