Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cigarette Butt Samples
2.2. Inocula Preparation
2.3. Preparation of Samples
2.4. Biodegradation Test
2.5. Weight Loss
2.6. Fourier-Transform Infrared Spectroscopy (FTIR)
2.7. Confocal Microscopy
2.8. Scanning Electron Microscopy (SEM)
2.9. Statistical Analysis
3. Results
3.1. Weight Loss
3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.3. Confocal Microscopy
3.4. Scanning Electron Microscopy (SEM)
4. Discussion
4.1. Loss of Weight
4.2. Fourier-Transform Infrared Spectroscopy (FTIR)
4.3. Confocal Microscopy
4.4. Scanning Electron Microscopy (SEM)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marinello, S.; Lolli, F.; Gamberini, R.; Rimini, B. A Second Life for Cigarette Butts? A Review of Recycling Solutions. J. Hazard. Mater. 2020, 384, 121245. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Rubio, L.C. Estrategias Para La Degradación de Colillas de Cigarrillo: Revisión de La Literatura; Pontificia Universidad Javeriana: Bogotá, Colombia, 2020. [Google Scholar]
- Elflein, J. Global Consumption of Cigarettes from 2007 to 2020, and Projections from 2021 to 2025 (in Trillions). Available online: https://www.statista.com/statistics/663534/worldwide-consumption-of-cigarettes/ (accessed on 26 October 2024).
- Vanapalli, K.R.; Sharma, H.B.; Anand, S.; Ranjan, V.P.; Singh, H.; Dubey, B.K.; Mohanty, B. Cigarettes Butt Littering: The Story of the World’s Most Littered Item from the Perspective of Pollution, Remedial Actions, and Policy Measures. J. Hazard. Mater. 2023, 453, 131387. [Google Scholar] [CrossRef]
- Bonanomi, G.; Maisto, G.; De Marco, A.; Cesarano, G.; Zotti, M.; Mazzei, P.; Libralato, G.; Staropoli, A.; Siciliano, A.; De Filippis, F.; et al. The Fate of Cigarette Butts in Different Environments: Decay Rate, Chemical Changes and Ecotoxicity Revealed by a 5-Years Decomposition Experiment. Environ. Pollut. 2020, 261, 114108. [Google Scholar] [CrossRef] [PubMed]
- Caridi, F.; Sabbatini, A.; Birarda, G.; Costanzi, E.; De Giudici, G.; Galeazzi, R.; Medas, D.; Mobbili, G.; Ricciutelli, M.; Ruello, M.L.; et al. Cigarette Butts, a Threat for Marine Environments: Lessons from Benthic Foraminifera (Protista). Mar. Environ. Res. 2020, 162, 105150. [Google Scholar] [CrossRef]
- Klus, H.; Scherer, G.; Müller, L. Influence of Additives on Cigarette Related Health Risks. Beiträge Zur Tab. Int./Contrib. Tob. Res. 2012, 25, 412–493. [Google Scholar] [CrossRef]
- Torkashvand, J.; Farzadkia, M.; Sobhi, H.R.; Esrafili, A. Littered Cigarette Butt as a Well-Known Hazardous Waste: A Comprehensive Systematic Review. J. Hazard. Mater. 2020, 383, 121242. [Google Scholar] [CrossRef] [PubMed]
- Green, D.S.; Boots, B.; Da Silva Carvalho, J.; Starkey, T. Cigarette Butts Have Adverse Effects on Initial Growth of Perennial Ryegrass (Gramineae: Lolium perenne L.) and White Clover (Leguminosae: Trifolium repens L.). Ecotoxicol. Environ. Saf. 2019, 182, 109418. [Google Scholar] [CrossRef]
- Zhou, S.; Fu, Z.; Xia, L.; Mao, Y.; Zhang, C.; Chen, J. Blocking and Filtering Effect of Filter Tips of Natural Fibers against Mainstream Cigarettes Smoke. J. Nat. Fibers 2021, 18, 2327–2337. [Google Scholar] [CrossRef]
- Fei, P.; Liao, L.; Cheng, B.; Song, J. Quantitative Analysis of Cellulose Acetate with a High Degree of Substitution by FTIR and Its Application. Anal. Methods 2017, 9, 6194–6201. [Google Scholar] [CrossRef]
