Phenotypic and Genomic Characteristics of Campylobacter gastrosuis sp. nov. Isolated from the Stomachs of Pigs in Beijing
Abstract
:1. Introduction
2. Methods
2.1. Sampling, Isolation, and Culturing
2.2. Morphological, Physiological, and Biochemical Characteristics
2.3. Antimicrobial Susceptibility Testing
2.4. Genome Extraction and Sequencing
2.5. Phylogenetic and Phylogenomic Analysis
2.6. Genomic Analysis
3. Results and Discussion
3.1. Isolation and Phenotypic Characterization
3.2. Phylogenetic and Phylogenomic Analysis
3.3. Genome Characteristics
3.4. Antibiotic Resistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, H.; Li, Y.; Gu, Y.; Zhou, G.; Chen, X.; Zhang, X.; Shao, Z.; Zhang, J.; Zhang, M. Isolation and Genomic Characteristics of Cat-Borne Campylobacter felis sp. nov. and Sheep-Borne Campylobacter ovis sp. nov. Microorganisms 2023, 11, 971. [Google Scholar] [CrossRef]
- Ju, C.; Ma, Y.; Zhang, B.; Zhou, G.; Wang, H.; Yu, M.; He, J.; Duan, Y.; Zhang, M. Prevalence, genomic characterization and antimicrobial resistance of Campylobacter spp. isolates in pets in Shenzhen, China. Front. Microbiol. 2023, 14, 1152719. [Google Scholar] [CrossRef]
- Soto-Beltra, N.M.; Lee, B.G.; Amezquita-Lopez, B.A.; Quinones, B. Overview of methodologies for the culturing, recovery and detection of Campylobacter. Int. J. Environ. Health Res. 2023, 33, 307–323. [Google Scholar] [CrossRef]
- Corcionivoschi, N.; Gundogdu, O. Foodborne Pathogen Campylobacter. Microorganisms 2021, 9, 1241. [Google Scholar] [CrossRef]
- Costa, D.; Iraola, G. Pathogenomics of Emerging Campylobacter Species. Clin. Microbiol. Rev. 2019, 32, e00072-18. [Google Scholar] [CrossRef]
- Francois Watkins, L.K.; Laughlin, M.E.; Joseph, L.A.; Chen, J.C.; Nichols, M.; Basler, C.; Breazu, R.; Bennett, C.; Koski, L.; Montgomery, M.P.; et al. Ongoing Outbreak of Extensively Drug-Resistant Campylobacter jejuni Infections Associated With US Pet Store Puppies, 2016–2020. JAMA Netw. Open 2021, 4, e2125203. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; He, L.; Meng, F.; Gu, Y.; Zheng, M.; Gong, Y.; Wang, P.; Ruan, F.; Zhou, L.; et al. Association study between an outbreak of Guillain-Barre syndrome in Jilin, China, and preceding Campylobacter jejuni infection. Foodborne Pathog. Dis. 2010, 7, 913–919. [Google Scholar] [CrossRef]
- Shahrizaila, N.; Lehmann, H.C.; Kuwabara, S. Guillain-Barre syndrome. Lancet 2021, 397, 1214–1228. [Google Scholar] [CrossRef]
- Man, S.M. The clinical importance of emerging Campylobacter species. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 669–685. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Castano-Rodriguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef]
- Ohkoshi, Y.; Sato, T.; Murabayashi, H.; Sakai, K.; Takakuwa, Y.; Fukushima, Y.; Nakajima, C.; Suzuki, Y.; Yokota, S.I. Campylobacter upsaliensis isolated from a giant hepatic cyst. J. Infect. Chemother. 2020, 26, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Mori, E.; Hashimoto, T.; Yahiro, T.; Miura, M.; Ishihara, T.; Miyazaki, M.; Komiya, K.; Takahashi, N.; Nishizono, A.; Hiramatsu, K. Campylobacter lari Vertebral Osteomyelitis. Jpn. J. Infect. Dis. 2022, 75, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Gourmelon, M.; Boukerb, A.M.; Nabi, N.; Banerji, S.; Joensen, K.G.; Serghine, J.; Cormier, A.; Megraud, F.; Lehours, P.; Alter, T.; et al. Genomic Diversity of Campylobacter lari Group Isolates from Europe and Australia in a One Health Context. Appl. Environ. Microbiol. 2022, 88, e0136822. [Google Scholar] [CrossRef] [PubMed]
