The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis
Abstract
1. Introduction
2. Maternal Stress and Birth Outcomes
3. Paternal Stress and Birth Outcomes
4. Microbial Dysbiosis in NEC
5. Maternal Stress-Induced Changes in Microbiota Composition
6. Gene Expression Profiling in NEC
Reference | Technology | Tissue | Sample Size | DEGs | Key Genes | Key Pathways |
---|---|---|---|---|---|---|
Kathy Yuen Yee Chan et al. [71] | Microarray | Intestinal tissue from NEC preterm infants | NEC n = 5 Ctrl n = 4 | ↑ 857 ↓ 1285 | TLR2, TLR4, TREM1, NFkb, AP-1,H1F1A | Angiogenesis, Arginine metabolism, cell adhesion, chemotaxis, extracellular matrix remodeling, hypoxia and oxidative stress, inflammation and muscle contraction. |
Guanglin Chen et al. [72] | Microarray | Small bowel specimens from NEC preterm infants | NEC n = 5 Ctrl n = 4 | ↑ 367 ↓ 2262 | AGT, IL-8, KNG1, ACACB and CAT | Tryptophan, fatty acid, and arachidonic acid metabolism |
Colin Martin | Microarray | Paraffin embedded tissue blocks of NEC samples | NEC n = 6 Ctrl n = 6 | ↑ 47 ↓ 37 | PLA2G2A, H19, AGR2, S100A8, B2M, LOC100132488, CEBPB, LOC643358, LOC100130980, GUCA2A, RARRES1, LOC400963, RPS29, LOC647361, RPS15A, S100A10, LOC100129902, XAF1, TIMP1, SCTR, SERPINA3, LOC389342, EVPL, IFITM2, LOC728937, IFITM3, CEBPD, CLDN15, PPP1R14A, AQP10, REG3G, TUBA1B, REG1B, LOC392437, CREB3L3, C10orf116, ENO1 | Signal transducer and activator of transcription 3 (STAT3), prolactin (PRL), interlukin-1 beta (IL-1β), signal transducer and activator of transcription 1(STAT1), and interferon gamma (IFNγ) |
Eric Tremblay et al. [79] | RNASeq | Intestinal tissue from NEC preterm infants | NEC n = 9 Ctrl n = 6 | ↑ 383 ↓ 421 | CXCL10, TLR4, TLR10, REG3A, DEF5A, DEF6A, LCN2, TFF1, CXCL8, TFF3, BHA2, HBG2 | Altered T and B cell signaling, B cell development, pattern recognition receptors for bacteria and viruses. |
Md. Rabiul Auwul et al. [87] | RNASeq | NEC tissues from preterm infants | NEC n = 9 Ctrl n = 5 | ↑ 398 ↓ 568 | HBB, HBM, HBZ, ALAS2, HBA1, HBG1, HBA2, ASHP, HBQ1, HBD, IGJ, REG3A, POU2AF1, DEFA5, NEB, TNNT3, TNN11, TNNT1, MYL1 | Metabolic processes, regulation of immune response, cell communication, and complement cascade. |
Zhuojun Xie et al. [84] | RNASeq | NEC tissues, NEC-SC-diagnosed NEC with clinical resection, NOR derived from normal part of ileum in NEC-SC patients | NEC n = 4 NEC-SC n = 3 Ctrl NOR n = 5 | NEC vs. NEC-SC ↑ 37 ↓ 7 NEC vs. NOR ↑ 3465 ↓ 2499 NEC-SC vs. NOR ↑ 846 ↓ 613 | HBG2, CCN4, IGF2, SOX11, CYP3A4, TEME54, SCIN, PTK6, XIRP1, MMP12, GSTM1, BOLA2B, KDM5D, UTY, AOPB, RPS4Y1, CEMIP, SLC4A1, KRT19, PIGR, and FAM3D | Toll-like receptor signaling pathways, Th17 cell differentiation and cytokine–cytokine receptor interactions. |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tanner, S.M.; Berryhill, T.F.; Ellenburg, J.L.; Jilling, T.; Cleveland, D.S.; Lorenz, R.G.; Martin, C.A. Pathogenesis of necrotizing enterocolitis: Modeling the innate immune response. Am. J. Pathol. 2015, 85, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Neu, J.; Walker, W.A. Necrotizing enterocolitis. N. Engl. J. Med. 2011, 364, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Afzal, B.; Elberson, V.; McLaughlin, C.; Kumar, V. Early onset necrotizing enterocolitis (NEC) in premature twins. J. Neonatal-Perinat. Med. 2017, 10, 109–112. [Google Scholar] [CrossRef]
