A Whole-Genome Sequencing-Based Approach for the Characterization of Klebsiella pneumoniae Co-Producing KPC and OXA-48-like Carbapenemases Circulating in Sardinia, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Identification and Phenotypic/Genotypic Characterization of K. pneumoniae Strains
2.2. Whole-Genome Sequencing and Bioinformatics Analysis
2.3. Phylogenetic Analysis and Bacterial Typing
2.4. Data Availability
3. Results
3.1. Microbiological Identification and Characterization
3.2. Whole-Genome Sequencing and Bioinformatics Analysis
3.3. Phylogenetic Analysis and Bacterial Typing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Neil, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Review on Antimicrobial Resistance: London, UK, 2016; p. 80. [Google Scholar]
- Antimicrobial Resistance Collaboratos. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655, Erratum in Lancet 2022, 400, 1102. [CrossRef] [PubMed]
- Bassetti, M.; Kanj, S.S.; Kiratisin, P.; Rodrigues, C.; Van Duin, D.; Villegas, M.V.; Yu, Y. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC-Antimicrob. Resist. 2022, 4, dlac089. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Sifakis, F.; Harbarth, S.; Schrijver, R.; van Mourik, M.; Voss, A.; Sharland, M.; Rajendran, N.B.; Rodríguez-Baño, J.; Bielicki, J.; et al. Surveillance for control of antimicrobial resistance. Lancet Infect. Dis. 2018, 18, e99–e106. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. [Google Scholar]
- Campos-Madueno, E.I.; Moradi, M.; Eddoubaji, Y.; Shahi, F.; Moradi, S.; Bernasconi, O.J.; Moser, A.I.; Endimiani, A. Intestinal colonization with multidrug-resistant Enterobacterales: Screening, epidemiology, clinical impact, and strategies to decolonize carriers. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 229–254. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). Available online: https://www.ncbi.nlm.nih.gov/nuccore/?term=%22Klebsiella+pnemoniae%22%5Bporgn%3A__txid573%5D+and+%22whole+genome%22 (accessed on 6 September 2023).
- National Center for Biotechnology Information (NCBI). Available online: https://www.ncbi.nlm.nih.gov/nuccore/?term=%22Klebsiella+pnemoniae%22%5Bporgn%3A__txid573%5D+and+%22whole+genome%22+and+%22KPC%22 (accessed on 6 September 2023).
- National Center for Biotechnology Information (NCBI). Available online: https://www.ncbi.nlm.nih.gov/nuccore/?term=%22Klebsiella+pneumoniae%22%5Bporgn%3A__txid573%5D+and+%22whole+genome%22+and+%22OXA%22 (accessed on 6 September 2023).
- Ellington, M.J.; Findlay, J.; Hopkins, K.L.; Meunier, D.; Alvarez-Buylla, A.; Horner, C.; McEwan, A.; Guiver, M.; McCrae, L.-X.; Woodford, N.; et al. Multicentre evaluation of a real-time PCR assay to detect genes encoding clinically relevant carbapenemases in cultured bacteria. Int. J. Antimicrob. Agents 2016, 47, 151–154. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, H.; Du, H. Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Front. Microbiol. 2019, 10, 1823. [Google Scholar] [CrossRef]
- Del Rio, A.; Muresu, N.; Sotgiu, G.; Saderi, L.; Sechi, I.; Cossu, A.; Usai, M.; Palmieri, A.; Are, B.M.; Deiana, G.; et al. High-Risk Clone of Klebsiella pneumoniae Co-Harbouring Class A and D Carbapenemases in Italy. Int. J. Environ. Res. Public Heal. 2022, 19, 2623. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Identifying Healthcare-Associated Infections (HAI) for NHSN Surveillance, p. 7. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/2psc_identifyinghais_nhsncurrent.pdf (accessed on 24 April 2023).
- Pawłowska, I.; Ziółkowski, G.; Jachowicz-Matczak, E.; Stasiowski, M.; Gajda, M.; Wójkowska-Mach, J. Colonization and Healthcare-Associated Infection of Carbapenem-Resistant Enterobacteriaceae, Data from Polish Hospital with High Incidence of Carbapenem-Resistant Enterobacteriaceae, Does Active Target Screening Matter? Microorganisms 2023, 11, 437. [Google Scholar] [CrossRef]
- VITEK® 2 Microbial ID/AST Testing System. Available online: https://www.biomerieux-diagnostics.com/vitekr-2-0; (accessed on 5 September 2023).