- Merchán, J.P.; Ballesteros, D.; Jiménez, I.C.; Medina, J.A.; Álvarez, O. Estudio de La Biodegradación Aerobia de Almidón Termoplástico (TPS). Supl. Rev. Latinoam. Metal. Mater. 2009, 1, 39–44. [Google Scholar]
- Sista Kameshwar, A.K.; Qin, W. Comparative Study of Genome-Wide Plant Biomass-Degrading CAZymes in White Rot, Brown Rot and Soft Rot Fungi. Mycology 2018, 9, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Iparraguirre Quispe, K.D.R.; Vivanco López, M. Aislamiento y Caracterización de Hongos Filamentosos Biodegradadores de Polietileno de Tereftalato y Polietileno de Baja Densidad. Bachelor Thesis, Universidad Nacional San Luis Gozaga de Ica, Ica, Peru, 2015. [Google Scholar]
- Presley, G.N.; Panisko, E.; Purvine, S.O.; Schilling, J.S. Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi. Appl. Environ. Microbiol. 2018, 84, e00159-18. [Google Scholar] [CrossRef]
- Reyes, C.; Poulin, A.; Nyström, G.; Schwarze, F.; Ribera, J. Enzyme Activities of Five White-Rot Fungi in the Presence of Nanocellulose. J. Fungi 2021, 7, 222. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, K.; Niikura, M.; Kojima, Y.; Goodell, B.; Yoshida, M. Transcriptome Analysis of the Brown Rot Fungus Gloeophyllum Trabeum during Lignocellulose Degradation. PLoS ONE 2020, 15, e0243984. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Zamudio, P.A.; Flórez-Restrepo, M.A.; López-Legarda, X.; Monroy-Giraldo, L.C.; Segura-Sánchez, F. Biodegradation of Plastics by White-Rot Fungi: A Review. Sci. Total Environ. 2023, 901, 165950. [Google Scholar] [CrossRef]
- Saira; Abdullah; Maroof, L.; Iqbal, M.; Farman, S.; Lubna; Faisal, S. Biodegradation of Low-Density Polyethylene (LDPE) Bags by Fungi Isolated from Waste Disposal Soil. Appl. Environ. Soil. Sci. 2022, 2022, 8286344. [Google Scholar] [CrossRef]
- Vertus, D.; Ruíz, M.; Henriquéz, J.; Ortíz, V. Biodegradación Bacteriana de Polietileno y Propuesta de Aplicación En Cerro Patacón. Rev. Iniciación Científica 2017, 3, 1–6. [Google Scholar]
- Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl Chloride Biodegradation by Pseudomonas Citronellolis and Bacillus Flexus. New Biotechnol. 2019, 52, 35–41. [Google Scholar] [CrossRef]
- Leppänen, I.; Vikman, M.; Harlin, A.; Orelma, H. Enzymatic Degradation and Pilot-Scale Composting of Cellulose-Based Films with Different Chemical Structures. J. Polym. Environ. 2020, 28, 458–470. [Google Scholar] [CrossRef]
- Califano, D.; Kadowaki, M.A.S.; Calabrese, V.; Prade, R.A.; Mattia, D.; Edler, K.J.; Polikarpov, I.; Scott, J.L. Multienzyme Cellulose Films as Sustainable and Self-Degradable Hydrogen Peroxide-Producing Material. Biomacromolecules 2020, 21, 5315–5322. [Google Scholar] [CrossRef]
- Ishigaki, T.; Sugano, W.; Ike, M.; Taniguchi, H.; Goto, T.; Fujita, M. Effect of UV Irradiation on Enzymatic Degradation of Cellulose Acetate. Polym. Degrad. Stab. 2002, 78, 505–510. [Google Scholar] [CrossRef]
- Updyke, R. Biodegradation and Feasibility of Three Pleurotus Species on Cigarette Filters; University of Maine: Orono, ME, USA, 2014; Available online: https://digitalcommons.library.umaine.edu/honors/192 (accessed on 20 October 2024).
- ASTM E1508; Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy. ASTM International: West Conshohocken, PA, USA, 2019.