- Santulli, T.V.; Schullinger, J.N.; Heird, W.C.; Gongaware, R.D.; Wigger, J.; Barlow, B.; Blanc, W.A.; Berdon, W.E. Acute necrotizing enterocolitis in infancy: A review of 64 cases. Pediatrics 1975, 55, 376–387. [Google Scholar] [CrossRef]
- Niño, D.F.; Sodhi, C.P.; Hackam, D.J. Necrotizing enterocolitis: New insights into pathogenesis and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 590–600. [Google Scholar] [CrossRef]
- Singh, D.K.; Miller, C.M.; Orgel, K.A.; Dave, M.; Mackay, S.; Good, M. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front. Pediatr. 2023, 10, 1107404. [Google Scholar] [CrossRef]
- Nicolas, C.T.; Carter, S.R.; Martin, C.A. Impact of maternal factors, environmental factors, and race on necrotizing en-terocolitis. Semin. Perinatol. 2023, 47, 151688. [Google Scholar] [CrossRef]
- Cheddadi, R.; Khandekar, N.N.; Yeramilli, V.; Martin, C. The impact of maternal stress on the development of necrotizing enterocolitis: A comprehensive review. Semin. Pediatr. Surg. 2023, 32, 151324. [Google Scholar] [CrossRef]
- Austin, M.-P.; Leader, L. Maternal stress and obstetric and infant outcomes: Epidemiological findings and neuroendocrine mechanisms. Aust. N. Z. J. Obstet. Gynaecol. 2000, 40, 331–337. [Google Scholar] [CrossRef]
- Garcia-Flores, V.; Romero, R.; Furcron, A.-E.; Levenson, D.; Galaz, J.; Zou, C.; Hassan, S.S.; Hsu, C.-D.; Olson, D.; Metz, G.A.S.; et al. Prenatal Maternal Stress Causes Preterm Birth and Affects Neonatal Adaptive Immunity in Mice. Front. Immunol. 2020, 11, 254. [Google Scholar] [CrossRef]
- Veru, F.; Laplante, D.P.; Luheshi, G.; King, S. Prenatal maternal stress exposure and immune function in the offspring. Stress 2014, 17, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, F.C.R.; Yao, Y.; Ward, I.D.; Ilnytskyy, Y.; Olson, D.M.; Benzies, K.; Kovalchuk, I.; Kovalchuk, O.; Metz, G.A.S. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS ONE 2013, 8, e56967. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.O.; Kamilaris, T.C.; Chrousos, G.P.; Gold, P.W. Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neurosci. Biobehav. Rev. 1992, 16, 115–130. [Google Scholar] [CrossRef]
- Plotsky, P.M.; Cunningham, E.T., Jr.; Widmaier, E.P. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr. Rev. 1989, 10, 437–458. [Google Scholar] [CrossRef]
- Sandman, C.A.; Glynn, L.; Schetter, C.D.; Wadhwa, P.; Garite, T.; Chicz-DeMet, A.; Hobel, C. Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): Priming the placental clock. Peptides 2006, 27, 1457–1463. [Google Scholar] [CrossRef]
- Johnston, R.C.; Faulkner, M.; Carpenter, P.M.; Nael, A.; Haydel, D.; Sandman, C.A.; Wing, D.A.; Davis, E.P. Associations Between Placental Corticotropin-Releasing Hormone, Maternal Cortisol, and Birth Out-comes, Based on Placental Histopathology. Reprod. Sci. 2020, 27, 1803–1811. [Google Scholar] [CrossRef]
- Herrera, C.L.; Maiti, K.; Smith, R. Preterm Birth and Corticotrophin-Releasing Hormone as a Placental Clock. Endocrinology 2022, 164, bqac206. [Google Scholar] [CrossRef]
- Newnham, J.; Marshall, C.; Padbury, J.; Lam, R.; Hobel, C.; Fisher, D. Fetal catecholamine release with preterm delivery. Am. J. Obstet. Gynecol. 1984, 149, 888–893. [Google Scholar] [CrossRef]
- Hobel, C.J.; Dunkel-Schetter, C.; Roesch, S.C.; Castro, L.C.; Arora, C.P. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. Am. J. Obstet. Gynecol. 1999, 180, S257–S263. [Google Scholar] [CrossRef]