- Boukerb, A.M.; Penny, C.; Serghine, J.; Walczak, C.; Cauchie, H.M.; Miller, W.G.; Losch, S.; Ragimbeau, C.; Mossong, J.; Megraud, F.; et al. Campylobacter armoricus sp. nov., a novel member of the Campylobacter lari group isolated from surface water and stools from humans with enteric infection. Int. J. Syst. Evol. Microbiol. 2019, 69, 3969–3979. [Google Scholar] [CrossRef]
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef]
- Sahin, O.; Yaeger, M.; Wu, Z.; Zhang, Q. Campylobacter-Associated Diseases in Animals. Annu. Rev. Anim. Biosci. 2017, 5, 21–42. [Google Scholar] [CrossRef]
- Poudel, S.; Li, T.; Chen, S.; Zhang, X.; Cheng, W.H.; Sukumaran, A.T.; Kiess, A.S.; Zhang, L. Prevalence, Antimicrobial Resistance, and Molecular Characterization of Campylobacter Isolated from Broilers and Broiler Meat Raised without Antibiotics. Microbiol. Spectr. 2022, 10, e0025122. [Google Scholar] [CrossRef]
- Gharbi, M.; Bejaoui, A.; Ben Hamda, C.; Ghedira, K.; Ghram, A.; Maaroufi, A. Distribution of virulence and antibiotic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from broiler chickens in Tunisia. J. Microbiol. Immunol. Infect. 2022, 55, 1273–1282. [Google Scholar] [CrossRef]
- Redondo, N.; Carroll, A.; McNamara, E. Molecular characterization of Campylobacter causing human clinical infection using whole-genome sequencing: Virulence, antimicrobial resistance and phylogeny in Ireland. PLoS ONE 2019, 14, e0219088. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Zhang, Q.; Shen, J. Antimicrobial Resistance in Campylobacter spp. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union one health 2019 zoonoses report. Efsa J. 2021, 19, e06406. [Google Scholar]
- Meistere, I.; Kibilds, J.; Eglite, L.; Alksne, L.; Avsejenko, J.; Cibrovska, A.; Makarova, S.; Streikisa, M.; Grantina-Ievina, L.; Berzins, A. Campylobacter species prevalence, characterisation of antimicrobial resistance and analysis of whole-genome sequence of isolates from livestock and humans, Latvia, 2008 to 2016. Euro. Surveill. 2019, 24, 1800357. [Google Scholar] [CrossRef]
- Huang, J.; Zang, X.; Lei, T.; Ren, F.; Jiao, X. Prevalence of Campylobacter spp. in Pig Slaughtering Line in Eastern China: Analysis of Contamination Sources. Foodborne Pathog. Dis. 2020, 17, 712–719. [Google Scholar] [CrossRef]
- Tang, M.; Zhou, Q.; Zhang, X.; Zhou, S.; Zhang, J.; Tang, X.; Lu, J.; Gao, Y. Antibiotic Resistance Profiles and Molecular Mechanisms of Campylobacter From Chicken and Pig in China. Front. Microbiol. 2020, 11, 592496. [Google Scholar] [CrossRef] [PubMed]
- Abley, M.J.; Wittum, T.E.; Moeller, S.J.; Zerby, H.N.; Funk, J.A. Quantification of campylobacter in swine before, during, and after the slaughter process. J. Food Prot. 2012, 75, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gu, Y.; Lv, J.; Liang, H.; Zhang, J.; Zhang, S.; He, M.; Wang, Y.; Ma, H.; French, N.; et al. Laboratory Study on the Gastroenteritis Outbreak Caused by a Multidrug-Resistant Campylobacter coli in China. Foodborne Pathog. Dis. 2020, 17, 187–193. [Google Scholar] [CrossRef]
- Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 2008, 74, 2461–2470. [Google Scholar] [CrossRef]
- Tripathi, N.; Sapra, A. Gram Staining. In StatPearls; Disclosure: Amit Sapra Declares no Relevant Financial Relationships with Ineligible Companies; StatPearls Publishing LLC.: Orlando, FL, USA, 2023. [Google Scholar]
- Zhou, G.; Liang, H.; Gu, Y.; Ju, C.; He, L.; Guo, P.; Shao, Z.; Zhang, J.; Zhang, M. Comparative genomics of Helicobacter pullorum from different countries. Gut Pathog. 2020, 12, 56. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 21 May 2022).
- Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Rozewicki, J.; Li, S.; Amada, K.M.; Standley, D.M.; Katoh, K. MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acids Res. 2019, 47, W5–W10. [Google Scholar] [CrossRef] [PubMed]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Fitch, W.M. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Syst. Zool. 1971, 20, 406–416. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods Mol. Biol. 2019, 1962, 1–14. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Huson, D.H.; Scornavacca, C. Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 2012, 61, 1061–1067. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernandez-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing, G.; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S.L. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed]
- Akhter, S.; Aziz, R.K.; Edwards, R.A. PhiSpy: A novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 2012, 40, e126. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Goker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, L.; Glover, R.H.; Humphris, S.; Elphinstone, J.G.; Toth, I.K. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Analytical. Methods 2016, 8, 12–24. [Google Scholar] [CrossRef]
- On, S.L.W.; Miller, W.G.; Houf, K.; Fox, J.G.; Vandamme, P. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp. Int. J. Syst. Evol. Microbiol. 2017, 67, 5296–5311. [Google Scholar] [CrossRef]
- Lynch, C.; Peeters, C.; Walsh, N.; McCarthy, C.; Coffey, A.; Lucey, B.; Vandamme, P. Campylobacter majalis sp. nov. and Campylobacter suis sp. nov., novel Campylobacter species isolated from porcine gastrointestinal mucosa. Int. J. Syst. Evol. Microbiol. 2022, 72, 5510. [Google Scholar] [CrossRef]
- Phung, C.; Scott, P.C.; Dekiwadia, C.; Moore, R.J.; Van, T.T.H. Campylobacter bilis sp. nov., isolated from chickens with spotty liver disease. Int. J. Syst. Evol. Microbiol. 2022, 72, 5314. [Google Scholar] [CrossRef]
- Silva, M.F.; Pereira, G.; Carneiro, C.; Hemphill, A.; Mateus, L.; Lopes-da-Costa, L.; Silva, E. Campylobacter portucalensis sp. nov., a new species of Campylobacter isolated from the preputial mucosa of bulls. PLoS ONE 2020, 15, e0227500. [Google Scholar] [CrossRef]
- Parisi, A.; Chiara, M.; Caffara, M.; Mion, D.; Miller, W.G.; Caruso, M.; Manzari, C.; Florio, D.; Capozzi, L.; D’Erchia, A.M.; et al. Campylobacter vulpis sp. nov. isolated from wild red foxes. Syst. Appl. Microbiol. 2021, 44, 126204. [Google Scholar] [CrossRef]
- Rossi-Tamisier, M.; Benamar, S.; Raoult, D.; Fournier, P.E. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int. J. Syst. Evol. Microbiol. 2015, 65, 1929–1934. [Google Scholar] [CrossRef]
- Debruyne, L.; Broman, T.; Bergstrom, S.; Olsen, B.; On, S.L.W.; Vandamme, P. Campylobacter subantarcticus sp. nov., isolated from birds in the sub-Antarctic region. Int. J. Syst. Evol. Microbiol. 2010, 60, 815–819. [Google Scholar] [CrossRef]
- Pendleton, S.; Hanning, I.; Biswas, D.; Ricke, S.C. Evaluation of whole-genome sequencing as a genotyping tool for Campylobacter jejuni in comparison with pulsed-field gel electrophoresis and flaA typing. Poult. Sci. 2013, 92, 573–580. [Google Scholar] [CrossRef]