- Fang, W.; Zhang, X.; Zhang, P.; Carol Morera, X.; van Lier, J.B.; Spanjers, H. Evaluation of White Rot Fungi Pretreatment of Mushroom Residues for Volatile Fatty Acid Production by Anaerobic Fermentation: Feedstock Applicability and Fungal Function. Bioresour. Technol. 2020, 297, 122447. [Google Scholar] [CrossRef] [PubMed]
- Łucejko, J.J.; Mattonai, M.; Zborowska, M.; Tamburini, D.; Cofta, G.; Cantisani, E.; Kúdela, J.; Cartwright, C.; Colombini, M.P.; Ribechini, E.; et al. Deterioration Effects of Wet Environments and Brown Rot Fungus Coniophora Puteana on Pine Wood in the Archaeological Site of Biskupin (Poland). Microchem. J. 2018, 138, 132–146. [Google Scholar] [CrossRef]
- Polman, E.M.N.; Gruter, G.-J.M.; Parsons, J.R.; Tietema, A. Comparison of the Aerobic Biodegradation of Biopolymers and the Corresponding Bioplastics: A Review. Sci. Total Environ. 2021, 753, 141953. [Google Scholar] [CrossRef]
- Arroyo, F.D.; Castro-Guerrero, C.; León-Silva, U. Thin Films of Cellulose Acetate Nanofibers from Cigarette Butt Waste. Progress. Rubber Plast. Recycl. Technol. 2020, 36, 3–17. [Google Scholar] [CrossRef]
- Joly, F.-X.; Coulis, M. Comparison of Cellulose vs. Plastic Cigarette Filter Decomposition under Distinct Disposal Environments. Waste Manag. 2018, 72, 349–353. [Google Scholar] [CrossRef]
- Puls, J.; Wilson, S.A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2011, 19, 152–165. [Google Scholar] [CrossRef]
- Haske-Cornelius, O.; Pellis, A.; Tegl, G.; Wurz, S.; Saake, B.; Ludwig, R.; Sebastian, A.; Nyanhongo, G.; Guebitz, G. Enzymatic Systems for Cellulose Acetate Degradation. Catalysts 2017, 7, 287. [Google Scholar] [CrossRef]
- Silva Sosa, R.V.; Nieto Segura, A.C. Comparación de La Capacidad Degradadora de Tres Cepas de Pseudomonas Frente al Tereftalato de Polietileno, Poliestireno y Polipropileno. Bachelor Thesis, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru, 2020. [Google Scholar]
- Fatani, S.; Saito, Y.; Alarawi, M.; Gojobori, T.; Mineta, K. Genome Sequencing and Identification of Cellulase Genes in Bacillus Paralicheniformis Strains from the Red Sea. BMC Microbiol. 2021, 21, 254. [Google Scholar] [CrossRef]
- Leal Morales, A. Caracterización Del Regulón de FleQ y Del Cambio de Estilo de Vida de Pseudomonas putida. Doctoral Dissertation, Universidad Pablo de Olavide, Sevilla, Spain, 2019. [Google Scholar]
- Yadav, N.; Hakkarainen, M. Degradable or Not? Cellulose Acetate as a Model for Complicated Interplay between Structure, Environment and Degradation. Chemosphere 2021, 265, 128731. [Google Scholar] [CrossRef]
- Grijalva Vallejos, N. Degradación de Residuos Vegetales Mediante Inoculación Con Cepas Microbianas. Enfoque UTE 2013, 4, 1–13. [Google Scholar] [CrossRef]
- Recursos Educativos de Química Orgánica (QUIORED). Absorciones IR Para Grupos Funcionales Representativo. Available online: https://www.ugr.es/~quiored/lab/tablas_espec/ir.htm (accessed on 26 June 2024).
- González García, Y.; González Reynoso, O.; Nungaray Arellano, J. Potencial Del Bagazo de Agave Tequilero Para La Producción de Biopolímeros y Carbohidrasas Por Bacterias Celulolíticas y Para La Obtención de Compuestos Fenólicos. e-Gnosis 2005, 3, 1–18. [Google Scholar]
- Fuentes Olivera, A.J. Influencia de La Concentración Inicial de Azúcares y La Temperatura de Fermentación En El Rendimiento de Un Bioplástico a Partir Del Hidrolizado de Granos Usados de Cervecería Empleando Pseudomonas Aeruginosa. Doctoral Dissertation, Universidad Nacional de Trujillo, Trujillo, Peru, 2015. [Google Scholar]
- Di Martino, C. Estudio de Bacterias Del Género Pseudomonas En La Degradación de Hidrocarburos y Síntesis de Biosurfactantes: Análisis Del Efecto de Los Polihidroxialcanoatos. Doctoral Dissertation, Universidad de Buenos Aires, Buenos Aires, Argentina, 2015. [Google Scholar]