- Avalos, L.A.; Chen, H.; Li, D.K. Antidepressant medication use, depression, and the risk of preeclampsia. CNS Spectr. 2015, 20, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, Y.; Zhang, Z.; Yan, W. Antenatal Depressive Symptoms and the Risk of Preeclampsia or Operative Deliveries: A Meta-Analysis. PLoS ONE 2015, 10, e0119018. [Google Scholar] [CrossRef] [PubMed]
- Kurki, T.; Hiilesmaa, V.; Raitasalo, R.; Mattila, H.; Ylikorkala, O. Depression and anxiety in early pregnancy and risk for preeclampsia. Obstet. Gynecol. 2000, 95, 487–490. [Google Scholar] [PubMed]
- Neugebauer, R.; Kline, J.; Stein, Z.; Shrout, P.; Warburton, D.; Susser, M. Association of Stressful Life Events with Chromosomally Normal Spontaneous Abortion. Am. J. Epidemiol. 1996, 143, 588–596. [Google Scholar] [CrossRef]
- Cetinkaya, M.; Ozkan, H.; Koksal, N. Maternal preeclampsia is associated with increased risk of necrotizing enterocolitis in preterm infants. Early Hum. Dev. 2012, 88, 893–898. [Google Scholar] [CrossRef]
- Lesage, J.; Del-Favero, F.; Leonhardt, M.; Louvart, H.; Maccari, S.; Vieau, D.; Darnaudery, M. Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding be-haviour disturbances in the aged rat. J. Endocrinol. 2004, 181, 291–296. [Google Scholar] [CrossRef]
- Duci, M.; Frigo, A.C.; Visentin, S.; Verlato, G.; Gamba, P.; Fascetti-Leon, F. Maternal and placental risk factors associated with the development of necrotizing enterocolitis (NEC) and its severity. J. Pediatr. Surg. 2019, 54, 2099–2102. [Google Scholar] [CrossRef]
- Cetinkaya, M.; Ozkan, H.; Köksal, N.; Karali, Z.; Ozgür, T. Neonatal outcomes of premature infants born to preeclamptic mothers. J. Matern. Fetal Neonatal Med. 2010, 23, 425–430. [Google Scholar] [CrossRef]
- Xu, X.; Miao, Z.; Sun, M.; Wan, B. Epigenetic Mechanisms of Paternal Stress in Offspring Development and Diseases. Int. J. Genom. 2021, 2021, 6632719. [Google Scholar] [CrossRef]
- Lind, M.I.; Spagopoulou, F. Evolutionary consequences of epigenetic inheritance. Heredity 2018, 121, 205–209. [Google Scholar] [CrossRef]
- Rodgers, A.B.; Morgan, C.P.; Bronson, S.L.; Revello, S.; Bale, T.L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 2013, 33, 9003–9012. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yan, M.; Cao, Z.; Li, X.; Zhang, Y.; Shi, J.; Feng, G.-H.; Peng, H.; Zhang, X.; Zhang, Y.; et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016, 351, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Bygren, L.O.; Kaati, G.; Edvinsson, S. Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor. 2001, 49, 53–59. [Google Scholar] [CrossRef]
- Keinan-Boker, L. The mothers have eaten unripe grapes and the children’s teeth are set on edge”: The potential in-ter-generational effects of the Holocaust on chronic morbidity in Holocaust survivors’ offspring. Isr. J. Health Policy Res. 2014, 3, 11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yehuda, R.; Daskalakis, N.P.; Lehrner, A.; Desarnaud, F.; Bader, H.N.; Makotkine, I.; Flory, J.D.; Bierer, L.M.; Meaney, M.J.; Provençal, N.; et al. Influences of Maternal and Paternal PTSD on Epigenetic Regulation of the Glucocorticoid Receptor Gene in Holocaust Survivor Offspring. Am. J. Psychiatry 2014, 171, 872–880. [Google Scholar] [CrossRef]
- Franklin, T.B.; Russig, H.; Weiss, I.C.; Gräff, J.; Linder, N.; Michalon, A.; Vizi, S.; Mansuy, I.M. Faculty Opinions recommendation of Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 2010, 68, 408–415. [Google Scholar] [CrossRef]