- Clinical breakpoints of EUCAST v.13.0. Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 18 January 2023).
- Allplex™ Entero-DR Assay-Arrow Diagnostics. Available online: http://www.arrowdiagnostics.it/it/microbiologia/resistenzeadantimicrobici/view.php?id=59 (accessed on 1 February 2023).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 1 February 2023).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.M.C.; Wick, R.R.; Judd, L.M.; Holt, K.E.; Wyres, K.L. Kaptive 2.0: Updated capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species complex. Microb. Genom. 2022, 8, 000800. [Google Scholar] [CrossRef]
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 2020, 76, 101–109. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J.H.E. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef]
- Robertson, J.; Bessonov, K.; Schonfeld, J.; Nash, J.H. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb. Genom. 2020, 6, mgen000435. [Google Scholar] [CrossRef]
- Sheppard, A.E.; Stoesser, N.; German-Mesner, I.; Vegesana, K.; Walker, A.S.; Crook, D.W.; Mathers, A.J. TETyper: A bioinformatic pipeline for classifying variation and genetic contexts of transposable elements from short-read whole-genome sequencing data. Microb. Genom. 2018, 4, e000232. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, L.; Chen, X.; Li, P.; Xu, X.; Fowler, V.G.; van Duin, D.; Wang, M. Carbapenemase-Encoding Gene Copy Number Estimator (CCNE): A Tool for Carbapenemase Gene Copy Number Estimation. Microbiol. Spectr. 2022, 10, e0100022. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Chen, L.; Kreiswirth, B.N.; Clancy, C.J. Emergence of Ceftazidime-Avibactam Resistance and Restoration of Carbapenem Susceptibility in Klebsiella pneumoniae Carbapenemase-Producing K pneumoniae: A Case Report and Review of Literature. Open Forum Infect. Dis. 2017, 4, ofx101. [Google Scholar] [CrossRef]
- Shields, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Faculty Opinions recommendation of Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections. Clin. Infect. Dis. 2017, 63, 1615–1618. [Google Scholar] [CrossRef]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar]
- Gaibani, P.; Bianco, G.; Amadesi, S.; Boattini, M.; Ambretti, S.; Costa, C. Increased bla KPC Copy Number and OmpK35 and OmpK36 Porins Disruption Mediated Resistance to Imipenem/Relebactam and Meropenem/Vaborbactam in a KPC-Producing Klebsiella pneumoniae Clinical Isolate. Antimicrob. Agents Chemother. 2022, 66, e0019122. [Google Scholar] [CrossRef]
- Muresu, N.; Del Rio, A.; Fox, V.; Scutari, R.; Alteri, C.; Are, B.M.; Terragni, P.; Sechi, I.; Sotgiu, G.; Piana, A. Genomic Characterization of KPC-31 and OXA-181 Klebsiella pneumoniae Resistant to New Generation of β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics 2022, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Lusignani, L.S.; Presterl, E.; Zatorska, B.; Nest, M.V.D.; Diab-Elschahawi, M. Infection control and risk factors for acquisition of carbapenemase-producing enterobacteriaceae. A 5 year (2011–2016) case-control study. Antimicrob. Resist. Infect. Control 2020, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nieuwlaat, R.; Mbuagbaw, L.; Mertz, D.; Burrows, L.L.; Bowdish, D.M.E.; Moja, L.; Wright, G.D.; Schünemann, H.J. Coronavirus Disease 2019 and Antimicrobial Resistance: Parallel and Interacting Health Emergencies. Clin. Infect. Dis. 2020, 72, 1657–1659. [Google Scholar] [CrossRef] [PubMed]