- Tang, Y.; Lai, Y.; Yang, X.; Cao, X.; Hu, Y.; Wang, X.; Wang, H. Genetic environments and related transposable elements of novel cfr(C) variants in Campylobacter coli isolates of swine origin. Vet. Microbiol. 2020, 247, 108792. [Google Scholar] [CrossRef]
- Zhang, A.; Gu, Y.; Liang, H.; Deng, Y.; He, L.; Zhang, J.; Zhang, M. Distribution of aminoglycoside resistance gene cluster aadE-sat4-aphA-3 in 607 Campylobacter isolates from different sources in China. Dis. Surveill. 2015, 30, 479–484. [Google Scholar] [CrossRef]
- Xu, H.; Chen, Z.; Huang, R.; Cui, Y.; Li, Q.; Zhao, Y.; Wang, X.; Mao, D.; Luo, Y.; Ren, H. Antibiotic Resistance Gene-Carrying Plasmid Spreads into the Plant Endophytic Bacteria using Soil Bacteria as Carriers. Environ. Sci. Technol. 2021, 55, 10462–10470. [Google Scholar] [CrossRef]
- Meng, M.; Li, Y.; Yao, H. Plasmid-Mediated Transfer of Antibiotic Resistance Genes in Soil. Antibiotics 2022, 11, 525. [Google Scholar] [CrossRef]
- He, T.; Wang, R.; Liu, D.; Walsh, T.R.; Zhang, R.; Lv, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z.; et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 2019, 4, 1450–1456. [Google Scholar] [CrossRef]
- Guirado, P.; Miro, E.; Iglesias-Torrens, Y.; Navarro, F.; Campoy, S.; Alioto, T.S.; Gomez-Garrido, J.; Madrid, C.; Balsalobre, C. A New Variant of the aadE-sat4-aphA-3 Gene Cluster Found in a Conjugative Plasmid from a MDR Campylobacter jejuni Isolate. Antibiotics 2022, 11, 466. [Google Scholar] [CrossRef]
- Richter, M.; Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef]
- Zhang, M.; Gu, Y.; He, L.; Ran, L.; Xia, S.; Han, X.; Li, H.; Zhou, H.; Cui, Z.; Zhang, J. Molecular typing and antimicrobial susceptibility profiles of Campylobacter jejuni isolates from north China. J. Med. Microbiol. 2010, 59, 1171–1177. [Google Scholar] [CrossRef]
- Contreras-Omana, R.; Escorcia-Saucedo, A.E.; Velarde-Ruiz Velasco, J.A. Prevalence and impact of antimicrobial resistance in gastrointestinal infections: A review. Rev. Gastroenterol. Mex. 2021, 86, 265–275. [Google Scholar] [CrossRef]
- Sithole, V.; Amoako, D.G.; Abia, A.L.K.; Perrett, K.; Bester, L.A.; Essack, S.Y. Occurrence, Antimicrobial Resistance, and Molecular Characterization of Campylobacter spp. in Intensive Pig Production in South Africa. Pathogens 2021, 10, 439. [Google Scholar] [CrossRef] [PubMed]
Characteristic | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Catalase | − | − | − | − | + | + |
Oxidase | − | + | − | − | − | + |
Urease | − | − | − | − | + | + |
Nitrate reduction | + | (−) | − | − | + | + |
Indoxyl acetate hydrolysis | + | − | − | − | − | − |
Hippurate hydrolysis | − | − | − | − | − | − |
H2S | − | + | + | − | + | + |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1 | 1 | 27.90% | 19.10% | 19.40% | 20.20% | 20.00% | 20.00% | 20.90% | 19.00% |
2 | 78.58% | 1 | 71.37% | 18.00% | 19.50% | 19.70% | 66.17% | 66.26% | 66.35% |
3 | 72.14% | 20.80% | 1 | 20.40% | 18.40% | 17.90% | 66.60% | 66.53% | 66.71% |
4 | 71.17% | 72.82% | 71.41% | 1 | 70.36% | 70.29% | 65.96% | 65.82% | 65.90% |
5 | 71.16% | 71.02% | 71.68% | 17.90% | 1 | 56.90% | 67.60% | 67.60% | 67.61% |
6 | 70.92% | 71.04% | 71.51% | 19.30% | 94.27% | 1 | 67.78% | 67.74% | 67.92% |
7 | 66.21% | 22.80% | 20.60% | 21.80% | 22.00% | 21.40% | 1 | 27.60% | 27.70% |
8 | 66.06% | 22.30% | 23.50% | 21.80% | 21.80% | 22.40% | 84.02% | 1 | 67.40% |
9 | 66.34% | 22.30% | 22.90% | 20.40% | 20.80% | 23.60% | 84.08% | 95.98% | 1 |