- Hannan, A.J. Stressing the Seminal Role of Paternal Experience in Transgenerational ‘Epigenopathy’ Affecting Offspring Health and Disease Susceptibility. Neuroscience 2018, 388, 472–473. [Google Scholar] [CrossRef]
- Bohacek, J.; Farinelli, M.; Mirante, O.; Steiner, G.; Gapp, K.; Coiret, G.; Ebeling, M.; Durán-Pacheco, G.; Iniguez, A.L.; Manuella, F.; et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol. Psychiatry 2014, 20, 621–631. [Google Scholar] [CrossRef]
- Mardanpour, M.; Ghavidel, N.; Asadi, S.; Khodagholi, F. Paternal stress in rats increased oxytocin, oxytocin receptor, and arginine vasopressin gene expression in the male offspring amygdala with no effect on their social interaction behaviors. Neuroreport 2021, 33, 48–54. [Google Scholar] [CrossRef]
- Vagnerová, K.; Vodička, M.; Hermanová, P.; Ergang, P.; Šrůtková, D.; Klusoňová, P.; Balounová, K.; Hudcovic, T.; Pácha, J. Interactions Between Gut Microbiota and Acute Restraint Stress in Peripheral Structures of the Hypo-thalamic-Pituitary-Adrenal Axis and the Intestine of Male Mice. Front. Immunol. 2019, 10, 2655. [Google Scholar] [CrossRef]
- Walker, W.A. The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr. Res. 2017, 82, 387–395. [Google Scholar] [CrossRef]
- Brawner, K.M.; Yeramilli, V.A.; Kennedy, B.A.; Patel, R.K.; Martin, C.A. Prenatal stress increases IgA coating of offspring microbiota and exacerbates necrotizing enterocolitis-like injury in a sex-dependent manner. Brain Behav. Immun. 2020, 89, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Yeramilli, V.A.; Brawner, K.M.; Crossman, D.K.; Barnum, S.R.; Martin, C.A. RNASeq analysis reveals upregulation of complement C3 in the offspring gut following prenatal stress in mice. Immunobiology 2020, 225, 151983. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef]
- Stewart, C.J.; Ajami, N.J.; O’brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A.; et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, P.S.; Warner, B.B.; Zhou, Y.; Weinstock, G.M.; Sodergren, E.; Hall-Moore, C.M.; Stevens, H.J.; Bennett, W.E., Jr.; Shaikh, N.; Linneman, L.A.; et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl. Acad. Sci. USA 2014, 111, 12522–12527. [Google Scholar] [CrossRef]
- Gibson, M.K.; Wang, B.; Ahmadi, S.; Burnham, C.-A.D.; Tarr, P.I.; Warner, B.B.; Dantas, G. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 2016, 1, 16024. [Google Scholar] [CrossRef]
- Gasparrini, A.J.; Wang, B.; Sun, X.; Kennedy, E.A.; Hernandez-Leyva, A.; Ndao, I.M.; Tarr, P.I.; Warner, B.B.; Dantas, G. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 2019, 4, 2285–2297. [Google Scholar] [CrossRef]
- Stewart, C.J.; Skeath, T.; Nelson, A.; Fernstad, S.J.; Marrs, E.C.L.; Perry, J.D.; Cummings, S.P.; Berrington, J.E.; Embleton, N.D. Preterm gut microbiota and metabolome following discharge from intensive care. Sci. Rep. 2015, 5, 17141. [Google Scholar] [CrossRef]
- Moles, L.; Gómez, M.; Jiménez, E.; Fernández, L.; Bustos, G.; Chaves, F.; Cantón, R.; Rodríguez, J.; del Campo, R. Preterm infant gut colonization in the neonatal ICU and complete restoration 2 years later. Clin. Microbiol. Infect. 2015, 21, 936.e1–936.e10. [Google Scholar] [CrossRef]
- Claud, E.C.; Walker, W.A. Hypothesis: Inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB J. 2001, 15, 1398–1403. [Google Scholar] [CrossRef]