- Périchon, B.; Courvalin, P.; Stratton, C.W. Antibiotic Resistance. In Encyclopedia of Microbiology; Academic Press: Cambridge, MA, USA, 2019; pp. 127–139. [Google Scholar]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing beta-lactamase KPC-1 from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef]
- Hobson, C.A.; Pierrat, G.; Tenaillon, O.; Bonacorsi, S.; Bercot, B.; Jaouen, E.; Jacquier, H.; Birgy, A. Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: An Evolutionary Overview. Antimicrob. Agents Chemother. 2022, 66, e0044722. [Google Scholar] [CrossRef]
- Shields, R.K.; Clancy, C.J.; Hao, B.; Chen, L.; Press, E.G.; Iovine, N.M.; Kreiswirth, B.N.; Nguyen, M.H. Effects of Klebsiella pneumoniae Carbapenemase Subtypes, Extended-Spectrum β-Lactamases, and Porin Mutations on the In Vitro Activity of Ceftazidime-Avibactam against Carbapenem-Resistant K. pneumoniae. Antimicrob. Agents Chemother. 2015, 59, 5793–5797. [Google Scholar] [CrossRef]
- Coppi, M.; Di Pilato, V.; Monaco, F.; Giani, T.; Conaldi, P.G.; Rossolini, G.M. Ceftazidime-Avibactam Resistance Associated with Increased bla KPC-3 Gene Copy Number Mediated by pKpQIL Plasmid Derivatives in Sequence Type 258 Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, 10–1128. [Google Scholar] [CrossRef]
- Sun, L.; Li, H.; Wang, Q.; Liu, Y.; Cao, B. Increased gene expression and copy number of mutated blaKPC lead to high-level ceftazidime/avibactam resistance in Klebsiella pneumoniae. BMC Microbiol. 2021, 21, 230. [Google Scholar] [CrossRef]
- Gaibani, P.; Campoli, C.; Lewis, R.E.; Volpe, S.L.; Scaltriti, E.; Giannella, M.; Pongolini, S.; Berlingeri, A.; Cristini, F.; Bartoletti, M.; et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J. Antimicrob. Chemother. 2018, 73, 1525–1529. [Google Scholar] [CrossRef]
- Nelson, K.; Hemarajata, P.; Sun, D.; Rubio-Aparicio, D.; Tsivkovski, R.; Yang, S.; Sebra, R.; Kasarskis, A.; Nguyen, H.; Hanson, B.M.; et al. Resistance to Ceftazidime-Avibactam Is Due to Transposition of KPC in a Porin-Deficient Strain of Klebsiella pneumoniae with Increased Efflux Activity. Antimicrob. Agents Chemother. 2017, 61, e00989-17. [Google Scholar] [CrossRef]
- Gaibani, P.; Bovo, F.; Bussini, L.; Bartoletti, M.; Lazzarotto, T.; Viale, P.; Pea, F.; Ambretti, S. Colonization by ceftazidime/avibactam-resistant KPC-producing Klebsiella pneumoniae following therapy in critically ill patients. Clin. Microbiol. Infect. 2023, 29, 654.e1–654.e4. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, G.; Falcone, M.; Leonildi, A.; Giordano, C.; Barnini, S.; Arcari, G.; Carattoli, A.; Menichetti, F. Meropenem-Vaborbactam as Salvage Therapy for Ceftazidime-Avibactam-, Cefiderocol-Resistant ST-512 Klebsiella pneumoniae–Producing KPC-31, a D179Y Variant of KPC-3. Open Forum Infect. Dis. 2021, 8, ofab141. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.M.; Kline, E.G.; Griffith, M.P.; Jones, C.E.; Rubio, A.M.; Squires, K.M.; Shields, R.K. Impact ofompk36genotype and KPC subtype on thein vitroactivity of ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam against KPC-producingK. pneumoniaeclinical isolates. JAC-Antimicrobial Resist. 2023, 5, dlad022. [Google Scholar] [CrossRef] [PubMed]