- Tan, J.; Liang, Y.; Sun, L.; Yang, Z.; Xu, J.; Dong, D.; Liu, H. Degradation Characteristics of Cellulose Acetate in Different Aqueous Conditions. Polymers 2023, 15, 4505. [Google Scholar] [CrossRef] [PubMed]
- Daly, P.; Cai, F.; Kubicek, C.P.; Jiang, S.; Grujic, M.; Rahimi, M.J.; Sheteiwy, M.S.; Giles, R.; Riaz, A.; de Vries, R.P.; et al. From Lignocellulose to Plastics: Knowledge Transfer on the Degradation Approaches by Fungi. Biotechnol. Adv. 2021, 50, 107770. [Google Scholar] [CrossRef]
- Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. Biodegradation of Plastic Polymers by Fungi: A Brief Review. Bioresour. Bioprocess. 2022, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, R.; Fan, F. A Comprehensive Insight into the Application of White Rot Fungi and Their Lignocellulolytic Enzymes in the Removal of Organic Pollutants. Sci. Total Environ. 2021, 778, 146132. [Google Scholar] [CrossRef]
- Kijpornyongpan, T.; Schwartz, A.; Yaguchi, A.; Salvachúa, D. Systems Biology-Guided Understanding of White-Rot Fungi for Biotechnological Applications: A Review. iScience 2022, 25, 104640. [Google Scholar] [CrossRef]
- Gómez-Méndez, L.D.; Moreno-Bayona, D.A.; Poutou-Piñales, R.A.; Salcedo-Reyes, J.C.; Pedroza-Rodríguez, A.M.; Vargas, A.; Bogoya, J.M. Biodeterioration of Plasma Pretreated LDPE Sheets by Pleurotus Ostreatus. PLoS ONE 2018, 13, e0203786. [Google Scholar] [CrossRef]
- Kim, H.R.; Lee, H.M.; Yu, H.C.; Jeon, E.; Lee, S.; Li, J.; Kim, D.-H. Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms (Larvae of Zophobas atratus). Environ. Sci. Technol. 2020, 54, 6987–6996. [Google Scholar] [CrossRef]
- Gadaleta, G.; De Gisi, S.; Chong, Z.K.; Heerenklage, J.; Notarnicola, M.; Kuchta, K.; Cafiero, L.; Oliviero, M.; Sorrentino, A.; Picuno, C. Degradation of Thermoplastic Cellulose Acetate-Based Bioplastics by Full-Scale Experimentation of Industrial Anaerobic Digestion and Composting. Chem. Eng. J. 2023, 462, 142301. [Google Scholar] [CrossRef]
- Gu, D.; Xiang, X.; Wu, Y.; Zeng, J.; Lin, X. Synergy between Fungi and Bacteria Promotes Polycyclic Aromatic Hydrocarbon Cometabolism in Lignin-Amended Soil. J. Hazard. Mater. 2022, 425, 127958. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, A.; Zhang, M.; Sharaf, F. Synergistic Degradation of PBAT Poly (Butylene Adipate-Co-Terephthalate) Co-Polyesters Using a Bacterial Co-Culture System. Polym. Bull. 2024, 81, 2741–2755. [Google Scholar] [CrossRef]
- Purnomo, A.S.; Sariwati, A.; Kamei, I. Synergistic Interaction of a Consortium of the Brown-Rot Fungus Fomitopsis Pinicola and the Bacterium Ralstonia Pickettii for DDT Biodegradation. Heliyon 2020, 6, e04027. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.; Edwards, S.; Vague, M.; León-Zayas, R.; Scheffer, H.; Chan, G.; Swartz, N.A.; Mellies, J.L. Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic. mSphere 2020, 5, e01151-20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Vera, R.; Cantillana, J.; Arto-Paz, F.; Hernández, C.; Echeverría-Vega, A.; Valdés, C. Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria. Microorganisms 2024, 12, 2285. https://doi.org/10.3390/microorganisms12112285
Morales-Vera R, Cantillana J, Arto-Paz F, Hernández C, Echeverría-Vega A, Valdés C. Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria. Microorganisms. 2024; 12(11):2285. https://doi.org/10.3390/microorganisms12112285
Chicago/Turabian StyleMorales-Vera, Rodrigo, Javiera Cantillana, Félix Arto-Paz, Camila Hernández, Alex Echeverría-Vega, and Cristian Valdés. 2024. "Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria" Microorganisms 12, no. 11: 2285. https://doi.org/10.3390/microorganisms12112285
APA StyleMorales-Vera, R., Cantillana, J., Arto-Paz, F., Hernández, C., Echeverría-Vega, A., & Valdés, C. (2024). Treatment of Cigarette Butts: Biodegradation of Cellulose Acetate by Rot Fungi and Bacteria. Microorganisms, 12(11), 2285. https://doi.org/10.3390/microorganisms12112285