- Brower-Sinning, R.; Zhong, D.; Good, M.; Firek, B.; Baker, R.; Sodhi, C.P.; Hackam, D.J.; Morowitz, M.J. Mucosa-associated bacterial diversity in necrotizing enterocolitis. PLoS ONE 2014, 9, e105046. [Google Scholar] [CrossRef] [PubMed]
- Warner, B.B.; Deych, E.; Zhou, Y.; Hall-Moore, C.; Weinstock, G.M.; Sodergren, E.; Shaikh, N.; Hoffmann, J.A.; Linneman, L.A.; Hamvas, A.; et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: A prospective case-control study. Lancet 2016, 387, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Dobbler, P.T.; Procianoy, R.S.; Mai, V.; Silveira, R.C.; Corso, A.L.; Rojas, B.S.; Roesch, L.F.W. Low microbial diversity and abnormal microbial succession is associated with necrotizing enterocolitis in preterm infants. Front. Microbiol. 2017, 8, 2243. [Google Scholar] [CrossRef]
- Pammi, M.; Cope, J.; Tarr, P.I.; Warner, B.B.; Morrow, A.L.; Mai, V.; Gregory, K.E.; Kroll, J.S.; McMurtry, V.; Ferris, M.J.; et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: A systematic review and meta-analysis. Microbiome 2017, 5, 31. [Google Scholar] [CrossRef]
- Ji, Y.-C.; Sun, Q.; Fu, C.Y.; She, X.; Liu, X.C.; He, Y.; Ai, Q.; Li, L.Q.; Wang, Z.L. Exogenous Autoinducer-2 Rescues Intestinal Dysbiosis and Intestinal Inflammation in a Neonatal Mouse Necrotizing Enterocolitis Model. Front. Cell. Infect. Microbiol. 2021, 11, 694395. [Google Scholar] [CrossRef]
- Pérez-Reytor, D.; Puebla, C.; Karahanian, E.; García, K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front. Physiol. 2021, 12, 650313. [Google Scholar] [CrossRef]
- Wang, K.; Tao, G.-Z.; Salimi-Jazi, F.; Lin, P.-Y.; Sun, Z.; Liu, B.; Sinclair, T.; Mostaghimi, M.; Dunn, J.; Sylvester, K.G. Butyrate induces development-dependent necrotizing enterocolitis-like intestinal epithelial injury via necroptosis. Pediatr. Res. 2022, 93, 801–809. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, H.; Li, B.; Lee, C.; Alganabi, M.; Zheng, S.; Pierro, A. Beneficial effects of butyrate in intestinal injury. J. Pediatr. Surg. 2020, 55, 1088–1093. [Google Scholar] [CrossRef]
- Laudadio, I.; Fulci, V.; Palone, F.; Stronati, L.; Cucchiara, S.; Carissimi, C. Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome. OMICS A J. Integr. Biol. 2018, 22, 248–254. [Google Scholar] [CrossRef]
- Jašarević, E.; Howard, C.D.; Morrison, K.; Misic, A.; Weinkopff, T.; Scott, P.; Hunter, C.; Beiting, D.; Bale, T.L. The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nat. Neurosci. 2018, 21, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Gur, T.L.; Palkar, A.V.; Rajasekera, T.; Allen, J.; Niraula, A.; Godbout, J.; Bailey, M.T. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav. Brain Res. 2018, 359, 886–894. [Google Scholar] [CrossRef]
- Jašarević, E.; Howard, C.D.; Misic, A.M.; Beiting, D.P.; Bale, T.L. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci. Rep. 2017, 7, 44182. [Google Scholar] [CrossRef] [PubMed]
- Zijlmans, M.A.; Korpela, K.; Riksen-Walraven, J.M.; de Vos, W.M.; de Weerth, C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015, 53, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.-M.; Lee, K.E.; Lee, H.J.; Kim, D.H. Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Sci. Rep. 2018, 8, 13897. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.T. Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation. Microb. Endocrinol. 2014, 817, 255–276. [Google Scholar] [CrossRef]