Antimicrobial Class | Antimicrobial Agent | MIC (μg mL−1) |
---|---|---|
Macrolides | Erythromycin | >256 |
Azithromycin | >256 | |
Quinolones | Nalidixic acid | >256 |
Ciprofloxacin | 3 | |
Aminoglycosides | Gentamicin | 3 |
Streptomycin | 8 | |
Chloramphenicol | Chloramphenicol | 12 |
Florfenicol | 8 | |
Tetracyclines | Tetracycline | 32 |
Ketolides | Telithromycin | >256 |
Lincosamides | Clindamycin | >256 |
Genus name | Campylobacter |
Species name | Campylobacter gastrosuis |
Specific epithet | gastrosuis |
Species status | sp. nov. |
Species etymology | (gas.tro.su’is., Gr. n. gaster gastros, stomach; L. n. sus suis, a pig; L. gen. n. gastrosuis, from a pig’s stomach) |
Description of the new taxon and diagnostic traits | The cell is Gram-negative, motile, and spiral-shaped after 48 h of growth on Karmali or Columbia agar with 5% defibrinated sheep blood in a microaerophilic atmosphere at 37 °C. The colonies are wet, flat, grey, circular, and smooth but may vary in size and morphology after a long incubation. No hemolysis on blood agar was observed. Cells are negative activities for catalase, oxidase, and urease, and could not produce H2S. No hydrolysis of hippurate. Nitrate can be reduced and indoxyl acetate can be hydrolyzed. The isolate was resistant to different types of antibiotics, namely erythro-mycin, azithromycin, nalidixic acid, tetracycline, telithromycin, and clindamycin, and carries multiple resistance relative genes and has an MDRGI. |
Country of origin | China |
Region of origin | Beijing |
Source of isolation | the gastric mucous of pigs |
Sampling date (dd/mm/yyyy) | 14 March 2022 |
Latitude (xx°xx′xx″ N/S) | 116°18′40″ N |
Longitude (xx°xx′xx″ E/W) | 40°11′27″ E |
Altitude (meters above sea level) | About 30 m |
16S rRNA gene accession nr. | OP278864 |
Genome accession number | JANURM000000000 |
Genome status | Draft |
Genome size | 2240 kbp |
GC mol% | 37.72 |
Designation of the Type Strain | PS10T |
Strain Collection Numbers | GDMCC 1.3686T; JCM 35849T |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Gu, Y.; He, L.; Sun, L.; Zhou, G.; Chen, X.; Zhang, X.; Shao, Z.; Zhang, J.; Zhang, M. Phenotypic and Genomic Characteristics of Campylobacter gastrosuis sp. nov. Isolated from the Stomachs of Pigs in Beijing. Microorganisms 2023, 11, 2278. https://doi.org/10.3390/microorganisms11092278
Wang H, Gu Y, He L, Sun L, Zhou G, Chen X, Zhang X, Shao Z, Zhang J, Zhang M. Phenotypic and Genomic Characteristics of Campylobacter gastrosuis sp. nov. Isolated from the Stomachs of Pigs in Beijing. Microorganisms. 2023; 11(9):2278. https://doi.org/10.3390/microorganisms11092278
Chicago/Turabian StyleWang, Hairui, Yixin Gu, Lihua He, Lu Sun, Guilan Zhou, Xiaoli Chen, Xin Zhang, Zhujun Shao, Jianzhong Zhang, and Maojun Zhang. 2023. "Phenotypic and Genomic Characteristics of Campylobacter gastrosuis sp. nov. Isolated from the Stomachs of Pigs in Beijing" Microorganisms 11, no. 9: 2278. https://doi.org/10.3390/microorganisms11092278
APA StyleWang, H., Gu, Y., He, L., Sun, L., Zhou, G., Chen, X., Zhang, X., Shao, Z., Zhang, J., & Zhang, M. (2023). Phenotypic and Genomic Characteristics of Campylobacter gastrosuis sp. nov. Isolated from the Stomachs of Pigs in Beijing. Microorganisms, 11(9), 2278. https://doi.org/10.3390/microorganisms11092278