- Arcari, G.; Oliva, A.; Sacco, F.; Di Lella, F.M.; Raponi, G.; Tomolillo, D.; Curtolo, A.; Venditti, M.; Carattoli, A. Interplay between Klebsiella pneumoniae producing KPC-31 and KPC-3 under treatment with high dosage meropenem: A case report. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Potron, A.; Nordmann, P.; Lafeuille, E.; Al Maskari, Z.; Al Rashdi, F.; Poirel, L. Characterization of OXA-181, a Carbapenem-Hydrolyzing Class D β-Lactamase from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2011, 55, 4896–4899. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Bonnin, R.A.; Nordmann, P. Genetic Features of the Widespread Plasmid Coding for the Carbapenemase OXA-48. Antimicrob. Agents Chemother. 2012, 56, 559–562. [Google Scholar] [CrossRef]
- Chen, C.-M.; Guo, M.-K.; Ke, S.-C.; Lin, Y.-P.; Li, C.-R.; Vy Nguyen, H.T.; Wu, L.-T. Emergence and nosocomial spread of ST11 carbapenem-resistant Klebsiella pneumoniae co-producing OXA-48 and KPC-2 in a regional hospital in Taiwan. J. Med. Microbiol. 2018, 67, 957–964. [Google Scholar] [CrossRef]
- Naha, S.; Sands, K.; Mukherjee, S.; Saha, B.; Dutta, S.; Basu, S. OXA-181-Like Carbapenemases in Klebsiella pneumoniae ST14, ST15, ST23, ST48, and ST231 from Septicemic Neonates: Coexistence with NDM-5, Resistome, Transmissibility, and Genome Diversity. mSphere 2021, 6. [Google Scholar] [CrossRef]
- Findlay, J.; Poirel, L.; Juhas, M.; Nordmann, P. KPC-Mediated Resistance to Ceftazidime-Avibactam and Collateral Effects in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2021, 65, e0089021. [Google Scholar] [CrossRef]
- Naas, T.; Cuzon, G.; Villegas, M.V.; Lartigue, M.F.; Quinn, J.P.; Nordmann, P. Faculty Opinions recommendation of Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob. Agents Chemother. 2008, 52, 1257–1263. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Z.; Shi, L.; Hua, S.; Luan, T.; Lin, Q.; Zheng, Z.; Feng, X.; Liu, M.; Li, X. In silico characterization of IncX3 plasmids carrying blaOXA-181 in Enterobacterales. Front. Cell. Infect. Microbiol. 2022, 12, 988236. [Google Scholar] [CrossRef] [PubMed]
- Sotgiu, G.; Are, B.; Pesapane, L.; Palmieri, A.; Muresu, N.; Cossu, A.; Dettori, M.; Azara, A.; Mura, I.; Cocuzza, C.; et al. Nosocomial transmission of carbapenem-resistant Klebsiella pneumoniae in an Italian university hospital: A molecular epidemiological study. J. Hosp. Infect. 2018, 99, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Conte, V.; Monaco, M.; Giani, T.; D’Ancona, F.; Moro, M.L.; Arena, F.; D’Andrea, M.M.; Rossolini, G.M.; Pantosti, A. Molecular epidemiology of KPC-producing Klebsiella pneumoniae from invasive infections in Italy: Increasing diversity with predominance of the ST512 clade II sublineage. J. Antimicrob. Chemother. 2016, 71, 3386–3391. [Google Scholar] [CrossRef] [PubMed]
- Bulati, M.; Busà, R.; Carcione, C.; Iannolo, G.; Di Mento, G.; Cuscino, N.; Di Gesù, R.; Piccionello, A.P.; Buscemi, S.; Carreca, A.P.; et al. Klebsiella pneumoniae Lipopolysaccharides Serotype O2afg Induce Poor Inflammatory Immune Responses Ex Vivo. Microorganisms 2021, 9, 1317. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Peirano, G.; Pitout, J.D.D. The Role of Epidemic Resistance Plasmids and International High-Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef]
- Martin, R.M.; Bachman, M.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2018, 8, 4. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Simeonova, M.; Leung, V.; Lo, J.; Kan, T.; Raybardhan, S.; Sapin, M.E.; Mponponsuo, K.; Farrell, A.; et al. Antimicrobial resistance in patients with COVID-19: A systematic review and meta-analysis. Lancet Microbe 2023, 4, e179–e191. [Google Scholar] [CrossRef]
- Khaznadar, O.; Khaznadar, F.; Petrovic, A.; Kuna, L.; Loncar, A.; Kolaric, T.O.; Mihaljevic, V.; Tabll, A.A.; Smolic, R.; Smolic, M. Antimicrobial Resistance and Antimicrobial Stewardship: Before, during and after the COVID-19 Pandemic. Microbiol. Res. 2023, 14, 727–740. [Google Scholar] [CrossRef]