- Galley, J.D.; Nelson, M.C.; Yu, Z.; E Dowd, S.; Walter, J.; Kumar, P.S.; Lyte, M.; Bailey, M.T. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, K.; Funabashi, H.; Matsuoka, H.; Saito, M. Potential use of Lactobacillus cell density in feces as a non-invasive bio-indicator for evaluating environ-mental stress during mouse breeding. Biocontrol Sci. 2013, 18, 101–104. [Google Scholar] [CrossRef] [PubMed][Green Version]
- De Palma, G.; Blennerhassett, P.; Lu, J.; Deng, Y.; Park, A.J.; Green, W.; Denou, E.; Silva, M.A.; Santacruz, A.; Sanz, Y.; et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun. 2015, 6, 7735. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, P.-Q.; Wang, L.; Taché, Y. Activation of the parapyramidal region in the ventral medulla stimulates gastric acid secretion through vagal pathways in rats. Neuroscience 1999, 95, 773–779. [Google Scholar] [CrossRef]
- Messmer, B.; Zimmerman, F.G.; Lenz, H.J. Regulation of exocrine pancreatic secretion by cerebral TRH and CGRP: Role of VIP, muscarinic, and adrenergic pathways. Am. J. Physiol. Liver Physiol. 1993, 264, G237–G242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yin, J.; Wang, L.; Chen, J.D.Z. Diffused and sustained inhibitory effects of intestinal electrical stimulation on intestinal motility mediated via sympathetic pathway. Neuromodulation Technol. Neural Interface 2013, 17, 373–380. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Reyna-Garfias, H.; Miliar, A.; Jarillo-Luna, A.; Rivera-Aguilar, V.; Pacheco-Yepez, J.; Baeza, I.; Campos-Rodríguez, R. Repeated restraint stress increases IgA concentration in rat small intestine. Brain Behav. Immun. 2010, 24, 110–118. [Google Scholar] [CrossRef]
- Kim, J.H.; Sampath, V.; Canvasser, J. Challenges in diagnosing necrotizing enterocolitis. Pediatr. Res. 2020, 88, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.Y.; Leung, K.T.; Tam, Y.H.; Lam, H.S.; Cheung, H.M.; Ma, T.P.; Lee, K.H.; To, K.F.; Li, K.; Ng, P.C. Genome-wide expression profiles of necrotizing enterocolitis versus spontaneous intestinal perforation in human intestinal tissues: Dysregulation of functional pathways. Ann. Surg. 2014, 260, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, Y.; Su, Y.; Zhou, L.; Zhang, H.; Shen, Q.; Du, C.; Li, H.; Wen, Z.; Xia, Y.; et al. Identification of candidate genes for necrotizing enterocolitis based on microarray data. Gene 2018, 661, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef]
- Weitkamp, J.-H.; Koyama, T.; Rock, M.T.; Correa, H.; Goettel, J.A.; Matta, P.; Oswald-Richter, K.; Rosen, M.J.; Engelhardt, B.G.; Moore, D.J.; et al. Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4, CD8) T cell ratios. Gut 2013, 62, 73–82. [Google Scholar] [CrossRef]
- Abu-Elheiga, L.; Matzuk, M.M.; Abo-Hashema, K.A.; Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001, 291, 2613–2616. [Google Scholar] [CrossRef]
- Wakil, S.J.; Abu-Elheiga, L.A. Fatty acid metabolism: Target for metabolic syndrome. J. Lipid Res. 2009, 50, S138–S143. [Google Scholar] [CrossRef]
- Oh, W.; Abu-Elheiga, L.; Kordari, P.; Gu, Z.; Shaikenov, T.; Chirala, S.S.; Wakil, S.J. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proc. Natl. Acad. Sci. USA 2005, 102, 1384–1389. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Zamocky, M.; Sandoval, J.M.; Verrax, J.; Calderon, P.B. Regulation of catalase expression in healthy and cancerous cells. Free Radic. Biol. Med. 2015, 87, 84–97. [Google Scholar] [CrossRef]
- Smeekens, S.P.; Huttenhower, C.; Riza, A.; van de Veerdonk, F.L.; Zeeuwen, P.L.; Schalkwijk, J.; van der Meer, J.W.; Xavier, R.J.; Netea, M.G.; Gevers, D. Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J. Innate Immun. 2014, 6, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Luzardo-Ocampo, I.; Ocampo-Ruiz, A.L.; Dena-Beltrán, J.L.; de la Escalera, G.M.; Clapp, C.; Macotela, Y. The Diversity of Gut Microbiota at Weaning Is Altered in Prolactin Receptor-Null Mice. Nutrients 2023, 15, 3447. [Google Scholar] [CrossRef]
- Tremblay, É.; Thibault, M.-P.; Ferretti, E.; Babakissa, C.; Bertelle, V.; Bettolli, M.; Burghardt, K.M.; Colombani, J.-F.; Grynspan, D.; Levy, E.; et al. Gene expression profiling in necrotizing enterocolitis reveals pathways common to those reported in Crohn’s disease. BMC Med. Genom. 2015, 9, 6. [Google Scholar] [CrossRef]
- Nanthakumar, N.; Meng, D.; Goldstein, A.M.; Zhu, W.; Lu, L.; Uauy, R.; Llanos, A.; Claud, E.C.; Walker, W.A. The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: An immature innate immune response. PLoS ONE 2011, 6, e17776. [Google Scholar] [CrossRef]
- Maheshwari, A.; Schelonka, R.L.; Dimmitt, R.A.; Carlo, W.A.; Munoz-Hernandez, B.; Das, A.; McDonald, S.A.; Thorsen, P.; Skogstrand, K.; Hougaard, D.M.; et al. Cytokines associated with necrotizing enterocolitis in extremely-low-birth-weight infants. Pediatr. Res. 2014, 76, 100–108. [Google Scholar] [CrossRef]
- Baumgart, D.C.; Sandborn, W.J. Crohn’s disease. Lancet 2012, 380, 1590–1605. [Google Scholar] [CrossRef]
- Ng, P.C.; Chan, K.Y.; Leung, K.T.; Tam, Y.H.; Ma, T.P.; Lam, H.S.; Cheung, H.M.; Lee, K.H.; To, K.F.; Li, K. Comparative MiRNA Expressional Profiles and Molecular Networks in Human Small Bowel Tissues of Ne-crotizing Enterocolitis and Spontaneous Intestinal Perforation. PLoS ONE 2015, 10, e0135737. [Google Scholar] [CrossRef]
- Xie, Z.; Kang, Q.; Shi, Y.; Du, J.; Jiang, H. A transcriptomic landscape analysis of human necrotizing enterocolitis: Important roles of immune infiltration. Pediatr. Discov. 2023, 1, e1. [Google Scholar] [CrossRef]
- Hackam, D.J.; Sodhi, C.P. Toll-Like Receptor-Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Ne-crotizing Enterocolitis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 229–238.e1. [Google Scholar] [CrossRef] [PubMed]
- Gomart, A.; Vallée, A.; Lecarpentier, Y. Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front. Pediat. 2021, 9, 713344. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, Y.; Su, Y.; Zhou, L.; Zhang, H.; Shen, Q.; Du, C.; Li, H.; Wen, Z.; Xia, Y.; et al. Identification of specific gene modules and candidate signatures in necrotizing enterocolitis disease: Networkbased gene co-expression approach. Biointerface Res. Appl. Chem. 2021, 11, 12901–12915. [Google Scholar]
- Johnston, R.B.; Altenburger, K.M.; Atkinson, A.W.; Curry, R.H. Complement in the newborn infant. Pediatrics 1979, 64 Pt 5, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Høgåsen, A.K.M.; Øverlie, I.; Hansen, T.W.R.; Abrahamsen, T.G.; Finne, P.H.; Høgåsen, K. The analysis of the complement activation product SC5 b-9 is applicable in neonates in spite of their profound C9 deficiency. J. Perinat. Med. 2000, 28, 39–48. [Google Scholar] [CrossRef]