Antibiotic Class | Antibiotic | Resistant Strains, n (%) | Median (IQR) MIC (µg/mL) |
---|---|---|---|
β-lactams | Amoxicillin/clavulanic acid | 17 (100) | 32 (32–32) |
Piperacillin/tazobactam | 17 (100) | 128 (128–128) | |
Cefepime | 17 (100) | 32 (32–32) | |
Cefotaxime | 17 (100) | 64 (64–64) | |
Ceftazidime | 17 (100) | 64 (64–64) | |
Ceftolozane/tazobactam | 17 (100) | 32 (32–32) | |
Carbapenems | Meropenem | 17 (100) | 16 (16–16) |
Imipenem | 16 (94.1) | 8 (8–8) | |
Aminoglycosides | Amikacin | 17 (100) | 32 (32–64) |
Gentamicin | 17 (100) | 16 (16–16) | |
Tobramycin | 17 (100) | 16 (16–16) | |
Fluoroquinolone | Ciprofloxacin | 17 (100) | 4 (4–4) |
Sulphonamides | Trimethoprim/Sulfamethoxazole | 17 (100) | 320 (320–320) |
β-lactam–β-lactamase inhibitors | Ceftazidime/avibactam | 17 (100) | 256 * (256–256) |
Imipenem/relebactam | 17 (100) | 4 * (3–4) | |
Meropenem/vaborbactam | 17 (100) | 8 * (8–12) |
Antibiotics | Resistance Genes | N (%) of Strains |
---|---|---|
Aminoglycosides | aac(6’)-Ib9 | 12 (70.6) |
aadA2 | 17 (100) | |
ANT(3″)-IIa | 15 (88.2) | |
APH(3’)-Ia | 13 (76.5) | |
APH(3″)-Ib | 17 (100) | |
APH(3’)-VI | 17 (100) | |
APH(6)-Id | 17 (100) | |
strA | 17 (100) | |
strB | 17 (100) | |
Fluoroquinolones | qnrS1 | 17 (100) |
Macrolides | mphA | 17 (100) |
Chloramphenicol | catA1 | 17 (100) |
cmlA5 | 17 (100) | |
floR | 17 (100) | |
Rifampicin | arr-2 | 17 (100) |
Sulphonamides | sul1 | 17 (100) |
sul2 | 17 (100) | |
Tetracyclines | tet(A) | 17 (100) |
Trimethoprim/sulfamethoxazole | dfrA12 | 17 (100) |
dfrA14 | 17 (100) | |
Beta-lactams | blaCMY-59 | 17 (100) |
blaKPC-3 | 2 (11.7) | |
blaKPC-31 | 15 (88.2) | |
blaOXA-9 | 17 (100) | |
blaOXA-10 | 17 (100) | |
blaOXA-181 | 17 (100) | |
blaSHV-11 | 17 (100) | |
blaTEM-122 | 15 (88.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Rio, A.; Fox, V.; Muresu, N.; Sechi, I.; Cossu, A.; Palmieri, A.; Scutari, R.; Alteri, C.; Sotgiu, G.; Castiglia, P.; et al. A Whole-Genome Sequencing-Based Approach for the Characterization of Klebsiella pneumoniae Co-Producing KPC and OXA-48-like Carbapenemases Circulating in Sardinia, Italy. Microorganisms 2023, 11, 2354. https://doi.org/10.3390/microorganisms11092354
Del Rio A, Fox V, Muresu N, Sechi I, Cossu A, Palmieri A, Scutari R, Alteri C, Sotgiu G, Castiglia P, et al. A Whole-Genome Sequencing-Based Approach for the Characterization of Klebsiella pneumoniae Co-Producing KPC and OXA-48-like Carbapenemases Circulating in Sardinia, Italy. Microorganisms. 2023; 11(9):2354. https://doi.org/10.3390/microorganisms11092354
Chicago/Turabian StyleDel Rio, Arcadia, Valeria Fox, Narcisa Muresu, Illari Sechi, Andrea Cossu, Alessandra Palmieri, Rossana Scutari, Claudia Alteri, Giovanni Sotgiu, Paolo Castiglia, and et al. 2023. "A Whole-Genome Sequencing-Based Approach for the Characterization of Klebsiella pneumoniae Co-Producing KPC and OXA-48-like Carbapenemases Circulating in Sardinia, Italy" Microorganisms 11, no. 9: 2354. https://doi.org/10.3390/microorganisms11092354
APA StyleDel Rio, A., Fox, V., Muresu, N., Sechi, I., Cossu, A., Palmieri, A., Scutari, R., Alteri, C., Sotgiu, G., Castiglia, P., & Piana, A. (2023). A Whole-Genome Sequencing-Based Approach for the Characterization of Klebsiella pneumoniae Co-Producing KPC and OXA-48-like Carbapenemases Circulating in Sardinia, Italy. Microorganisms, 11(9), 2354. https://doi.org/10.3390/microorganisms11092354