- Tayman, C.; Tonbul, A.; Kahveci, H.; Uysal, S.; Koseoğlu, B.; Tatli, M.M.; Dilmen, U. C5a, a complement activation product, is a useful marker in predicting the severity of necrotizing enterocolitis. Tohoku J. Exp. Med. 2011, 224, 143–150. [Google Scholar] [CrossRef]
- Falck-Hansen, M.; Kassiteridi, C.; Monaco, C. Toll-Like Receptors in Atherosclerosis. Int. J. Mol. Sci. 2013, 14, 14008–14023. [Google Scholar] [CrossRef]
- Li, M.; Russell, S.K.; Lumsden, J.S.; Leatherland, J.F. The influence of oocyte cortisol on the early ontogeny of intelectin and TLR-5, and changes in lysozyme activity in rainbow trout (Oncorhynchus mykiss) embryos. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2011, 160, 159–165. [Google Scholar] [CrossRef]
- Lutgendorf, S.K.; Zia, S.; Luo, Y.; O’Donnell, M.; van Bokhoven, A.; Bradley, C.S.; Gallup, R.; Pierce, J.; Taple, B.J.; Naliboff, B.D.; et al. Early and recent exposure to adversity, TLR-4 stimulated inflammation, and diurnal cortisol in women with interstitial cystitis/bladder pain syndrome: A MAPP research network study. Brain Behav. Immun. 2023, 111, 116–123. [Google Scholar] [CrossRef]
- Schrepf, A.; Bradley, C.S.; O’donnell, M.; Luo, Y.; Harte, S.E.; Kreder, K.; Lutgendorf, S. Toll-like Receptor 4 and comorbid pain in Interstitial Cystitis/Bladder Pain Syndrome: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain research network study. Brain Behav. Immun. 2015, 49, 66–74. [Google Scholar] [CrossRef]
- Hunter, C.J.; Upperman, J.S.; Ford, H.R.; Camerini, V. Understanding the Susceptibility of the Premature Infant to Necrotizing Enterocolitis (NEC). Pediatr. Res. 2008, 63, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.J.; Fatemizadeh, R.; Parsons, P.; Lamb, C.A.; Shady, D.A.; Petrosino, J.F.; Hair, A.B. Using formalin fixed paraffin embedded tissue to characterize the preterm gut microbiota in necrotising enterocolitis and spontaneous isolated perforation using marginal and diseased tissue. BMC Microbiol. 2019, 19, 52. [Google Scholar] [CrossRef] [PubMed]
- Shickh, S.; Mighton, C.; Uleryk, E.; Pechlivanoglou, P.; Bombard, Y. The clinical utility of exome and genome sequencing across clinical indications: A systematic review. Hum. Genet. 2021, 140, 1403–1416. [Google Scholar] [CrossRef]
Stressors |
---|
Life changes |
Drug, alcohol, and substance abuse |
Emotional stresses such as grief, anxiety, depression, or other mental illness |
Socioeconomic status |
Natural disasters |
Nutritional stress (starvation and over-eating) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeramilli, V.; Cheddadi, R.; Benjamin, H.; Martin, C. The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis. Microorganisms 2023, 11, 2206. https://doi.org/10.3390/microorganisms11092206
Yeramilli V, Cheddadi R, Benjamin H, Martin C. The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis. Microorganisms. 2023; 11(9):2206. https://doi.org/10.3390/microorganisms11092206
Chicago/Turabian StyleYeramilli, Venkata, Riadh Cheddadi, Heather Benjamin, and Colin Martin. 2023. "The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis" Microorganisms 11, no. 9: 2206. https://doi.org/10.3390/microorganisms11092206
APA StyleYeramilli, V., Cheddadi, R., Benjamin, H., & Martin, C. (2023). The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis. Microorganisms, 11(9), 2206. https://doi.org/10.3390/microorganisms11092206